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Abstract 

Network traffic depicts the network characteristics and users behaviors. Accurate 

network traffic prediction is essential for dynamic network management. In this paper, the 

echo state covariation orthogonality network (ESCON) is proposed in a linear unbiased 

estimation framework based on echo state mechanisms for network traffic prediction. The 

ESCON inherits the basic idea of ESN learning in an unbiased estimation framework, but 

replaces the commonly used least square method with a covariation orthogonality one, 

which can reflect the tendency of network traffic more accurately, to solve the optimal 

output weights. We perform a comprehensive performance evaluation, considering 

publicly available nonstationary H.264 video traces. In all traces, we show that the 

ESCON can more effectively capture the characteristics of self-similarity and bursty, and 

yield superior prediction accuracy than the considered prediction schemes. 
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1. Introduction 

Network traffic dramatically affects the network activities, such as network 

management, traffic engineering, network protocol analysis, network design, routing 

optimization. In the recent years, network traffic has experienced significant changes with 

the development of video conference, high-definition TV, video browsing applications 

and virtual reality application. Some of emerging applications require strict quality of 

service (QoS) guarantee on packet loss, delay and delay jitter. In order to satisfy the QoS 

requirements, accurate traffic modeling and prediction [1][2] are required for adequate 

call admission control, usage parameter control, traffic management, resource allocation 

and congestion control [3][4]. Recently, with the rapid development of the 

communication and network technologies, the traffic characteristics have changed 

drastically. Network traffic [5] over high-speed Internet typically can possess the 

characteristics self-similarity and long range dependence, and simultaneously exhibit high 

bursty over different time scales. It is a challenging problem to measure the network 

traffic directly in real networks [6]. Network traffic modeling and prediction have become 

a research hotspot and draw widespread attention. 

To the best of our knowledge, the neural network (NN) is one of the most usually used 

nonlinear methods to predict traffic data. Park [7] proposed a structurally optimized 

bilinear recurrent neural network that had been successfully applied to the network traffic 

prediction. Cortez et al. [8] developed a fully connected multilayer perceptron (MLP) to 

predict the amount of traffic in TCP/IP based networks. Katris and Daskalaki [9] 

evaluated the fractal autoregressive integrated moving average (FARIMA) model, 

MLP and radial basis function (RBF) neural network, and further proposed the two 

alternative approaches that could combine the merits of both FARIMA and neural 

network models. Oravec et al. [10] proposed video traffic prediction methods based on 

the MLP, RBF and backpropagation through time (BPTT) neural networks to predict the 
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variable bit rate video (VBR) traffic for the efficient bandwidth allocation. Ding et al. 

[11] proposed a wavelet transformation based integrated prediction model to deal with the 

dynamic characteristics of network traffic. Zhang et al. [12] proposed a fuzzy wavelet 

neural network (WNN) based on the quantum-behaved particle swarm optimization for 

network traffic to extract the mapping relations between the input and output data. 

Although the above traditional neural networks (e.g. MLP, RBF, BPTT and WNN) have 

the nonlinear approximation capability, they also exhibit many weaknesses, characterized 

by slow convergence, over-fitting phenomenon and suboptimal solution.  

As a powerful neural network, echo state network (ESN) [13][14][15] has the 

characteristics of a remarkable dynamic reservoir and simple linear readout. The reservoir 

consists of massive randomly and sparsely connected neurons. The unique trainable part 

is the output weights that which can be solved through simple linear regression. It is 

proved that the ESN outperform the traditional neural networks. The ESN has been 

applied successfully in speech recognition, reinforcement learning, robot control and 

time-series prediction. However, we have verified that it is rather difficult for the ESN 

based on simple regression method (e.g. pseudo-inverse method or ridge regression 

method) to accurately predict network traffic. Fortunately, Xiang et al. [16] introduced the 

covariation orthogonality (CO) criterion into network traffic prediction, which provided 

a superior linear unbiased estimation method. The paper focuses on the combination of 

the ESN and CO criterion to describe the prominent characteristics of network traffic as 

accurately as possible.  

In this paper, we propose an echo state covariation orthogonality network (ESCON) 

for network traffic prediction, combining the merits of the CO criterion and echo state 

mechanisms. The basic idea of ESCON is to train ESN in a linear unbiased estimation 

framework, while replacing the least square method with the CO criterion, which is less 

sensitive to outliers and able to effectively capture the self-similarity and bursty of 

network traffic. Theoretically, we derive the output weights formula available for ESCON. 

Besides, we also consider the multistep-ahead prediction for network traffic, since 

network bandwidth allocation/reallocation can never be achieved in such small time scale. 

