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Abstract 

A intensity invariant measure of pixel dissimilarity that compares two pixels is 

proposed. Horizontal and vertical differences of the image are utilized for dissimilarity 

measure. The method is intensity invariant for stereo matching. Bad matches arising from 

illumination change between two cameras are eliminated as much as possible. Moreover, 

some parameters of belief propagation algorithm for stereo matching can be figure out 

due to introducing this measure. Disparity gradient constraint is utilized to refine 

disparity map and extrapolate the disparities into those regions where disparities are not 

produced properly. Experiments on real images demonstrate that our method is distinctly 

robust to changes in camera gain and bias or illumination. 
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1. Introduction 

Given two rectified images from different viewpoints, the goal of stereo matching is 

that generates the disparity or depth information of each pixels in the reference image. 

Stereo matching which is the critical technology on three-dimensional reconstruction is 

still a problem there is no perfect solution, although there are many high performance 

algorithms [1-2], because there are many factors would be considered into generating 

accurate depth map such as image noise, textureless region, depth discontinuity and 

occlusion. Image noise and illumination change would challenge the robust of stereo 

matching algorithm. The brightness consistency constraint is invalid in the absence of 

texture region. Spatial smoothness constraints in the object boundary are invalid. The 

corresponding match to some of the points in one image does not exist in another image. 

Moreover, when a point in the world is imaged by a stereo pair of cameras, the intensity 

values of the corresponding pixels are in general different. Many factors contribute to this 

difference, such as the fact that the light reflected off the point is not the same in the two 

directions, the two cameras have different gains and biases. Most stereo matching 

algorithms compare pixel intensities to minimize a global or local object function. Taking 

accuracy and computational complexity into account, the results is not ideal because of 

the factors mentioned above, especially, the two cameras are in harsh environment with 

changing illumination respectively.  

In general, matching algorithms can be classified into local and global methods. Local 

approaches are utilizing the color or intensity values within a finite window to determine 

the disparity for each pixel. Global approaches are incorporating explicit smoothness 

assumptions and are determining all disparities simultaneously by applying energy 

minimization techniques such as graph cuts, belief propagation, dynamic programming, 

scanline optimization or simulated annealing. In stereo algorithm whether local or global, 

dissimilarity measure of pixel is important for stereo matching. When illumination change 
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between two cameras is distinct, those algorithms that measure dissimilarity with intensity 

differences simply will cause a large number of bad matches.  

Belief propagation (BP) algorithm, have shown significant performance over other 

stereo matching algorithms [1-3]. However, the standard BP stereo matching has two 

major challenges for practical applications: high computational cost and varied 

parameters. Many of iterations are required to ensure convergence of the message values. 

The matching result is affected by parameters directly. However, proper parameters vary 

with data which is commonly intensity differences.  

There are two contributions in this paper. First, we propose a measure of pixel 

dissimilarity that compares two pixels using the horizontal and vertical difference of 

them. Intensity differences are converted to elevation angle difference which is equal to 

horizontal or vertical difference. This method is distinctly robust to changes in camera 

gain and bias or illumination. Moreover, proper parameters of belief propagation 

algorithm for stereo matching can be obtained by adjustment slightly. Our measure is 

provably insensitive to illumination change between two cameras and is shown to 

improve the results of BP algorithm on real images. Second, disparity gradient constraint 

is utilized to optimize disparity map and extrapolate the disparities into those regions 

which disparities are not produced properly. 

 

2. Previous Work 

There are many works such as [2,4-8] involving stereo matching problem. Most of 

them measure pixel dissimilarity by comparing the pixel intensities (or that surrounding 

them). The metrics generally are absolute differences, squared differences or linearly 

interpolated intensity functions [9].  

Scharstein and Szeliski [3] pointed out that most of the stereo matching algorithm has 

four basic steps: matching cost computation; cost (support) aggregation; disparity 

computation/optimization and disparity refinement. Over the past decade, some local 

methods such as window-based approach cannot obtain satisfactory results. People have 

focus attention to the global approach gradually. The global method has global objective 

function which ensures the result is global optimal. Among them, many kinds of methods 

that make use of Markov random fields (MRF) model for solving stereo problem show 

excellent performance.  

