
International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.2 (2017), pp.83-94

http://dx.doi.org/10.14257/ijmue.2017.12.2.06

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2017 SERSC

Differential Evolution Cloud Computing Scheduling Strategy

Based on Dynamic Adjustment

Li Yi-ran
1
 and Zhang Chun-na

2

1
College of Applied Technology, University of Science and Technology Liaoning,

Anshan Liaoning 114011, China
2
School of Software, University of Science and Technology Liaoning, Anshan

Liaoning 114051, China

E-mail: lyr7879@163.com

Abstract

This paper presents an improved differential evolution algorithm(CDEI) to solve the

problem of resource scheduling and load balancing in clofud computing environment.

Firstly, based on the basic differential evolution algorithm, the chaotic strategy is

introduced and the individual replacement is implemented at the right time to enhance the

diversity of the population; furthermore, the scaling factor and crossover probability are

dynamically adjusted in the iteration of the algorithm, and the strategy of early high to

low is adopted to overcome the prematurity of the algorithm; finally, the array

representation is used in the coding of cloud computing scheduling. The experimental

results show that the improved algorithm has the advantages of fast convergence, high

precision and low consumption.

Keywords: cloud computing; chaos strategy; differential evolution; parameter control;

convergence

1. Introduction

Cloud computing is a distributed computing model, which uses virtualization

technology to bring together a large number of decentralized resources, users can apply

for and obtain them in the appropriate platform [1-3]. The core work of the cloud

computing platform is the resource management, and for the user's request to implement

reasonable deployment, in which, due to the difference of system nodes and the dynamic

demand, it is easy to cause the unbalanced load of the cloud platform, thereby reduce the

resource utilization [4]. Therefore, resource scheduling strategy is the core of resource

management in cloud computing environment.

Cloud computing resource scheduling is based on the scheduling strategy to implement

the dynamic allocation of resources in the limited cluster, that is, according to the user

request and take into account the resource load dynamic deployment [5-6]. Obviously,

due to its dynamic and complex, it can be attributed to a NP problem, if the scheduling

strategy is not properly chosen, the resource load will be unbearable. Therefore, it is

necessary to use dynamic intelligent optimization algorithm to solve. At present, the

related algorithms include: genetic algorithm, ant colony algorithm, particle swarm

optimization algorithm, differential evolution algorithm and so on. For the above

algorithms, they have their own advantages. The paper based on the characteristics of

cloud computing, to be used differential evolution algorithm. The algorithm is a global

stochastic search optimization algorithm, the simple mutation operation and the one-to-

one competitive survival strategy based on the difference reduce the complexity of the

genetic operation, its operation is simple and the parameters are few, so it is widely used

in multi-objective optimization problem [7-8].

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.2 (2017)

84 Copyright ⓒ 2017 SERSC

In order to provide efficient support for the cloud platform, this paper proposes a

improved differential evolution algorithm with chaos. The algorithm uses the array

manner to re-encode the task-resource in the scheduling strategy. In addition, the chaotic

strategy is introduced to implement the replacement operation for the oscillating

individuals, to disturb the population, and to adjust the scaling factor and crossover

probability from time to time, to be enhanced the flexibility of control parameters in the

algorithm. In this way, local perturbation, global search and the performance of the

algorithm have been greatly improved, while the consumption of the platform is reduced

correspondingly.

2. Cloud Computing Resource Scheduling Theory

Processing methods of cloud computing is parallel and distributed, where the task and

resources are not simple relationship of one-to-one [9]. First of all need to complete the

task - resource mapping, and then complete the resource - node mapping, that is, the task

scheduling problem is described as: n tasks are reasonably allocated to m resources by the

scheduling algorithm, and to deal with, to ensure resource load balancing.

Currently, the cloud computing environment mainly uses the Map/Reduce model by

Google. In this paper, the sub-tasks are independent of each other. The resource model is

defined as follows: using a five-tuple to describe, { , , , , }F T R E f p , in the formula, f is

the objective function, p is the scheduling algorithm, T is the total task. The decomposed

subtasks can be expressed as 1 2{ , , }nT t t t , the resource R can be expressed as

1 2{ , , }mR r r r , the physical device E can be expressed as 1 2{ , , }mE e e e , here, the

mapping relationship T R is controlled by cloud computing center, the mapping

relationship R E need to be assigned to the physical device by the scheduler. Thus, the

scheduling process of a task evolves into the mapping process T R E  . Based on this,

the resource scheduling problem in the cloud computing environment is transformed into

the solving process of TR matrix. tr as all feasible solution, the set of TR matrix can be

expressed as:

1,1 1,2 1,

2,1

,1 ,

n

m m n

tr tr tr

tr
TR

tr tr

 
 
 
 
 
   (1)

In the formula, ,i jtr
is the load relationship between the load it and the virtual resource

kr , meet
,

1

{ | [0,1], 1}
m

i j

i

tr tr tr


 
.