The efficacy of the proposed approach is evaluated on nonstationary H.264 video traces, 

using a well-known video trace dataset. Its performance is compared to Gaussian process 

based ESN [15], a combined method (back propagation neural network & CO criterion) 

[16], and multiresolution-learning-based NN predictor [17]. 

The rest of the paper is organized as follows. Section 2 introduces the linear unbiased 

estimation based on CO criterion. Section 3 describes the ESCON in detail, and derives 

the output weight matrix. Section 4 shows the experimental results and performance 

analysis for real-world network traffic. Finally, section 5 gives the short conclusion about 

our work. 

 

2. Covariation Orthogonality Criterion  

Consider that the covariance is used to effectively conduct the Gaussian random 

process. However, in the α-stable process [18], whenever the characteristic parameter α < 

2, the population variance is proved to be infinite, resulting in ineffectiveness of the 

covariance function. To gain a better understanding of α-stable process, the covariation 

has been proposed to replace the covariance in the case of α < 2 [18]. The covariation can 

be defined as follow: 

Definition 1(Covariation Orthogonality)[16]: Assume that X and Y are random 

vectors of the α-stable process with α > 1, and for the polar coordinates space R2, (u, v) is 

the representation of the process (X, Y) with spectral measure Γ on the unit circle S, the 

covariation of X on Y is given by: 

1
[ , ] ( , )

S

X Y uv d u v





                                                                                            (1) 
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where <·> denotes the sign power, given by 
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                                                                       (2) 

When the α-stable random vectors X and Y satisfy the following formula 

[ , ] 0X Y                                                                                                       (3) 

the vector X is regarded as the covariation orthogonality related to the vector Y. 

Definition 2(Unbiased Estimation): Let (X1, X2, …, Xn; Yn) be joint alpha-stable 

distribution, and Ŷn is the estimated value of Yn , if satisfy: 

 
1 2[ , ,..., ] 0n nE X X X                                                             (4) 

where εn= Yn- Ŷn, Ŷn is said to be unbiased estimator to the Yn. 

Lemma 1[16]: Let the vector (X1, X2, …, Xn; Yn) be the joint α-stable distribution 

with the characteristic parameter α(1, 2), and for the spectral measure Γ, the (v, u) 

is the spectral representation of (Yn, X), yield: 

A) For the set 
1{ }m

i ia 
, 

1

1

[ ]
m

n i n i

i

E Y a X  



X , if and only if 
m t , 

1

1
( )( ) ( , ) 0

mS

v d v





  

' 'a u t u u                                                                    (5) 

B) The following formulas are equivalent. 

 [ ]nE Y  'X a X                                                              (6) 

[ ] 0nE Y  'a X X                                                         (7) 

 [ , ] 0nY  'a X X                                                         (8) 

According to the Lemma 1, for the joint alpha-stable (X1, X2, …, Xn; Yn), observe 

that Yn is a linear unbiased estimation based on the CO criterion for the 
'a X .  

 

3. ESCON 
 

3.1. ESN in a Nutshell 

The ESN [19] is a special form of recurrent neural network, which is trained 

through the supervised learning. The general structure of an ESN is shown in Figure 

1. Observe that the network consists of K input units u(t)=(u1(t), u2(t), …, uK(t)), N 

internal units x(t)=(x1(t), x2(t),…, xN(t)), and L output units y(t)=(y1(t), y2(t),…, yL(t)). 

The real-valued connection weights are obtained in a N×K weight matrix Win for the 

input weights, in a N×N weight matrix W for the internal connections, in a L×N 

weight matrix Wout for the connections from internal units to the output units. Each 

neuron or unit of the ESN has an activation state at a given time step t. When the 

input stream u(t) is fed into the reservoir units, the activation states of the reservoir 

units are generally updated using the following equation: 

( 1) ( ( 1) ( ))inx t f W u t +Wx t                                                          (9) 

where f is the transfer function of the reservoir units (tanh, other sigmoidal function 

or identity function). The generic output is calculated according to the system 

internal state by 

( 1) ( ( 1))out outy t f W x t                                                      (10) 
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where the output function fout is usually linear. 
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Figure 1. The General Structure of an ESN 

In the standard ESN implementations, Win and W remain unchanged after 

initialization, and the spectral radius of the reservoir weight matrix W is set less 

than 1 to obtain the echo state property.  

 

3.2. ESCON Formulation 

In this section we put forward the theoretical consideration on how the CO 

criterion is introduce for the ESN training. We formalize the interaction between the 

reservoir dynamics and training error, and further solve the optimal output weights. 

