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Abstract 

Path problems are core problems of graph theory, and the representative one is the 

shortest path problem. But the short path problem only is a special issue, and in many 

cases the most reasonable solution of a path problem maybe some paths with a required 

length rather than the shortest path or the longest path. Thence the path problem with 

required length has more wide application, but it is also more difficult to solve. For the 

problem, we propose an idea that “first simplifying and then solving”. Following the 

idea, firstly, we found the shortest path model and the longest path model of connected 

graph, and reveal and summary their properties as theorems which reflect relationships 

between their parameters and lengths of paths in graph; secondly, base on the path 

models, we design a simple algorithm to simplify the connected graph for reducing 

difficulty of the path problem, and further design polynomial algorithms to search the k
th
 

shortest path and the k
th
 longest path for finding all paths with required length in graph. 

Finally, we use an illustration to show the effect of solving the path problem with required 

length by first simplifying and then searching the k
th
 shortest (longest) path. 

 

Keywords: operations research, path problem with required length, path model, 

equivalent simplification, the k
th
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1. Introduction 

The path problem is an important branch of operations research and a foundation 

problem for forming graph theory, and furthermore it is a practical problem having close 

relationship to the practical production and actual life. In additional to the actual path 

problem, many practical problems can be transformed into the corresponding path 

problems, and thus they can be simplified and then solved easily since the path problems 

can be represented clearly and intuitively by using graph. 

The most familiar path problem is the shortest path problem. Although the problem has 

been highly concerned, it still contains many unresolved problems, for example, the 

optimal solution of the famous traveling salesman problem cannot be calculated until now 

by using any polynomial algorithm since the problem is NP-hard. However, the shortest 

path is special path after all, thence the shortest path problem only is special path 

problem, and similarly the corresponding longest problem also is special path problem. 

Searching the shortest path or the longest path is very valuable in theory and application, 

but just as the optimal schemes of many practical problems may be not the extreme ones, 

for example the optimal speed of car may be not the fastest or the most fuel-efficient one 

but the equilibrium of them, the most reasonable schemes of many path problems also 

may be not the shortest paths or the longest paths. For instance, for choosing the tour line, 

assume a tourist has no preference for attractions, generally he will choose a line with 

moderate length based on his own interesting rather than choose the shortest or the 

longest lines; for another instance, for racing in city or among cities, generally the 

organizer will also choose a path with required length based on the racing as the track 
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rather than choose the shortest or the longest path; and so on. Thence, in the general 

sense, the path problem with required length contains the shortest path problem and the 

longest path problem, and further it can be applied more widely with higher value than the 

two problems.  

The two frequently used approaches for this path problem are the dynamic 

programming approach with complexity O(mn) [1] and determining the k
th
 shortest 

(longest) path. Dynamic programming is more complex than the Dijkstra algorithm and 

critical path method, particularly in large-scale networks. Li et al. [2] and Qi et al. [3] 

presented a simple algorithm to search the k
th
 critical path in time networks, which inspire 

Su et al. to propose an algorithm for the k
th
-shortest path problem in acyclic networks (to 

be published) [4]. The complexities of these algorithms are k times larger than the 

complexity of the Dijkstra algorithm and the critical path method, and may be one of the 

simplest algorithms for the k
th
 shortest (longest) path problem in acyclic networks. 

However, for a path with a desired length, the relationship between the value of k and the 

value of the desired length cannot be determined a priori; thus, almost all paths may be 

searched. Therefore, searching the k
th
 shortest (longest) path is similar to the enumeration 

method, which may be inefficient, particularly in large-scale networks. Unfortunately, 

high computation times may be unavoidable even though advanced algorithms and 

computers are used. In an attempt to tackle this problem, we first propose a simplification 

that converts the problem into an equivalent and much simpler problem by eliminating 

non-desired paths, and then search the desired paths in the simplified graph. This 

simplification is conducive to obtaining the optimal solution. 