As a global stereo matching algorithm, belief propagation (BP) [1, 7, 10-11] have 

shown significant performance over other algorithms [3]. However, the standard BP 

stereo matching has two major challenges for practical applications: high computational 

cost and varied parameters. Many of iterations are required to ensure convergence of the 

message values. the standard implementation of this message passing algorithm on the 

grid graph runs in 
2( )O nk T  time, where n  is the number of pixels in the image, k  is the 

number of possible labels for each pixel and T  is the number of iterations. It takes 
2( )O k  

time to compute each message and there are 
( )O n

 messages to be computed in each 

iteration. Parameters in the matching algorithms need to be estimated automatically to 

adapt with varying conditions such as lighting, relative motion between the scene and 

imaging sensors and scene structures.  

Felzenszwalb [7] presents three algorithmic techniques to speed up convergence of 

loopy belief propagation (LBP). One of the techniques reduces the complexity of the 

inference algorithm to be linear rather than quadratic in the number of possible labels for 

each pixel, which is important for stereo problems that have a large label set. Another 

technique speeds up and reduces the memory requirements of belief propagation on grid 

graphs. A third technique is a multi-grid method that makes it possible to obtain good 

results with a small fixed number of message passing iterations, independent of the size of 

the input images. Taken together these techniques speed up the standard algorithm by 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.12, No.2 (2017) 

 

 

Copyright ⓒ 2017 SERSC      119 

several orders of magnitude. Combining the three techniques together yields an algorithm 

that runs in ( )O nk  time overall and is very fast in practice. In contrast the standard 

algorithm summarized above requires 
2( )O nk  time per iteration and the number of 

iterations T  is generally 
1 2( )O n 

 to allow for information to propagate across the image. 

Felzenszwalb improved BP algorithm greatly on computational complexity. Klaus [1] 

proposed a segment-based stereo matching algorithm using BP and a self-adapting 

dissimilarity measure, which improve the result while increasing computation. 

 

3. Dissimilarity Measure 

The most common dissimilarity measures are intensity differences including squared 

intensity differences (SD), absolute intensity differences (AD), intensity differences from 

edge detector, or their combination with different proportions. Intensity differences are 

strictly assuming the constant color constraint. When illumination change between two 

cameras is distinct, those algorithms that measure dissimilarity with intensity differences 

will cause a large number of bad matches. Birchfield and Tomasi [9] proposed a measure 

of pixel dissimilarity that compares two pixels using the linearly interpolated intensity 

functions surrounding them. Their method are more robust to changes in camera gain and 

bias.  

 

 

Figure 1. Intensity of Teddy 

To know what happened when the corresponding pixels in left and right image are 

matching, some pixels will be chosen to analyze. Middlebury dataset teddy has wide 

disparity range. The intensities of pixels at row 190 in left and right image of teddy is 

show in Figure 1 produced by R [12]. The about location of those pixels are show in 

Figure 2a. Obviously, lots of bad matches will emerge when we simply make use of 

intensity difference as dissimilarity measure because of illumination change. We then 

have the following definition:   

Definition 1. The image 
( ) ( 1 1 ) ( 1 )H n x y H n x y H n x y          

 is said to be 

horizontal 
thn  order difference of 

( )I x y
. The image 

( ) ( 1 1) ( 1 )V n x y V n x y V n x y          
 is said to be vertical 

thn  order difference of 
( )I x y

. 

Where 
(0 )H x y 

 and 
(0 )V x y 

 are original image 
( )I x y

, 0 1 2n N    . N  is a constant.   
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(a) A Interest Region                       (b) Matching Schema 

Figure 2. A Interest Region and Matching Schema 

As shown in Figure 2b, when two adjacent pixels match correctly, the absolute 

difference between angle al  and ar  would reach the global minimum. The elevation 

angle is equal to horizontal first order difference obviously. This method is distinctly 

robust to changes in camera gain and bias or illumination. Given a constant right image, 

the almost same depth map will be obtained from left images with different intensity gain. 

