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Abstract 

This paper presents an improved differential evolution algorithm(CDEI) to solve the 

problem of resource scheduling and load balancing in clofud computing environment. 

Firstly, based on the basic differential evolution algorithm, the chaotic strategy is 

introduced and the individual replacement is implemented at the right time to enhance the 

diversity of the population; furthermore, the scaling factor and crossover probability are 

dynamically adjusted in the iteration of the algorithm, and the strategy of early high to 

low is adopted to overcome the prematurity of the algorithm; finally, the array 

representation is used in the coding of cloud computing scheduling. The experimental 

results show that the improved algorithm has the advantages of fast convergence, high 

precision and low consumption. 

 

Keywords: cloud computing; chaos strategy; differential evolution; parameter control; 

convergence 

 

1. Introduction 

Cloud computing is a distributed computing model, which uses virtualization 

technology to bring together a large number of decentralized resources, users can apply 

for and obtain them in the appropriate platform [1-3]. The core work of the cloud 

computing platform is the resource management, and for the user's request to implement 

reasonable deployment, in which, due to the difference of system nodes and the dynamic 

demand, it is easy to cause the unbalanced load of the cloud platform, thereby reduce the 

resource utilization [4]. Therefore, resource scheduling strategy is the core of resource 

management in cloud computing environment. 

Cloud computing resource scheduling is based on the scheduling strategy to implement 

the dynamic allocation of resources in the limited cluster, that is, according to the user 

request and take into account the resource load dynamic deployment [5-6]. Obviously, 

due to its dynamic and complex, it can be attributed to a NP problem, if the scheduling 

strategy is not properly chosen, the resource load will be unbearable. Therefore, it is 

necessary to use dynamic intelligent optimization algorithm to solve. At present, the 

related algorithms include: genetic algorithm, ant colony algorithm, particle swarm 

optimization algorithm, differential evolution algorithm and so on. For the above 

algorithms, they have their own advantages. The paper based on the characteristics of 

cloud computing, to be used differential evolution algorithm. The algorithm is a global 

stochastic search optimization algorithm, the simple mutation operation and the one-to-

one competitive survival strategy based on the difference reduce the complexity of the 

genetic operation, its operation is simple and the parameters are few, so it is widely used 

in multi-objective optimization problem [7-8]. 
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In order to provide efficient support for the cloud platform, this paper proposes a 

improved differential evolution algorithm with chaos. The algorithm uses the array 

manner to re-encode the task-resource in the scheduling strategy. In addition, the chaotic 

strategy is introduced to implement the replacement operation for the oscillating 

individuals, to disturb the population, and to adjust the scaling factor and crossover 

probability from time to time, to be enhanced the flexibility of control parameters in the 

algorithm. In this way, local perturbation, global search and the performance of the 

algorithm have been greatly improved, while the consumption of the platform is reduced 

correspondingly. 

 

2. Cloud Computing Resource Scheduling Theory 

Processing methods of cloud computing is parallel and distributed, where the task and 

resources are not simple relationship of one-to-one [9]. First of all need to complete the 

task - resource mapping, and then complete the resource - node mapping, that is, the task 

scheduling problem is described as: n tasks are reasonably allocated to m resources by the 

scheduling algorithm, and to deal with, to ensure resource load balancing. 

Currently, the cloud computing environment mainly uses the Map/Reduce model by 

Google. In this paper, the sub-tasks are independent of each other. The resource model is 

defined as follows: using a five-tuple to describe, { , , , , }F T R E f p , in the formula, f  is 

the objective function, p  is the scheduling algorithm, T is the total task. The decomposed 

subtasks can be expressed as 1 2{ , , }nT t t t , the resource R  can be expressed as 

1 2{ , , }mR r r r , the physical device E  can be expressed as 1 2{ , , }mE e e e , here, the 

mapping relationship T R  is controlled by cloud computing center, the mapping 

relationship R E  need to be assigned to the physical device by the scheduler. Thus, the 

scheduling process of a task evolves into the mapping process T R E  . Based on this, 

the resource scheduling problem in the cloud computing environment is transformed into 

the solving process of TR  matrix. tr as all feasible solution, the set of TR  matrix can be 

expressed as: 

1,1 1,2 1,

2,1

,1 ,

n

m m n

tr tr tr

tr
TR

tr tr

 
 
 
 
 
                                                  (1) 

In the formula, ,i jtr
is the load relationship between the load it  and the virtual resource 

kr , meet
,

1

{ | [0,1], 1}
m

i j

i

tr tr tr


 
. 