To the best of our knowledge, the ESN using pseudo-inverse method or ridge 

regression method can cause the significant degradation of nonlinear approximation 

capability when facing the network traffic with self-similarity and bursty 

characteristics. 

The following quantitative analysis can give deeper insights into the training 

method of ESN. Assume that x(t)=(x1(t), x2(t),…, xN(t)) denotes the reservoir states, 

y(t)=(y1(t), y2(t),…, yL(t)) denotes the desired output and ŷ(t) is the predicted output 

at the time step t. According to Eq. (10), the predicted output is given by 

ˆ( ) ( )outy t W x t                                                                  (11) 

We can observe from Eq. (11) that only after the output weight matrix Wout is 

solved, can the predicted output ŷ(t) be obtained. Let the actual output y(t) and 

reservoir states x(t) be joint α-stable process. According to the Definition 2, there 

exists a linear unbiased estimation based on the CO criterion, yielding 

ˆ[ ( ) ( ) ( )] 0E y t y t x t =                                                         (12) 

Moreover, we have (see Lemma 1)  

[ ( ) ( ), ( )] 0out

ay t -W x t x t =                                                      (13) 

where the prediction error ε=y(t)-Woutx(t) is covariation orthogonality to the 

reservoir state x(t). Based on the decomposability of covariation [18], we can further 

convert the Eq. (13) to  

[ ( ) ( )] [ ( ) ( )] 0out

a ay t ,x t - W x t ,x t =                                                 (14) 



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 12, No. 5 (2017) 

 

 

Copyright © 2017 SERSC 33 

Since the first vector of covariation equation is linear,  we have  

 [ ( ) ( )] [ ( ) ( )]out

a aW x t ,x t = y t ,x t                                                          (15) 

where [x(t), x(t)]α denotes the self-covariation, and [y(t), x(t)]α denotes the cross-

covariation. The Eq. (15) can be written as the following covariation matrix form 
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                (16) 

Under the assumption of (X, Y) obeying joint alpha-stable distribution with α>1, 

the covariation has the following form [16]: 

1

0
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



                                    (17) 

where σY is covariation norm of vector Y. Similarly, we have 

1

0
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The above two formulas are substituted into Eq. (16), and after some 

manipulation, the output weight matrix of ESCON is given by  
1 1 1
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where for 0,1,...., 1, 0,1,..., 1i N j N     , the population mean of  
1
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By analogy, for 0,1, , 1, 0,1, , 1i L j N     , the 
1[ ( ) ( )]p

s i s j N LE y t x t  

     is 

given by 

1
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Finally, employing Eq. (21) and (22), the optimal output weight matrix Wout of 

the ESCON can be calculated by solving Eq. (20), which implies that the ESCON 

training is finished by the linear unbiased estimation based on CO criterion. 
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Table 1. H.264 Video Traces 

Video trace Coding standard Type 

IMAX Station Space MVC Movie 

Tokyo Olympics AVC Sports 

News SVC TV News 
 

Table 2. Experimental Configuration for Three H.264 Video Traffic 

Parameters 
IMAX  

station space 

Tokyo 

olympics 
News 

Reservoir size 80 80 50 

Spectral radius 0.8 0.95 0.8 

Reservoir connectivity 0.1 0.1 0.1 

Output feedback No No No 

Washout time 500 500 1500 

 

4. Experiments 

In this section, we provide a thorough experimental evaluation of the ESCON, 

considering three video traffic traces with H.264 coding [20]. More detail traffic 

characteristics and coding parameters of the H.264 video traces can be found in [21]. In 

our experiment, the used live real-world H.264 video traffic traces include the 3D movie, 

sport and news, covering a wide range of popular video samples, as listed in Table 1. To 

verify the potential of ESCON, we analyze the characteristic changes (i.e. self-similarity 

and bursty) of H.264 video traffic before and after prediction, and evaluate the prediction 

performance of proposed ESCON. Compared with echo state Gaussian process [15] 

(ESGP), a combined method (BP neural network & covariation orthogonality prediction, 

CO-BPNN) [16], and multiresolution-learning-based NN predictor (MLNN, in my case, 

the three layer NN is 24-5-1, and Haar wavelet is used for multiresolution analysis.) [17]. 

The experimental settings for the different H.264 video traces are shown in Table 2. In 

order to simplify the calculation, the parameter p has the same value as the parameter α .  

To quantitatively assess the prediction performance, the normalized mean squared error 

(NMSE) and the prediction gain Rp are used, which are respectively defined as 

   1

2

ˆ( ( ) ( ))
testl

i

test

y t y t

NMSE
l 









                                                            (23) 

where ŷ(t) and y(t) are the predicted output and actual output respectively during the 

testing phase, and σ2 is the variance of the actual output over the prediction duration ltest.  