According to the relationship between it and ir , the consuming time of it execute on

ie is (,)i iTE t e , and the corresponding matrix can be expressed as:

1,1 1,2 1,

2,1

,1 ,

n

m m n

te te te

te
TE

te te

 
 
 
 
 
   (2)

In the formula, ,i jte
 is the time for the i -th load is executed on the j -th physical

device. The execution load of a physical device je
is it , the earliest start time of remove

the waiting time is jw
, then the total execution time of the load it executed on je

 can be

defined as:

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.2 (2017)

Copyright ⓒ 2017 SERSC 85

() (,)i j i iS t w TE t e 
 (3)

For all the loads 1 2{ , , , }nt t t , the total execution time can be defined as:

1

'() ()
n

i

i

S t S t



 (4)

This paper focuses on the time, so the load consumption time as the objective function

should meet to achieve a minimum, defined as follows:

1

() min ()
n

i

i

F t S t


 
 (5)

3. Differential Evolution Algorithm with Chaos

3.1. The Basic Principle of Differential Evolution Algorithm

The differential evolution algorithm is a kind of optimization algorithm with real

vector coding in continuous space and can complete parallel and random search, which

has the characteristics of simple and less controlled parameter [10-14]. The basic idea of

DE is similar to that of genetic algorithm, that is, using mutation operation to generate

new individuals, and then implementing cross and selection operations, through constant

iterative evolution to search the global optimal solution. DE implements the mutation

operation by the difference strategy, which is different from the genetic algorithm, and

enhances the searching ability of the algorithm by using the population characteristic [15].

The solution of nonlinear minimization problem is a classic example in the optimization

problem, the basic mathematical model is as follows:

1 2min (, ,)

, 1,2, ,

Q

L U

j j j

f x x x

x x x j Q




   (6)

In the formula, Q is the dimension of solution space, U L、 are the upper and lower

limits of the component jx
.

The basic steps of differential evolution algorithm are as follows:

(1) Population initialization

Setting the population size is pN
, then the k -th generation individual i can be

expressed as , , , , ,{ | , 1,2, , ;L L U

j i j i j i j i j i px x x x x i N   1,2, , }j Q , Each generation in the

algorithm is composed of pN
 vector with dimension Q , the primary population , (0)j ix

can be expressed as:

, , , ,(0) (0,1) ()L U L

j i j i j i j ix x rand x x   
 (7)

In the formula,
(0,1)rand

is a random number,
(0,1)

, uniform distribution.

(2) Mutation operation

For each target individual ,j ix
 in the population, DE generally adopts the difference

strategy to carry out mutation operation, that is, randomly select two individuals in the

population to vector fusion with the individual to be mutated, and then generate new

variant individual , (1)j iV k 
.

, 1 2 3(1) () (() ())j i r r rV k x k F x k x k    
 (8)

In the formula, , (1)j iV k 
 is new variant individual; F is the scaling factor, (0,1) ;

1 2 3 [1,]pr r r N、 、
 is used to control the vector difference of randomly selected individuals

and is also different from the individual to be mutated, at the same time, 1 2 3r r r j  
.

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.2 (2017)

86 Copyright ⓒ 2017 SERSC

In the iteration of the algorithm, both the randomly selected individuals and the newly

generated individuals must be effective and meet the established boundary conditions,

that is, , , , ,{ (1) | (1) }L U

j i j i j i j iV k x V k x   
.

(3) Cross operation

The individual to be measured ,

' (1)
j i

V k 
is obtained by the cross transform of the

individual, is corresponding to , 1, 2, ,

' ' ' '(1) { (1), (1), , (1)}
j i i i Q i

V k V k V k V k    
, when the

intermediate is crossed transform, it is possible the tested individual contains at least one

vector is generated from ,j ix
 by the random strategy, the cross should follow the

following formula:

,

,'

,

(1) () [1,]
(1)

()j i

j i

j i

V k rand j CR or j Q
V k

x k

     
  

 (9)

In the formula, j is a limited random number, to ensure that the individual to be

measured will not be completely separated from the target ,j ix
; [0,1]CR , is called the

crossover probability, used to adjust the difference of the new generation individual and

the original individual, as a random number.