According to the relationship between it  and ir , the consuming time of it  execute on 

ie  is ( , )i iTE t e , and the corresponding matrix can be expressed as: 

1,1 1,2 1,
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te te te

te
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te te

 
 
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 
 
                                                 (2) 

In the formula, ,i jte
 is the time for the i -th load is executed on the j -th physical 

device. The execution load of a physical device je
is it , the earliest start time of remove 

the waiting time is jw
, then the total execution time of the load it  executed on je

 can be 

defined as: 
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( ) ( , )i j i iS t w TE t e 
                                                 (3) 

For all the loads 1 2{ , , , }nt t t , the total execution time can be defined as: 

1

'( ) ( )
n

i

i

S t S t



                                                         (4) 

This paper focuses on the time, so the load consumption time as the objective function 

should meet to achieve a minimum, defined as follows: 

1

( ) min ( )
n

i

i

F t S t


 
                                                     (5) 

 

3. Differential Evolution Algorithm with Chaos 
 

3.1. The Basic Principle of Differential Evolution Algorithm 

The differential evolution algorithm is a kind of optimization algorithm with real 

vector coding in continuous space and can complete parallel and random search, which 

has the characteristics of simple and less controlled parameter [10-14]. The basic idea of 

DE is similar to that of genetic algorithm, that is, using mutation operation to generate 

new individuals, and then implementing cross and selection operations, through constant 

iterative evolution to search the global optimal solution. DE implements the mutation 

operation by the difference strategy, which is different from the genetic algorithm, and 

enhances the searching ability of the algorithm by using the population characteristic [15]. 

The solution of nonlinear minimization problem is a classic example in the optimization 

problem, the basic mathematical model is as follows: 

1 2min ( , , )

, 1,2, ,

Q

L U

j j j

f x x x

x x x j Q




                                                    (6) 

In the formula, Q  is the dimension of solution space, U L、  are the upper and lower 

limits of the component jx
. 

The basic steps of differential evolution algorithm are as follows: 

(1) Population initialization 

Setting the population size is pN
, then the k -th generation individual i  can be 

expressed as , , , , ,{ | , 1,2, , ;L L U

j i j i j i j i j i px x x x x i N   1,2, , }j Q , Each generation in the 

algorithm is composed of pN
 vector with dimension Q , the primary population , (0)j ix

 

can be expressed as: 

, , , ,(0) (0,1) ( )L U L

j i j i j i j ix x rand x x   
                                            (7) 

In the formula, 
(0,1)rand

is a random number, 
(0,1)

, uniform distribution. 

(2) Mutation operation 

For each target individual ,j ix
 in the population, DE generally adopts the difference 

strategy to carry out mutation operation, that is, randomly select two individuals in the 

population to vector fusion with the individual to be mutated, and then generate new 

variant individual , ( 1)j iV k 
. 

, 1 2 3( 1) ( ) ( ( ) ( ))j i r r rV k x k F x k x k    
                                      (8) 

In the formula, , ( 1)j iV k 
 is new variant individual; F  is the scaling factor, (0,1) ; 

1 2 3 [1, ]pr r r N、 、
 is used to control the vector difference of randomly selected individuals 

and is also different from the individual to be mutated, at the same time, 1 2 3r r r j  
. 
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In the iteration of the algorithm, both the randomly selected individuals and the newly 

generated individuals must be effective and meet the established boundary conditions, 

that is, , , , ,{ ( 1) | ( 1) }L U

j i j i j i j iV k x V k x   
. 