2

10 2
10log ( )dBu

p

e

R



                                                   (24) 

where 
2

u denotes the estimated variance of the input, and 
2

e denotes the estimated 

variance of the prediction error. 
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(a) (b) 

 
(a)                                                      (b) 

Figure 2. R/S Plots of 200-Frame-Ahead Prediction over the ESCON for 
IMAX Station Video. (a) Actual Video Traffic, (b) Predicted Video Traffic 

 

Figure 3. R/S Plots of 200-Frame-Ahead Prediction over the ESCON for 
Tokyo Olympics Video. (a) Actual Video Traffic, (b) Predicted Video Traffic 

 

 

 

 

 

 

 

 

(a)                                                                 (b) 

Figure 4. R/S Plots of 200-Frame-Ahead Prediction over the ESCON for 
News Video. (a) Actual Video Traffic, (b) Predicted Video Traffic. 
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(a) 

 
(b)                                                                (c) 

Figure 5. PDF Fitting Plots of Actual and Predicted Traffic for Three H.264 
VideoTraces over the 200-Frame-Ahead Prediction of ESCON. (a) IMAX 

StationSpce. (b) Tokyo Olympics. (c) News 

4.1. Characteristic Comparison of H.264 Video traces 

Network traffic has strong self-similarity, which is measured by the Hurst parameter H. 

H ∈ (0.5, 1) [23] illustrates the existence ofself-siilarity, and the larger H, the stronger 

self-similarity degree. Moreover, the self-similarity can lead to heavy-tail distribution. 

Based on the R/S method [23], Figure. 2-4 respectively give the comparisons self-similar 

degrees of actual and predicted traffic for the three H.264 video traces over the ESCON, 

where the slope of the red line is the value of Hurst parameter. It can see directly that the 

three actual H.264 video traces exhibit strong self-similarity, whose values of Hurst 

parameters are 0.768, 0.915 and 0.914, respectively. We also observe that the values of 

Hurst parameters, obtained before and after the ESCON is applied, are almost the same. 

This indicates that the proposed ESCON can effectively model the selfsimilarity of 

network traffic. 

Moreover, network traffic also exhibits high bursty, characterized by the heavy-tail 

index α. α∈(1, 2) [10] dominates the bursty degree of network traffic, and the smaller α 

reflects the higher bursty. Figure 5 shows the good fitting degree of the probability 

density functions (PDF) for the actual and predicted video traffic over the ESCON. 

Observe that the predicted video traffic has a more obvious heavy-tail than the actual one 

over the frame size for each video trace, which implies stronger bursty. In addition, the 

cumulative distribution function (CDF) is used to describe the distribution characteristic 
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of the frame size. As shown in Figure 6, good fitting results of the CDFs are also obtained 

for the actual and predicted H.264 video traffic. The results imply that the proposed 

ESCON can effectively describe the bursty characteristic of the network traffic. 

 

 
(a) 

 
(b)                                                         (c) 

Figure 6. CDF Fitting Plots of Actual and Predicted Traffic for Three H.264 
Video Traces over the 200-Frame-Ahead Prediction of ESCON. (a) IMAX 

Station Space, (b) Tokyo Olympics, (c) News 

Table 3 quantitatively depicts characteristic comparisons of the actual and predicted 

video traffic for the different evaluated methods. As we observe, the predicted video 

traffic, obtained by the ESCON, shows the biggest H and smallest α among the evaluated 

methods, which means that the ESCON slightly affects the self-similarity and bursty of 

H.264 video traffic. It is because both processes, which the video traffic is identically 

mapped to the high-dimensional activation states for the ESCON learning, and the CO 

unbiased estimation can enhance the nonlinear approximation capability, can guarantee 

the accurate characteristic transfer of video traffic. By contrast, ESGP, CO-BPNN and 

ML-NN enormously affect the dynamic characteristics of video traffic, resulting in the 

significant decrease of the self-similarity and bursty. Hence, these observations 

collectively demonstrate that the ESCON can effectively capture and maintain the 

dynamic behaviors of video traffic with self-similarity and bursty. 
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Table 3. Characteristic Comparison of Three H.264 Video Traces Over the 
200-Frame-Ahead Prediction of Evaluated Methods 