Some authors studied path problems with desired paths, such as finding paths that meet 

desired vertex restrictions. Kawarabayashi and Kobayashi [5] studied the induced disjoint 

path problem, which finds desired disjoint paths that have neither common vertices nor 

adjacent vertices, and designed a linear time algorithm in planar graphs. Bolívar et al. [6], 

and Mokarami and Mehdi Hashemi [7] studied the constrained shortest path problems that 

find paths under desired conditions such as time constrained and weight constrained. Fiala 

et al. [8] and Bodlaender et al. [9] studied the k-path problem that tests whether a graph 

contains an induced path that spans k given vertices and solved the problem in polynomial 

time on claw-free graphs. For the path problem with desired length, many authors have 

tried to study similar problems, such as the next-to-shortest path problem and the k
th
 

shortest path problems. Fox [10]-[12] and András and Péter [13] first studied the k
th
 

shortest path problem. Lari et al. [14] considered the bounded length median path 

problem and compared the tabu search to the old bachelor acceptance. Kim [15] 

considered a tree with edge lengths and edge weights, and designed a linear time 

algorithm to find a maximum weight path that is less than a given length. Wu [16] 

designed a simpler and more efficient algorithm to find an st-path that has the shortest 

length among all st-paths and is strictly longer than the shortest path length in an 

undirected network with positive arc lengths and two vertices s and t. Current works for 

the k
th
-shortest path problem include Cormen et al. [1], Wang[17], Feng [18], Lirov [19], 

Hiroshi [20], Chen and Tang [21], Li et al. [22], Gao et al. [23], Pascoal and Sedeno-

Noda [24], Jiang et al. [25], Liu et al. [26], and Antonio and Sergio. [27]. Particularly, 

Gao et al. [23] designed an algorithm implemented with a bi-directional search, and 

Cormen et al. [1] provided a dynamic programming approach to find the k
th
-shortest 

paths. Li et al. [22] designed a free float approach for the k
th
-longest path problem in 

acyclic networks. 

These methods are conducive to the path problem with desired length; however, they 

are computationally complex in large-scale graphs because k may be large. The problem 

is much more difficult than the shortest and longest path problems, especially in the 

current and future circumstances that we will have to deal with more and more difficult 

practical problems. For a large-scale problem with complex graph, it is hard to avoid the 

super-large computation of solving the problem even by using the most advanced 
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computer and algorithm, and it is also difficult to overcome the bottleneck by designing 

algorithm and improving computer technology. Therefore, in this study, we propose the 

idea of simplification that reducing scale of the problem by removing unwanted paths, 

rather than directly solve the problem by searching the required paths directly. Little 

research has been done on simplifying path problems. Su et al. [28] simplified a similar 

path problem in acyclic networks, and we will improve the approach to apply to other 

types of connected graphs. After simplifying the problem, the required paths as final 

solutions of the problem can be found more easily, and we propose simple algorithms for 

the simplified problem. 

 

2. Path Models of Connected Graph 

According to the concept of connected graph, it is either directed graph or undirected 

graph. The undirected graph can be transformed into the directed one by representing 

each edge eij as one arc vivj and another reversed arc vjvi with the same lengths, hence we 

can regard all connected graphs as directed ones for uniformly describing them. 

For conveniently simplifying and solving the path problem in connected graph, we 

found the corresponding path models which contain the shortest path model and the 

longest path model. Su et al. [28] founded the path models of acyclic networks, and now 

we further improve it for other types of connected graphs. Founding the path models of 

connected graph mainly contains that, setting parameters of nodes and arcs based on the 

structure of graph, designing algorithms of computing the parameters, and revealing their 

properties. These parameters can be used to analyze the property of graph especially the 

properties of paths in graph, which help to solve practical problems. 

Set a start node vs and a terminal node vt in connected graph, and the length of each arc 

vivj is wij. The main idea for founding path model in the paper is that, considering paths 

from the start node vs to each node vj and from each node vj to the terminal node vt, and 

further revealing the property and law of the graph’s structure by setting parameters. We 

design the algorithm of computing each parameter firstly in this section, and discourse the 

property of each parameter in next section. For different kinds of graphs, the algorithms 

of searching the longest and the shortest paths are also different. We design all connected 

graphs into following three kinds ones and discourse them respectively. 

 

2.1. Path Models of Connected Graph without Cycle 

If there is no cycle in a connected graph, we can reference the critical path method of 

the network planning technology to found the path models. 