(3) Cross operation 

The individual to be measured ,

' ( 1)
j i

V k 
is obtained by the cross transform of the 

individual, is corresponding to , 1, 2, ,

' ' ' '( 1) { ( 1), ( 1), , ( 1)}
j i i i Q i

V k V k V k V k    
,  when the 

intermediate is crossed transform, it is possible the tested individual contains at least one 

vector is generated from ,j ix
 by the random strategy, the cross should follow the 

following formula: 

,

,'

,

( 1) ( ) [1, ]
( 1)

( )j i

j i

j i

V k rand j CR or j Q
V k

x k

     
  

                         (9) 

In the formula, j  is a limited random number, to ensure that the individual to be 

measured will not be completely separated from the target ,j ix
; [0,1]CR , is called the 

crossover probability, used to adjust the difference of the new generation individual and 

the original individual, as a random number. 

(4) Select operation 

The fitness values of the tested individuals and the target individuals were compared, 

and those who retained the smaller ones became the new individuals of the next 

generation. Greedy algorithm is used to determine the new individual: 

, ,
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                        (10) 

 

3.2. Chaos Strategy 

Chaos is a nonlinear phenomenon, which exists widely in nature. It has the 

characteristics of randomness, ergodicity and regularity, and can search all the states in 

the limited region according to its own law [16]. In the evolution of algorithms, with the 

extreme value emerging, the diversity of the population decreased, the individual is easily 

fall into the local optimal constraint. At this time, chaotic sequences can be used to disturb 

and to replace these stagnant individuals with a certain probability. In this way, the active 

individuals continue to complete the evolution, while the individual into the oscillation 

can be replaced, which enhances the diversity of the algorithm. In order to optimize the 

search by using the property of chaos, the search procedure is as follows: 

(1) Define an initial region, set N  dimensional initial vector 0 01 02 0( , , , )NR R R R
, the 

values in 0R  are adjacent to each other, and the difference is very small. 

(2)The initial vector 0R  is calculated by using the logistics equation, and chaotic 

sequence 1 2, , , nc c c  is generated. Here, after several iterations, the system will be 

completely in a chaotic state. The vector layer can be expressed as: 

1 1(1 )i i ic c c                                                        (11) 

In the formula,   is an iterative control parameter. 

(3) Set the initial vector , (0)j ic
, then produce: 

, 1 , , ,(0) (0) (1 (0)) (0)j i j i j i j ic c c     
                                    (12) 

In the formula, 
[1, ]pi N

. 
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(4) setting the individual (0)ix in the initial population, after the chaotic sequence 

mapping, the j -th component , (0)j ix
 can be expressed as: 

, , ,(0) ( ) (0)j i j i j ix r rand j c x   
                                       (13) 

In the formula, r  is the activity radius of individual ,j ix
, ( ) [ 1,1]rand j   . 

Population initialization, the probability that the i -th individual is replaced is  , the 

formula is: 

p

i

N
 

                                                                  (14) 

Here, set a threshold   to measure the diversity of the population. When the diversity 

of the population reaches it, the replacement operation may be implemented. Diversity 

control parameters are defined as follows: 

, ,

1 1

1

1
| ( ) ( ) |

1

p pN N

j i j iQ
i ip

U L
jp j j

x k x k
N

N x x

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






 


                                 (15) 

In the formula, [0,1]  . 

 

3.3. Parameter Optimization of DE Algorithm 

The DE algorithm includes three important parameters: population size pN
, scaling 

factor F  and crossover probability CR . According to experience, the population size 

should be moderate, too much time will be spent in the calculation when it is too large, 

and the diversity of the population will be reduced and the convergence can’t be 

guaranteed when it is too small, it usually is 5-10 times of the dimension, that 

is
[5 ,10 ]pN Q Q

; the scaling factor is used to control the scaling size of the difference 

vector, [0.5,1]F ; the crossover probability is used to adjust the diversity of the 

population. It should be noted that the crossover probability is too large to make the 

algorithm into a random algorithm, the allowed range is [0,1]CR . 