Video 

trace 
Parameter 

Actual 

video traffic 
ESCON CO-BPNN ESGP ML-NN 

IMAX 

Station 

Space 

Hurst 0.738 0.768 0.548 0.559 0.548 

α 1.376 1.287 1.603 1.556 1.536 

Tokyo 

Olympics 

Hurst 0.915 0.945 0.837 0.869 0.809 

α 1.098 1.040 1.261 1.283 1.193 

News 
Hurst 0.914 0.952 0.816 0.846 0.867 

α 1.316 1.260 1.451 1.408 1.384 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. 200-Frame-Ahead Predictions of the ESCON for Three H.264 Video 
Traces. (a) IMAX Station Space (b) Tokyo Olympics (c) News 
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(a) 

4.2. Prediction Performance 

In Figure 7, we give the comparative curves of the actual and predicted outputs for the 

ESCON, CO-BPNN, ESGP and ML-NN over the considered test region, respectively. It 

is clear that the proposed ESCON can achieve the good peaks-fitting for each video traces. 

Figure 8 shows the NMSEs of multi-frame-ahead prediction for three video traces. It can 

be seen that the proposed ESCON obviously outperforms the CO-BPNN, ESGP and ML-

NN as the multi-frame step increases. It should not be surprising since the dynamic 

reservoir of ESCON can extract the mapping relations between the input and output data 

more effectively, and the unbiased estimation based on the CO criterion can ensure the 

approximation capacity. However, the ESGP exhibits bad prediction performance, 

because the inherent Gaussian process can’t effectively describe the video traffic with 

strong self-similarity and bursty. As for the CO-BPNN and ML-NN, the backpropagation 

learning algorithm, owning the instability of learning and memory, is easy to trap in local 

optimum, resulting in the unsatisfactory prediction performance. In addition, as a standard 

criterion to assess prediction performance, the prediction gain Rp is used to measure how 

well the evaluated methods perform. Table 4 shows the prediction gain variation of 

evaluated methods over multi-frame-ahead prediction. Observe that the ESCON obtains 

higher prediction gain compared with the CO-BPNN, ESGP and ML-NN, even when 

500-frame-ahead prediction is performed. Hence, the ESCON is endowed with superior 

prediction performance, more suitable for network traffic prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Multiframe-Ahead Prediction NMSE of Evaluated Methods for 
Three H.264 Video Traces: (a) IMAX Station Space, (b) Tokyo Olympics, (c) 

News 

 

100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

N
M

S
E

 

 

ESCON

CO-BPNN

ESGP

ML-NN

100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

N
M

S
E

 

 

ESCON

CO-BPNN

ESGP

ML-NN

100 200 300 400 500

0.4

0.5

0.6

0.7

0.8

0.9

1

Steps

N
M

S
E

 

 

ESCON

CO-BPNN

ESGP

ML-NN



International Journal of Multimedia and Ubiquitous Engineering 

Vol. 12, No. 5 (2017) 

 

 

40  Copyright © 2017 SERSC 

5. Conclusion 

In this paper, we propose a new methodology for network traffic prediction, named the 

ESCON. The ESCON can be treated under the linear unbiased estimation framework, 

giving rise to an efficient model estimation algorithm based on the CO criterion. 

Through solving the covariation orthogonality equation of prediction error relative 

to the reservoir state, the so-obtained methodology can find the optimal output 

weights for the ESCON learning. The performance of our method is evaluated by 

means of simulations with three H.264 video traces. Our results indicate that the 

proposed ESCON exhibits significantly superior multi-frame-ahead prediction 

performance, and more effectively capture the self-similarity and bursty of network 

traffic, compared with the CO-BPNN, ESGP and ML-NN. In our future work, the open 

issues that we will endeavor to address, includes improving the reservoir structure and 

optimizing the multiple parameters of ESCON. 

Table 4. The Gain Rp of Evaluated Methods for Three H.264 Video Traces 

Video trace Step ESCON CO-BPNN ESGP ML-NN 

IMAX 

Station 

Space 

100 8.271 6.302 7.018 7.418 

200 6.985 3.708 4.925 6.157 

300 5.734 2.715 3.476 4.974 

400 4.594 2.316 2.905 3.198 

500 3.788 1.536 2.042 2.568 

Tokyo 

Olympics 

100 8.164 6.229 7.096 7.367 

200 6.315 2.758 4.325 5.439 

300 5.268 2.316 3.257 4.457 

400 4.802 1.897 3.051 3.724 

500 4.251 0.639 1.992 2.806 

News 

100 4.812 3.475 4.483 4.201 

200 4.781 2.774 3.015 3.882 

300 4.409 2.016 2.409 3.263 

400 3.912 1.801 2.157 2.425 

500 3.971 0.739 1.921 2.079 
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