(4) Select operation

The fitness values of the tested individuals and the target individuals were compared,

and those who retained the smaller ones became the new individuals of the next

generation. Greedy algorithm is used to determine the new individual:

, ,

,

' '

,

, '

, ,

(1) ((1)) (())
(1)

() ((1)) (())

j i j i

j i

j i

j i

j i j i

V k f V k f x k
x k

x k f V k f x k

    
  

   (10)

3.2. Chaos Strategy

Chaos is a nonlinear phenomenon, which exists widely in nature. It has the

characteristics of randomness, ergodicity and regularity, and can search all the states in

the limited region according to its own law [16]. In the evolution of algorithms, with the

extreme value emerging, the diversity of the population decreased, the individual is easily

fall into the local optimal constraint. At this time, chaotic sequences can be used to disturb

and to replace these stagnant individuals with a certain probability. In this way, the active

individuals continue to complete the evolution, while the individual into the oscillation

can be replaced, which enhances the diversity of the algorithm. In order to optimize the

search by using the property of chaos, the search procedure is as follows:

(1) Define an initial region, set N dimensional initial vector 0 01 02 0(, , ,)NR R R R
, the

values in 0R are adjacent to each other, and the difference is very small.

(2)The initial vector 0R is calculated by using the logistics equation, and chaotic

sequence 1 2, , , nc c c is generated. Here, after several iterations, the system will be

completely in a chaotic state. The vector layer can be expressed as:

1 1(1)i i ic c c    (11)

In the formula,  is an iterative control parameter.

(3) Set the initial vector , (0)j ic
, then produce:

, 1 , , ,(0) (0) (1 (0)) (0)j i j i j i j ic c c     
 (12)

In the formula,
[1,]pi N

.

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.2 (2017)

Copyright ⓒ 2017 SERSC 87

(4) setting the individual (0)ix in the initial population, after the chaotic sequence

mapping, the j -th component , (0)j ix
 can be expressed as:

, , ,(0) () (0)j i j i j ix r rand j c x   
 (13)

In the formula, r is the activity radius of individual ,j ix
, () [1,1]rand j   .

Population initialization, the probability that the i -th individual is replaced is  , the

formula is:

p

i

N
 

 (14)

Here, set a threshold  to measure the diversity of the population. When the diversity

of the population reaches it, the replacement operation may be implemented. Diversity

control parameters are defined as follows:

, ,

1 1

1

1
| () () |

1

p pN N

j i j iQ
i ip

U L
jp j j

x k x k
N

N x x


 








 


 (15)

In the formula, [0,1]  .

3.3. Parameter Optimization of DE Algorithm

The DE algorithm includes three important parameters: population size pN
, scaling

factor F and crossover probability CR . According to experience, the population size

should be moderate, too much time will be spent in the calculation when it is too large,

and the diversity of the population will be reduced and the convergence can’t be

guaranteed when it is too small, it usually is 5-10 times of the dimension, that

is
[5 ,10]pN Q Q

; the scaling factor is used to control the scaling size of the difference

vector, [0.5,1]F ; the crossover probability is used to adjust the diversity of the

population. It should be noted that the crossover probability is too large to make the

algorithm into a random algorithm, the allowed range is [0,1]CR .

The reasonable setting of F and CR can effectively adjust the convergence of the

algorithm. Because the DE algorithm has the characteristics of easy precocity, it is

necessary to strengthen the global search and improve the diversity of the population in

the early stage of the algorithm, while local control should be strengthened to improve the

accuracy of the algorithm in the latter. In this way, the value of F and CR reflects

slightly higher pre-set, and the latter need to set down, the following are the improved

parameters:

max

max

min

max

(0)
(1) ()

(0)
(1) ()

F F
F k F k

k

CR CR
CR k CR k

k


  




   
 (16)

In the formula,
(0)F

 and
(0)CR

are scaling factor and crossover probability of the first

generation; maxF
 and minCR

 are the maximum value the scaling factor and the minimum

value of the crossover probability in the iteration, maxk
 is the maximum number of

iteration.