The result is shown in Figure 3.  

 

   

(a) Left Image with Gain -30  (b) Left Image with Gain +30 

   

(c) Left Image with Gain +50  (d) Depth Map of Left Images 

Figure 3. Same Depth Map from Images with Different Intensity Gains 

 

4. MRF Energy Model 

In the Markov random fields (MRF) model of image, the calculation of disparities is 

regarded as problem of pixel labeling. The general framework for pixel labeling can be 

defined as follows. Let P  be the set of pixels in an image and L  be a finite set of labels. 

The labels correspond to quantities that we want to estimate at each pixel, such as 

disparities or intensities. A labeling 
f

 assigns a label pf L
 to each pixel p P . We 

assume that the labels should vary slowly almost everywhere but may change 
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dramatically at some places such as pixels along object boundaries. The quality of a 

labeling is given by an general energy function,  

( )

( )

( ) ( )E f p p p q
p P p q N

D f W f f 

  

 
                                    (1) 

where N  are the (undirected) edges in the four-connected image grid graph. 
( )p pD f

 is 

the cost of assigning label pf
 to pixel p , and is referred to as the data cost. 

( )p qW f f
 

measures the cost of assigning labels pf
 and qf  to two neighboring pixels, and is 

normally referred to as the discontinuity cost. Finding a labeling that minimizes this 

energy corresponds to the maximum a posteriori (MAP) estimation problem for an 

appropriately defined MRF[4] . In stereo problems, the energy equation is of the form,  

( )

( )

( ) ( )E d i i j
i P i j N

D d S d d 

  

 
                                             (2) 

where ( )iD d  is data term, 
( )i jS d d

 is smoothness term, ( )i ii x y  ,
( )j jj x y 

 is pixels 

and id  is disparity corresponding to pixel i .  

The method is iterative, with messages from all nodes being passed in parallel. Each 

message is a vector of dimension given by the number of possible labels, k . Let 
t

pqm
 be 

the message that node p  sends to a neighboring node q  at iteration t . When using 

negative log probabilities all entries in 
0

pqm
 are initialized to zero, and at each iteration 

new messages are computed in the following way,  

1
( ) ( )

( )

( )( )
p

p q p p

f

tt
S f f D f sp ppq q

s N p \q

M ff min
 

   
   

 M

                     (3) 

where ( )N p \ q  denotes the neighbors of p  other than q . After T  iterations a belief 

vector is computed for each node,  

( ) ( )

( )

( )q q q q

T
f D f p q q

p N p

M f  


b

                                          (4) 

In energy function (2), Many functional forms have been proposed for data term ( )iD d  

and smoothness term 
( )p qS f f

, including squared differences, absolute differences, and 

other robust metrics[3]. According to definition 1, we define the data term ( )iD d  of pixel 
( )x y  as follows,  

( ) (1 ) (1 )HV x y H x y V x y        
 ( ) λ ( ) ( )i l r iD d min HV x y HV x d y DATA_K       

                              (5) 

where λ  is relevant weight. DATA_K  is truncation thresholds . The data cost ( )iD d  

represents the cost of assigning disparity id  to pixel i ; the data cost increases as the 

difference in HV  between corresponding pixels increases. The DATA_K  can be 

eliminated by algorithm 1.  
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Algorithm 1. Computing DATA_K  

val   ( ) ( )l r iHV x y HV x d y      ; 

is   ( (1 ) 3 0) ( (1 ) 3 0)iH x y && H x d y           ; 

if (is) DATA_K    3.0; 

else DATA_K val/2;  
 

The discontinuity cost function 
( )i jS d d

 is based on the magnitude of the difference 

between labels id  and jd
. The truncated linear model is a popular choice of top 

performing stereo algorithms [4, 7] and it has several good properties. The cost increases 

linearly based on the distance between the labels id  and jd
 up to some level. In order to 

allow for large discontinuities in the labeling the cost function stops growing after the 

difference becomes large. We choice the truncated linear model as smoothness term and 

focus on setting parameters for it,  

 ( )i j i jS d d min d d DISC_K    
                                       (6) 

where DISC_K  controls when the cost stops increasing. The discontinuity cost 
( )i jS d d

 represents the cost of assigning disparities id  and jd
 to neighboring pixels; this 

cost increases as the difference between id  and jd
 increases. 