The reasonable setting of F  and CR  can effectively adjust the convergence of the 

algorithm. Because the DE algorithm has the characteristics of easy precocity, it is 

necessary to strengthen the global search and improve the diversity of the population in 

the early stage of the algorithm, while local control should be strengthened to improve the 

accuracy of the algorithm in the latter. In this way, the value of F  and CR  reflects 

slightly higher pre-set, and the latter need to set down, the following are the improved 

parameters: 

max

max

min

max

(0)
( 1) ( )

(0)
( 1) ( )

F F
F k F k

k

CR CR
CR k CR k

k


  




   
                                     (16) 

In the formula, 
(0)F

 and 
(0)CR

are scaling factor and crossover probability of the first 

generation; maxF
 and minCR

 are the maximum value the scaling factor and the minimum 

value of the crossover probability in the iteration, maxk
 is the maximum number of 

iteration. 

4. Cloud Environment Scheduling Strategy 
 

4.1. Coding Rule 
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The task of cloud computing resource scheduling is to assign n  tasks to m  resources, 

the goal of the algorithm is to minimize the total task-time. The traditional scheduling 

algorithm uses a special character segmentation approach to complete, such as the 

mapping T R , coding is (0,3，-1,2，-1,6,5), task 0,3 is mapped to resource 0; task 2 is 

mapped to resource 1; task 6,5 is mapped to resource 2, in this way, the each other 

corresponding distribution mode more clearly, the deployment of resources is also 

relatively easy. But for DE, it will produce some problems, due to the mutation operator 

in the algorithm will inevitably repeat the individual, if this coding is used, it will obtain 

the unnecessary repeated solution, which results in the lack of the optimal solution. Based 

on this, this paper designs an array representation, which is to set up a two-dimensional 

array [ ][ ]A m n , the second subscript identifies the resource number, the array value 

corresponds to the task number. Such as [0][0] 1A  , [1][0] 3A  , respectively identifies task 

0,3 is mapped to resource 0. 

 

4.2. Algorithm Step 

Step 1: Determining population size pN
, set the maximum number of iteration k , 

scaling factor F  and crossover probability CR ; 

Step 2: Population initialization, the use of chaotic sequences to implement individual 

mapping; 

Step 3: To perform a mutation operation produce a new , ( 1)j iV k 
; 

Step 4: To perform a cross operation produce a individual to be tested ,

' ( 1)
j i

V k 
; 

Step 5: The selection operation is performed to obtain a new individual; 

Step 6: The diversity of the population in each generation is calculated by using the 

chaotic strategy, to determine the threshold value and whether to implement individual 

replacement; 

Step 7: Determines whether the current iteration is out of bounds, and if not, return to 

step 3, otherwise the algorithm terminates. 

 

5. Experimental Analysis 

For the improved algorithm CDEI, this paper uses the CloudSim platform to simulate. 

The population size is 50 and the maximum number of iteration is 800 in the comparative 

analysis. (0) 0.75F  ， (0) 0.8CR  . The performance of the algorithm and the 

performance of the platform optimization are investigated in the experiment. The former 

mainly analyzes the ratio of the convergence of the algorithm to the number of iteration; 

the latter mainly investigates the ratio of task-to-time in the platform. First, the iterative 

performance in the optimized algorithm is analyzed, and selecting the traditional 

differential evolution algorithm (DE) and the differential evolution algorithm with chaos 

(CDE) are compared with CDEI. Four benchmark functions are used to complete the test, 

taking into account the randomness of the algorithm, the three algorithms are run 20 times 

to get the mean value, which is the number of iteration compared to DE and CDEI, the 

convergence is the comparison of DE, CDE and CDEI. The following is a description of 

the benchmark function and an iteration time ratio legend: 

(1) The function formula of 
Schwefel

is as follows: 

1

( ) ( sin | |)
D

i i

i

Schwefel x x x
=

= å
 

(2) The function formula of Rosenbrock is as follows: 

2 2 2

1

1

( ) (100( ) (1 ) )
D

i i i

i

Rosenbrock x x x x+

=

= - + -å
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(3) The function formula of Noncontinuous Rastrigin is as follows: 