4. Cloud Environment Scheduling Strategy

4.1. Coding Rule

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.2 (2017)

88 Copyright ⓒ 2017 SERSC

The task of cloud computing resource scheduling is to assign n tasks to m resources,

the goal of the algorithm is to minimize the total task-time. The traditional scheduling

algorithm uses a special character segmentation approach to complete, such as the

mapping T R , coding is (0,3，-1,2，-1,6,5), task 0,3 is mapped to resource 0; task 2 is

mapped to resource 1; task 6,5 is mapped to resource 2, in this way, the each other

corresponding distribution mode more clearly, the deployment of resources is also

relatively easy. But for DE, it will produce some problems, due to the mutation operator

in the algorithm will inevitably repeat the individual, if this coding is used, it will obtain

the unnecessary repeated solution, which results in the lack of the optimal solution. Based

on this, this paper designs an array representation, which is to set up a two-dimensional

array [][]A m n , the second subscript identifies the resource number, the array value

corresponds to the task number. Such as [0][0] 1A  , [1][0] 3A  , respectively identifies task

0,3 is mapped to resource 0.

4.2. Algorithm Step

Step 1: Determining population size pN
, set the maximum number of iteration k ,

scaling factor F and crossover probability CR ;

Step 2: Population initialization, the use of chaotic sequences to implement individual

mapping;

Step 3: To perform a mutation operation produce a new , (1)j iV k 
;

Step 4: To perform a cross operation produce a individual to be tested ,

' (1)
j i

V k 
;

Step 5: The selection operation is performed to obtain a new individual;

Step 6: The diversity of the population in each generation is calculated by using the

chaotic strategy, to determine the threshold value and whether to implement individual

replacement;

Step 7: Determines whether the current iteration is out of bounds, and if not, return to

step 3, otherwise the algorithm terminates.

5. Experimental Analysis

For the improved algorithm CDEI, this paper uses the CloudSim platform to simulate.

The population size is 50 and the maximum number of iteration is 800 in the comparative

analysis. (0) 0.75F  ， (0) 0.8CR  . The performance of the algorithm and the

performance of the platform optimization are investigated in the experiment. The former

mainly analyzes the ratio of the convergence of the algorithm to the number of iteration;

the latter mainly investigates the ratio of task-to-time in the platform. First, the iterative

performance in the optimized algorithm is analyzed, and selecting the traditional

differential evolution algorithm (DE) and the differential evolution algorithm with chaos

(CDE) are compared with CDEI. Four benchmark functions are used to complete the test,

taking into account the randomness of the algorithm, the three algorithms are run 20 times

to get the mean value, which is the number of iteration compared to DE and CDEI, the

convergence is the comparison of DE, CDE and CDEI. The following is a description of

the benchmark function and an iteration time ratio legend:

(1) The function formula of
Schwefel

is as follows:

1

() (sin | |)
D

i i

i

Schwefel x x x
=

= å

(2) The function formula of Rosenbrock is as follows:

2 2 2

1

1

() (100() (1))
D

i i i

i

Rosenbrock x x x x+

=

= - + -å

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.2 (2017)

Copyright ⓒ 2017 SERSC 89

(3) The function formula of Noncontinuous Rastrigin is as follows:

2

1

[10cos 2 10]
D

i i

i

Noncontinuous Rastrigin x xp
=

= - +å

| | 0.5

(2) / 2 | | 0.5

i i

i

i i

k k
x

round k k

ì <ïï= í
ï ³ïî

 



(4) The function formula of Griewank is as follows:

2

11

1
() cos(/) 1

4000

D D

i i

ii

Griewank x x i
==

= - +å Õ

Table 1. Parameter of Benchmark Function

benchmark function name dimension Range optimal value

Schwefel 30 [10,10]D- -12569.5

Rosenbrock 30 [10,10]D- 0

Noncontinuous Rastrigin 30 [5.12,5.12]D- 0

Griewank 30 [600,600]D- 0

Table 2. The Ratio of Iteration Times

benchmark function Index type DE CDEI

Schwefel

Max 605 236

Min 431 253

Mean 547 241

Rosenbrock

Max 482 302

Min 313 223

Mean 424 249

Noncontinuous Rastrigin

Max 589 290

Min 461 231

Mean 527 256

Griewank

Max 712 326

Min 406 237

Mean 539 271

Table 2 can be found that the convergence of CDEI compared to DE has been greatly

improved by the comparison, the maximum value, minimum value and mean value in the

ratio of the iteration times have certain advantages, and the difference between the three is

smaller. It can be seen that the diversity of the population is supplemented in the later

stage of the algorithm, and it will not produce too much jump in the algorithm iteration,

the individual distribution is more uniform, and the convergence speed is accelerated

accordingly.