 

5. Implementation 

The standard max-product BP algorithm is speeded up by Felzenszwalb [7]. We 

implemented the proposed BP algorithm 2 based on Felzenszwalb conjugating with our 

proposed algorithm 1.  

We assume that the range of disparity is [ ]min maxd d , equally, 1NR  is equate to the 

difference of maxd  and mind , ITER  is the iterations of BP algorithm, LEVELS  is the levels 

of data pyramid. The truncation value DISC_K  in the discontinuity cost 
( )i jS d d

 are 

defined in equation(6). Let P  be the set of pixels in an image.   
Algorithm 2. Proposed BP algorithm 

1) Preprocesses. The rectified stereo image pair is loaded and filtered by Gaussian filter 

with σ 0 7   for fading effect of noise and illumination change;  

2) According to the formula(5) and algorithm 1, calculate 0  order of the data cost 

0 ( )iD d  for each pixel ( )i ii u v P    ;  

3) Calculate pyramidal data cost 0 1, ,..., LEVELSD D D
 of the image;  

4) For levels   from 1LEVELS   to 0, perform belief propagation in a coarse-to-fine 

manner. In the coarsest level 1LEVELS  , messages are initialized to zero, and otherwise, 

messages are initialized from values of previous level. Calculate discontinuities cost 

according to the formula (6). Assume dm
 be the message of disparity d , for iter  from 0 

to ITER , the message m  can be updated by following steps,  

4.1) For 0d   to 1NR , min min(m )d dm 
;  

4.2) Update message dm
 according to the formula (3, 6);  

(a) For 1d   to 1NR , 1min(m ,m )d d dm 
;  
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(b) For 2d NR   to 0, 1min(m ,m )d d dm  ;  

4.3) Truncate message, for 0d   to 1NR , minmin(m ,m DIS _K)d d dm C  ;  

4.4) Normalize message, for 0d   to 1NR , 
1dm  ;  

5) Compute out beliefs according to the formula (4);  

6) For 0d   to 1NR , find out the minimum beliefs and generate disparity map;    
 

Sub-pixel accuracy can be obtained by fitting a second degree curve to the correlation 

coefficients in the neighbourhood of the disparity. The general form of the second degree 

curve (parabola) is: 
2(x) a b x c xf      . The maximum can be found where the slope is 

zero in the quadratic function. The sub-pixel position can be found at 2x b c  . If only 

three correlation values at and around the position d  are used, e.g. values at the points 
1d  , d , and 1d  , the sub-pixel position of the disparity can be calculated using the 

following formula[13]: 

1 (d 1) R(d 1)

2 (d 1) 2R(d) R(d 1)

R
x d

R

  
  

   
                                               (7) 

where (d)R  is the correlation value in the 2D matrix at position d , and  x  is the sub-

pixel disparity obtained. 

 

6. Refinement of Disparity Map 

In stereo matching algorithm whether local or global, lots of algorithms do not produce 

disparities in some regions (e.g., borders, occlusion). In this case, refinement or 

extrapolating the disparities into those regions is required. Disparity is directly related to 

depth. Disparity changes coincide with depth changes. The disparity gradient limit 

principle states that the disparity should vary smoothly almost everywhere, and the 

disparity gradient should not exceed a certain value [14-17]. For two points 1m  and 2m  in 

the reference image, their disparity are 1d  and 2d  respectively. We define the disparity 

gradient as:  

2 1

2 1 2 1( ) / 2

d d
DG K

m m d d


 

  
                                            (8) 

The disparity gradient limit K  can be varied over range (0.5,1.9) . We refine the 

disparity map utilizing the lemma 1 introduced by Zhang [17].   

lemma 1. Given a pair of matched points 
'

1 1(m ,m )  and a point 2m
 in the neighborhood 

of 1m
, the corresponding point 

'

2m  that satisfies the disparity gradient constraint with limit 

K  must be inside a disk centered at 2 1m d  with radius equal to 

2

2

K
D

K , which we call 

the continuity disk, where 2 1D d d 
 is the distance between 1m  and 2m .   