2

1

[ 10cos 2 10]
D

i i

i

Noncontinuous Rastrigin x xp
=

= - +å

 
| | 0.5

(2 ) / 2 | | 0.5

i i

i

i i

k k
x

round k k

ì <ïï= í
ï ³ïî

 


 

(4) The function formula of Griewank is as follows: 

2

11

1
( ) cos( / ) 1

4000

D D

i i

ii

Griewank x x i
==

= - +å Õ
 

Table 1. Parameter of Benchmark Function  

benchmark function name dimension Range optimal value 

Schwefel  30 [ 10,10]D-  -12569.5 

Rosenbrock  30 [ 10,10]D-  0 

Noncontinuous Rastrigin  30 [ 5.12,5.12]D-  0 

Griewank  30 [ 600,600]D-  0 

Table 2. The Ratio of Iteration Times  

benchmark function Index type DE CDEI 

Schwefel  

Max 605 236 

Min 431 253 

Mean 547 241 

Rosenbrock  

Max 482 302 

Min 313 223 

Mean 424 249 

Noncontinuous Rastrigin  

Max 589 290 

Min 461 231 

Mean 527 256 

Griewank  

Max 712 326 

Min 406 237 

Mean 539 271 

 

Table 2 can be found that the convergence of CDEI compared to DE has been greatly 

improved by the comparison, the maximum value, minimum value and mean value in the 

ratio of the iteration times have certain advantages, and the difference between the three is 

smaller. It can be seen that the diversity of the population is supplemented in the later 

stage of the algorithm, and it will not produce too much jump in the algorithm iteration, 

the individual distribution is more uniform, and the convergence speed is accelerated 

accordingly. 
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(b) Comparison Result of Rosenbrock  Convergence 
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(c) Comparison Result of 
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(d) Comparison Result of Griewank  Convergence 

Figure 1. Convergence Comparison of Benchmark Function 

The comparison of the three algorithms about the convergence in Figure 1, CDEI has 

certain advantages, especially for the non-optimized DE algorithm, but the gap between 

CDEI and CDE is not so bright as before, mainly the traditional DE algorithm is a 

combination of the chaotic strategy, the diversity of the population is guaranteed, 

eliminating the problem of individual oscillation. In this paper, F CR、  are dynamically 

adjusted, and the parameters are adjusted so that the individual can’t fall into the local 

optimal constraint in the algorithm, which accelerates the convergence. 

In order to investigate the task-time ratio of the platform, two schemes were set up: (1) 

the number of task is 400, the number of resource is 10; (2) the number of task is 800, the 

number of resource is 10; the compare the legend as follows: 
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(a) The Contrast when the Number of Task is 400 
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(b) The Contrast when the Number of Task is 400 

Figure 2. The Ratio of Task-Time in Platform 

It can be seen from Figure 2 that the improved algorithm CDEI proposed in this paper 

is obviously lower than the other two algorithms in terms of time consumption. From the 

data we can see that with the iteration of the algorithm, the value of CDEI has been rising 

steadily, and there is little oscillation. On the contrary, the DE algorithm will be a 

relatively large amplitude oscillation, which is mainly the early maturity of the algorithm, 

resulting in rapid convergence phenomenon. The set value of the scaling factor and the 

cross probability are constant, which leads to the decline of the late search ability and 

can’t quickly get the optimal solution. It can be seen that the improvement effect of the 

algorithm is obvious and the resource deployment is reasonable. 

 

6. Conclusion 

Based on the chaos theory, an optimal differential evolution algorithm(CDEI) is 

proposed on the basis of the traditional differential evolution algorithm, which is used to 

solve the resource scheduling problem in cloud computing. In the early stage, chaos 

strategy was introduced to generate a new individual in the differential evolution, which 

was used to stagnate individual replacement operation to enhance the diversity of the 

population; at the same time, the scaling factor and crossover probability are dynamically 

adjusted, and the principle of high to low is adopted to improve the convergence of the 

algorithm. The experimental results show that the optimized algorithm has a good ability 

of resource scheduling. 
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