 

2.1.1. Found the Shortest Path Model 

Step 1. Set a parameter j of each node vj, and compute it from the start node vs as 

follows: 

 

0

min

s

j i ij
i

w



 




                                                         (1) 

Step 2. Set a parameter j of each node vj, and compute it from the terminal node vt as 

follows: 

 max

t t

j k jk
k

w

 

 




                                                (2) 

Step 3. Set a parameter Nt of each node vj and parameters ijA

, ijA

 and ijA

 of each arc 

vivj, and compute them as follows: 
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j j j

ij i ij j

ij i ij j

ij i ij j

N

A w

A w

A w







 

 

 

 

 

  

  

  
                                                     (3) 

 

2.1.2. Found the Longest Path Model 

Step 1. Set a parameter j
 of each node jv

, and compute it from the start node sv  as 

follows: 

 

0

max

s

j i ij
i

w



 

 


                                                    (4) 

Step 2. Set a parameter j   of each node jv
, and compute it from the terminal node tv  

as follows: 

 min

t t

j k jk
k

w

 

 

 


                                                   (5) 

Step 3. Set a parameter jN 
 of each node jv

 and parameters ijA 
, ijA 

 and ijA 
 of 

each arc i jv v
 and compute them as follows: 

j j j

ij j ij i

ij j ij i

ij j ij i

N

A w

A w

A w







 

 

 

 

   

    

    

    
                                                   (6) 

 

2.2. A Path Model of the Graph with Cycles but without Negative Length Arc 

If there are cycles in a connected graph, the method in Section 2.1 is unfeasible to 

found the path model of the graph. In addition, for the connected graph with negative 

length arc and the one without negative length arc, the methods of founding the path 

models of them are also quite different. Now we consider the graph with cycles but 

without negative length arc. In the graph, searching the longest path is NP-hard, therefore 

it is difficult to found the longest path model. We mainly found the shortest path model.  

The key of founding the shortest path model is to compute the length of the shortest 

path from the start node to any node, and from any node to the terminal node. For the 

connected graph with cycles but without negative length arc, the best algorithm of 

computing length of the shortest path between nodes is the Dijkstra algorithm. We 

reference the algorithm to found the shortest path model as follows: 

Step 1. Set and compute a parameter j
 of each node jv

. 

Step 1-1. For the start node sv , let 

0s 
                                                                                 (7) 

Step 1-2. Assume iv X  represents that the parameter i  of the node iv  is calculated, 

and jv X
 represents that the parameter j

 of the node jv
 is not calculated, find all arcs 

i jv v XX
 which meet iv X

 and jv X
. 
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Step 1-3. If XX  , turn to Step 2; and if XX  , compute  

 min
x x x

i j

i ij i i j
v v XX

w w 


  
 

and get the parameter xj


 of the node xj
v X

 that 

x x x xj i i jw  
                                                      (8) 

Turn to Step 1-2. If the parameter tv  of the terminal node tv  is calculated, turn to Step 

2. 

Step 2. Set and compute a parameter jv  of each node jv
. 

Step 2-1. For the terminal node tv , let 

t t                                                                   (9) 

Step 2-2. Assume kv Y  represents that the parameter k  of the node kv  is calculated, 

and jv Y
 represents that the parameter j  of the node jv

 is not calculated, find all arcs 

j kv v YY
 which meet jv Y

 and kv Y . 

Step 2-3. If YY  , turn to Step 3; and if YY  , compute 

 max
y y y

j k

k jk k j k
v v YY

w w 


  
 

and get the parameter yj


 of the node yj
v Y

 that 

y y y yj k j kw  
                                                         (10) 

turn to Step 2-2. If the parameter s  of the terminal node tv  is calculated, turn to Step 

3. 

Step 3. Set a parameter jN
 of each node jv

 and parameters ijA

, ijA

 and ijA

 of each 

arc i jv v
, and compute them as follows: 

j j j

ij i ij j

ij i ij j

ij i ij j

N

A w

A w

A w







 

 

 

 

 

  

  

  
                                                           (11) 

 

2.3. A Path Model of the Graph with Cycles and Negative Length Arcs 

Now we consider the connected graph with cycles and negative length arcs. If there are 

cycles and negative length arcs in a connected graph, the Dijkstra algorithm is also 

unfeasible to compute the length of the shortest path. The Bellman-Ford algorithm is an 

effective algorithm for the shortest path problem in the graph, hence we reference it to 

found path model. Assume lengths of the cycles are positive, the longest path problem in 

the graph also is NP-hard. We mainly found the shortest path model as follows: 

Step 1. Set and compute a parameter j
 of each node jv

. 