The relation of disparity and gradient limit K  is shown in Figure 4. In our 

implementation, 1D   and 1.8K  . This is equivalent to threshold 18  pixels. For all 

images we have tried, this strategy works well. Algorithm 3 is the pseudo C code for 

refining a disparity map.  



International Journal of Multimedia and Ubiquitous Engineering 

Vol.12, No.2 (2017) 

 

 

124   Copyright ⓒ 2017 SERSC 

 

Figure 4. Disparity Gradient Limit 

 
Algorithm 3. Refining disparity map 

    input: out; //input initial disparity map  

    imgmean=mean(out);  

    threshold =18; //disparity gradient limit  

    for (int row = 0; row < height; row++) {  

     for (int col = 0; col < width; col++) {  

     disp0 is the current disparity.  

     disp is the disparity in direction left, up, right and down respectively.  

     grad is the disparity gradient corresponding to disp.  

     if (grad > threshold){  

      if (abs(disp0-imgmean) < abs(disp - imgmean))  

      disp=disp0;  

      else disp0=disp;  

      }  

     }  

    }    

Table 1. Evaluation of the Proposed Stereo Algorithm on the Middlebury 
Stereo Benchmark 

 nonocc  all  disc   

Tsukuba  4.12  6.26  21.5   

Venus  2.14  3.09  21.8   

Teddy  10.6  19.4  29.1   

Cones  6.82  15.3  17.8   

 

7. Results 

Results using the Middlebury Stereo datasets [18-19] Tsukuba, Venus, Teddy and 

Cones are shown in Figure 5, Figure 6, Figure 7 and Figure 8 respectively. In above 

figures, the images are the reference one, the disparity map by proposed algorithm and the 

bad pixel map, respectively. Pixels with a disparity error greater than one pixel are 

displayed in the bad pixel maps, where mismatches in non-occluded areas are indicated in 

black, in occluded areas in gray color. Table 1 shows evaluation of the proposed stereo 

algorithms on the Middlebury Stereo benchmark. The error measures the percentage of 

pixels with wrong disparities. All results are generated on a laptop with a Intel Core 2 

Duo CPU running at 2.13 GHz. We used 5 levels and 10 message update iterations per 

level. In generating all above stereo results we used the following set of parameters: 
( , ) (6.0,0.2)DISC_K  

.  
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Figure 5. Result for Tsukuba 

 

Figure 6. Result for Venus 

 

Figure 7. Result for Teddy 

 

Figure 8. Result for Cones 

 

8. Conclusions 

Two methods are proposed to improve stereo matching. First, a novel dissimilarity 

measure that compares two pixels has been introduced. Energy equation is constructed by 

proposed dissimilarity measure and applied to belief propagation stereo matching 

algorithm. Some parameters of BP can be figure out due to introducing this measure. The 

measure can be used in most stereo algorithms. Second, disparity gradient constraint is 

utilized to refine disparity map and extrapolate the disparities into those regions where 
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disparities are not produced properly. The input initial disparity map can be produced by 

most global algorithms such as BP and graph-cut. The performance of our methods have 

evaluated by the Middlebury stereo evaluation test bed. Experiments demonstrate that the 

methods can yield excellent results. 

 

Acknowledgements 

This work was supported in part by the National Natural Science Foundation of China (Grant no. 

61403175, 61463029) and the Gansu Provincial Natural Science Foundation of China (Grant no. 

1508RJZA101). 
 

References 

[1] A. Klaus, M. Sormann and K. Karner, “Segment-based stereo matching using belief propagation and a 

self-adapting dissimilarity measure”, Proceedings of the 18th International Conference on Pattern 

Recognition. ICPR 2006, vol. 3, (2006), pp. 15-18. 

[2] Q. Yang, L. Wang, and N. Ahuja, “A constant-space belief propagation algorithm for stereo matching”, 

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (2010), pp. 1458-1465.  