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.2 (2017)

90 Copyright ⓒ 2017 SERSC

0 200 400 600 800

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

F
it
n

e
s
s
 v

a
lu

e

Number of iterations

 DE

 CDE

 CDEI

(a) Comparison Result of
Schwefel

 Convergence

0 200 400 600 800

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

F
it
n

e
s
s
 v

a
lu

e

Number of iterations

 DE

 CDE

 CDEI

(b) Comparison Result of Rosenbrock Convergence

0 200 400 600 800

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

F
it
n

e
s
s
 v

a
lu

e

Number of iterations

 DE

 CDE

 CDEI

(c) Comparison Result of
Noncontinuous Rastrigin

 Convergence

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.2 (2017)

Copyright ⓒ 2017 SERSC 91

0 200 400 600 800

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

F
it
n

e
s
s
 v

a
lu

e

Number of iterations

 DE

 CDE

 CDEI

(d) Comparison Result of Griewank Convergence

Figure 1. Convergence Comparison of Benchmark Function

The comparison of the three algorithms about the convergence in Figure 1, CDEI has

certain advantages, especially for the non-optimized DE algorithm, but the gap between

CDEI and CDE is not so bright as before, mainly the traditional DE algorithm is a

combination of the chaotic strategy, the diversity of the population is guaranteed,

eliminating the problem of individual oscillation. In this paper, F CR、 are dynamically

adjusted, and the parameters are adjusted so that the individual can’t fall into the local

optimal constraint in the algorithm, which accelerates the convergence.

In order to investigate the task-time ratio of the platform, two schemes were set up: (1)

the number of task is 400, the number of resource is 10; (2) the number of task is 800, the

number of resource is 10; the compare the legend as follows:

0 200 400 600 800

100

200

300

400

500

600

c
o

m
p

le
ti
o

n
 t
im

e
(s

)

Number of iterations

 CDEI

 CDE

 CD

(a) The Contrast when the Number of Task is 400

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.2 (2017)

92 Copyright ⓒ 2017 SERSC

0 200 400 600 800

300

400

500

600

700

800

900

1000

c
o

m
p

le
ti
o

n
 t
im

e
(s

)

Number of iterations

 CDEI

 CDE

 CD

(b) The Contrast when the Number of Task is 400

Figure 2. The Ratio of Task-Time in Platform

It can be seen from Figure 2 that the improved algorithm CDEI proposed in this paper

is obviously lower than the other two algorithms in terms of time consumption. From the

data we can see that with the iteration of the algorithm, the value of CDEI has been rising

steadily, and there is little oscillation. On the contrary, the DE algorithm will be a

relatively large amplitude oscillation, which is mainly the early maturity of the algorithm,

resulting in rapid convergence phenomenon. The set value of the scaling factor and the

cross probability are constant, which leads to the decline of the late search ability and

can’t quickly get the optimal solution. It can be seen that the improvement effect of the

algorithm is obvious and the resource deployment is reasonable.

6. Conclusion

Based on the chaos theory, an optimal differential evolution algorithm(CDEI) is

proposed on the basis of the traditional differential evolution algorithm, which is used to

solve the resource scheduling problem in cloud computing. In the early stage, chaos

strategy was introduced to generate a new individual in the differential evolution, which

was used to stagnate individual replacement operation to enhance the diversity of the

population; at the same time, the scaling factor and crossover probability are dynamically

adjusted, and the principle of high to low is adopted to improve the convergence of the

algorithm. The experimental results show that the optimized algorithm has a good ability

of resource scheduling.

References

[1] S. O. David, A. Amit and K. Yogesh, “A nucleic filter to enhance the security in cloud computing

environment”, Proceedings of the 10th INDIACom; 2016 3rd International Conference on Computing

for Sustainable Global Development, New Delhi, India, (2016), pp. 3762-3765.