Step 1-1. For the start node sv , let 

0s 
                                                             (12) 

Step 1-2. For each hinder adjacent arc s jv v
 of the start node sv

, let 
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 (1) ,s j sjd v v w 
 

Step 1-3. For 2,3,x  , 

    ( ) ( 1), min ,x x

ijs j s i
i

d v v d v v w  
 

and there cannot be a node jv
 on the path s iv v  which corresponding to 

 ( 1) ,x

s id v v
. If x y  and each node jv

 meet 

   ( ) ( 1), ,y y

s j s jd v v d v v 
 

then let 

 ( ) ,y

sj jd v v 
                                                   (13) 

Step 2. Set and compute a parameter j  of each node jv
. 

Step 2-1. For the terminal node tv , let 

t t                                                               (14) 

Step 2-2. For each former adjacent arc j tv v
 of the terminal node tv , let 

 (1) ,j t jttd v v w  
 

Step 2-3. For 2,3,x  , 

    ( ) ( 1), max ,x x

j t k t
k

jkd v v d v v w  
 

and there cannot be a node jv
 on the path k tv v  which corresponding to 

 ( 1) ,x

k td v v
. If 

x y
 and each node jv

 meet 

   ( ) ( 1), ,y y

j t j td v v d v v 
 

then let 

 ( ) ,y

j tj d v v 
                                                      (15) 

Step 3. Set a parameter jN
 of each node jv

 and parameters ijA

, ijA

 and ijA

 of each 

arc i jv v
, and compute them as follows: 

j j j

ij i ij j

ij i ij j

ij i ij j

N

A w

A w

A w







 

 

 

 

 

  

  

  
                                                       (16) 

 

3. Properties of the Parameters in the Path Model 

This paper studies the relationships between the parameters of the path model and the 

length of the path in graph, viz. the properties of the parameters, and summaries them as 

related theorems. These theorems are main basis for simplifying and solving the path 

problem. For discoursing easily, we name the path from the start node to the terminal 

node of graph as a ―path‖, and name the other kind of path as a ―path section‖. 

Theorem 1. In a connected graph, for any node jv
, the parameter j

 is equal to the 

length of the shortest path section 
min

s j   from the start node sv
 to the node jv

, that is 

 min

j s jL  
                                                            (17) 
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The parameter j  is equal to the difference between the length of the shortest path 
min  of the graph and the length of the shortest path section 

min

j t   from the node jv
 to the 

terminal node tv , that is 

   min min

j j tL L    
                                                  (18) 

The parameter j
 is equal to the length of the longest path section 

max

s j   from the start 

node sv  to the node jv
, that is 

 max

j s jL  
 

                                                        (19) 

And the parameter j   is equal to the difference between the length of the longest path 
max  of the graph and the length of the longest path section 

max

j t   from the node jv
 to the 

terminal node tv , that is 

   max max

j j tL L   
  

                                                (20) 

Proof. According to the algorithm of computing the parameter j
 in each kind of 

graph, for the start node sv , 

 min0s s sL   
 

And for any other node jv
 except the start node sv , we summarize that 

     min , min , , minj i ij i h hi a s sa
i h s

w w w          
 

and further deduce by iterating that 

 

  

    
 

 min

min

min min

min min min min

min

j i ij
i

h hi ij
i h

a sa ab hi ij
i h g s

sa ab hi ij
s j

s j

w

w w

w w w w

w w w w

L

 











 

  

     

    


 

Therefore 

 min

s j jL   
 

and the Equation (17) is correct. 

Then according to the algorithm of computing the parameter j  in each kind of graph, 

for the terminal node tv , 

   min min

t t s tL L     
 

And for any other node jv
 except the terminal node tv

, we can summarize that 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.12, No.2 (2017) 

 

 

48   Copyright ⓒ 2017 SERSC 

 

 

 

max

max

max

j k jk
k

k l kl
l

y t yt
t

w

w

w

 

 

 

 

 

 
 

and further deduce by iterating that 

 

  

    
 

 

   min min

max

max max

max max max

max

min

j k jk
k

l kl jk
k l

t yt xy kl jk
k l y

t jk kl xy yt
j t

t jk kl xy yt
j t

j t

w

w w

w w w w

w w w w

w w w w

L L

 









 







 

  

     

     

     

 
 

therefore 

   min min

j t jL L    
 

and the Equation (18) is correct. 

Similarly, we can prove that the Equations (19) and (20) are correct. This completes 

the proof. 