[3] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence 

algorithms”, International journal of computer vision, vol. 47, (2002), pp. 7-42.  

[4] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts”, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 23, (2001), pp. 1222-1239.  

[5] V. Kolmogorov and R. Zabih, “What energy functions can be minimized via graph cuts”, Computer 

Vision-ECCV 2002, (2002), pp. 185-208.  

[6] J. S Yedidia, W. T Freeman, and Y. Weiss, “Generalized belief propagation”, Proceedings of the NIPS,  

vol. 13, (2001).  

[7] P. F Felzenszwalb and D. P Huttenlocher, “Efficient belief propagation for early vision”, International 

journal of computer vision, vol. 70, (2006), pp.41-54.  

[8] Y. Xu, H. Chen, R. Klette, J. Liu and T. Vaudrey, “Belief propagation implementation using CUDA on 

an NVIDIA GTX 280”, AI 2009: Advances in Artificial Intelligence, (2009), pp. 180-189.  

[9] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is insensitive to image sampling”, IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 20, (2002), pp. 401-406.  

[10] J. Pearl, “Probabilistic reasoning in intelligent systems: networks of plausible inference”, Morgan 

Kaufmann, (1988).  

[11] W. T Freeman, E. C Pasztor and O. T Carmichael, “Learning low-level vision”, International journal of 

computer vision, vol. 40, (2000), pp. 25-47.  

[12] “Development Core Team R. R: A Language and Environment for Statistical Computing”, Vienna, 

Austria, (2010).  

[13] C. Sun, “Fast stereo matching using rectangular subregioning and 3D maximum-surface techniques”, 

International Journal of Computer Vision, vol. 47, (2002), pp. 99-117.  

[14] P. Burt and B. Julesz, “A disparity gradient limit for binocular fusion”, Science, vol. 208, (1980), pp. 

615-617.  

[15] S. B Pollard, J. E Mayhew, and J. P Frisby, “PMF: a stereo correspondence algorithm using a disparity 

gradient limit”, Perception, vol. 14, (1985). 

[16] H. P Trivedi and S. A Lloyd, “The role of disparity gradient in stereo vision”, Perception, vol. 14, 

(1985), pp. 685-690.  

[17] Z. Zhang and Y. Shan, “A progressive scheme for stereo matching”, 3D Structure from Images—

SMILE 2000, (2001), pp. 68-85.  

[18] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for stereo matching”, Proceedings of 

IEEE Conference on Computer Vision and Pattern Recognition, CVPR’07, (2007), pp. 1-8.  

[19] D. Scharstein, H. Hirschmuller, Y. Kitajima, G. Krathwohl, N. Nesic, X. Wang and P, Westling, “High-

resolution stereo datasets with subpixel-accurate ground truth”, Proceedings of German Conference on 

Pattern Recognition (GCPR 2014), Germany, (2014). 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.12, No.2 (2017) 

 

 

Copyright ⓒ 2017 SERSC      127 

Authors 
 

Junxue He, he is an associate professor in College of Electrical 

and Information Engineering, Lanzhou University of Technology, 

P.R. China. He received his Ph.D. degree from Lanzhou University of 

Technology in 2011. His research interests include computer vision, 

image processing, three-dimensional reconstruction, intelligent 

control and image-based robot navigation. His current research 

focuses on stereo matching and depth map optimizing. He is the 

corresponding author of this paper. 

 

Erchao Li, he is an associate professor in College of Electrical 

and Information Engineering, Lanzhou University of Technology, 

P.R. China. He received his Ph.D. degree from Lanzhou University of 

Technology in 2011. His research interests include robot force 

control, computer vision, image processing and robot control. His 

current research focuses on robot vision and intelligent control. 

 

 

 

Zhanming Li, he is a professor in College of Electrical and 

Information Engineering, Lanzhou University of Technology, P.R. 

China. His research interests include control theory and engineering, 

intelligent information processing and pattern recognition. His 

current research focuses on computer vision and image processing. 

 

 

 

 

 
 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.12, No.2 (2017) 

 

 

128   Copyright ⓒ 2017 SERSC 

 