[2] G. Shivam and C. M. Subhas, “Compliance, network, security and the people related factors in cloud

ERP implementation”, International Journal of Communication Systems, vol. 29, no. 8, (2016), pp.

1395-1419.

[3] N. Farrukh and Q. Rizwan, “An Early Evaluation and Comparison of Three Private Cloud Computing

Software Platforms”, Journal of Computer Science and Technology, vol. 30, no. 3, (2015), pp.639-654.

[4] J. A. Mohammed and M. Sharon, “Evaluating metrics performance of a dynamic scaling algorithm in

cloud computing”, Proceedings of the 30th International Conference on Computers and Their

Applications, Honolulu, HI, USA, (2015), pp.175-181.

[5] S. D. Bum, J. Y. Boo, L. S. Hee and L. K. Ho, “Cloud computing for ubiquitous computing on M2M

and IoT environment mobile application”, Cluster Computing, vol. 19, no. 2, (2016), pp. 1001-1013.

[6] M. Preeti, S. P. Emmanuel, V. Vijay and T. Udaya, “Intrusion detection techniques in cloud

environment: A survey”, Journal of Network and Computer Applications, vol. 77, (2016), pp. 18-47.

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.2 (2017)

Copyright ⓒ 2017 SERSC 93

[7] D. Falco, I. S. Umberto and T. Ernesto, “Mapping of time-consuming multitask applications on a cloud

system by multi-objective Differential Evolution”, Parallel Computing, vol. 48, (2015), pp. 40-58.

[8] U. Roberto and C. Stefano, “Differential evolution based human body pose estimation from point

clouds”, GECCO 2013 - Proceedings of the 2013 Genetic and Evolutionary Computation Conference,

Amsterdam, Netherlands, (2013), pp. 1389-1396.

[9] F. Nuno, P. J. Henrique, D. Costa and J. Fontes, “The adoption of cloud computing services by

Portuguese companies: The impact of marketing efforts”, Revista Iberica de Sistemas e Tecnologias de

Informacao, vol.18, (2016), pp. 33-48.

[10] K. Guney and D. Karaboga, “New narrow aperture dimension expressions obtained by using a

differential evolution algorithm for optimum gain pyramidal horns”, Journal of Electromagnetic Waves

and Applications, vol. 18, no. 3, (2004), pp. 321-339.

[11] W. A. Augusteen, R. Kumari and R. Rengaraj, “Economic and various emission dispatch using

differential evolution algorithm”, 2016 3rd International Conference on Electrical Energy Systems,

Chennai, India, (2016), pp.74-78.

[12] B. E. Moreira, B. A. Moreira, S. Pérez, J. Manuel, G. Pulido, J. Antonio, V. Rodríguez and M. Angel,

“A hybrid differential evolution algorithm for solving the terminal assignment problem”, Lecture Notes

in Computer Science, vol. 5518, no. 2, (2009), pp. 179-186.

[13] Z. D. Liu, H. G. Liqun and L. Steven, “An improved differential evolution algorithm for the task

assignment problem”, Engineering Applications of Artificial Intelligence, vol. 24, no. 4, (2010), pp.

616-624.

[14] A. R. Khaparde, M. M. Raghuwanshi, Liqun and L. G. Malik, “A new distributed differential evolution

algorithm”, International Conference on Computing, Communication and Automation, Greater Noida,

India, (2015), pp. 558-562.

[15] M. D. Asafuddoula, R. Tapabrata and S. Ruhul, “An adaptive hybrid differential evolution algorithm for

single objective optimization”, Applied Mathematics and Computation, vol. 231, no. 4, (2014), pp.601-

618.

[16] S. Mukhopadhyay and S. Banerjee, “Global optimization of an optical chaotic system by Chaotic Multi

Swarm Particle Swarm Optimization”, Expert Systems with Applications, vol. 39, no. 1, (2012), pp.

917-924.

Authors

Y. R. Li, received the Master’s degree in computer application

technology from University of Science and Technology Liaoning, in

2008. Currently, he is a lecturer at School of applied technology

college at University of Science and Technology Liaoning. His

research interests include Distributed computing and data mining.

C. N. Zhang, received the Master’s degree in computer

application technology from University of Science and Technology

Liaoning, in 2007. Currently, she is a lecturer at School of Software

Engineering at University of Science and Technology Liaoning. Her

research interests include Distributed computing and data mining.

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.2 (2017)

94 Copyright ⓒ 2017 SERSC