Corollary 1. In a connected graph, the length of the shortest path 
min  is 

 min

t tL    
                                                    (21) 

and the length of the longest path 
max  is 

 max

t tL     
                                                      (22) 

Theorem 2. In a connected graph, for any node iv , the parameter iN  is equal to the 

difference between the length of the shortest path 
min

i  passing the node and the length of 

the shortest path 
min  of the graph, that is 

   

 

 

min min

min

min

i i

i t

i t

N L L

L

L

 

 

 

 

 

 
                                               (23) 

And the parameter iN 
 is equal to the difference between the length of the longest path 

max  of the graph and the length of the longest path 
max

i  passing the node iv , that is 

   

 

 

max max

max

max

i i

t i

t i

N L L

L

L

 

 

 

  

 

 
                                                (24) 

Proof. (1) In a graph, the shortest path 
min

i  passing any node iv  is composed by two 
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sections, the one section is the shortest path section 
min

s i   from the start node sv  to the 

node iv , and the other one is the shortest path section 
min

i t   from the node iv  to the 

terminal node tv , that is 
min min min

i s i i t      
and its length is 

     min min min

i s i i tL L L    
 

According to the Theorem 1, 

     

 

   

 

min min min

min

min

min

i s i i t

i i

i i

i

L L L

L

L

L N

  

  

  



  

  

  

 
 

and then according to the Equation (21), 

   

 

min min

min

i i

i t

N L L

L

 

 

 

 
 

therefore the Equation (23) is correct. 

(2) Similarly, according to the Equations (6)~(9), we can prove that the Equation (24) 

is correct. Thence the theorem is correct. This completes the proof. 

Theorem 3. In a connected graph, for any arc i jv v
, the parameter ijA

 is equal to the 

difference between the length of the shortest path 
min

ij
 passing the node and the length of 

the shortest path 
min  of the graph, that is 

   

 

 

min min

min

min

ij ij

ij t

ij t

A L L

L

L

  

 

 

 

 

 
                                               (25) 

And the parameter ijA 
 is equal to the difference between the length of the longest 

path 
max  of the graph and the length of the longest path 

max

ij
 passing the arc i jv v

, that is 

   

 

 

max max

max

max

ij ij

t ij

t ij

A L L

L

L

  

 

 

  

 

 
                                            (26) 

Proof. It is similar to the proof for the Theorem 2. 

Theorem 4. In a connected graph, the difference between the length of any path 


 and 

the length of the shortest path 
min

 of the graph is equal to the sum of the parameters ijA

 

or the sum of the parameters ijA

of all arcs i jv v
 on the path 


, that is 

   min

ij ijL L A A 

 

    
                                            (27) 

And the difference between the length of the longest path 
max

 of the graph and the 

length of the path 


 is equal to the sum of the parameters ijA 
 or the sum of the 
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parameters ijA 
of all arcs i jv v

 on the path  , that is 

   max

ij ijL L A A 

 

      
                                            (28) 

Proof. Assume any path s a b z tv v v v v  , according to the Equations (3), (11) and (16), 

 

     

 

 

   min

ij i ij j

s sa a a ab b z zt t

s sa ab zt t

s t

A w

w w w

w w w

L

L L



 

 

     

 

  

 

  

         

     

  

 

 

 
Similarly, we can prove 

   min

ijA L L



  
 

therefore the Equation (27) is correct. 

And similarly, we also can prove the Equation (28) is correct. Therefore the theorem is 

correct. This completes the proof. 

 

4. An Algorithm for Simplifying Path Problem with Required Length 

 
4.1. Description of the Algorithm 

Assume a connected graph G, and require to finding out the path with the length   

from the start node sv  to the terminal node tv  in G. For solving the path problem easily, 

we simplify the graph G, and ensure all paths with the length   are still in the remaining 

graph after simplification that the solution result of the problem will not be affected. 

An algorithm for the simplification is following: 

Step 1. Compute the parameters i , i  and iN  of each node iv  in the G, and then 

remove the node kv  with k tN     and its adjacent arcs to obtain a graph G1. 

Step 2. Compute the parameter ijA

 of each arc i jv v
 in the G1, and remove the arc 

x yv v
 with xy tA   

 to obtain a graph G2. 

Step 3. Compute the parameters i , i   and iN 
 of each node iv  in the G2, and then 

remove the node kv  with k tN      and its adjacent arcs to obtain a graph G3. 

Step 4. Compute the parameter ijA 
 of each arc i jv v

 in the G3, and then remove the 

arc x yv v
 with xy tA     

 to obtain a graph G4. 

The graph G4 still contains all paths with the length   in the original graph G, and it 

has much less nodes, arcs and especially paths than the G. Thence, it is much more 

convenient to find the paths with the length   in the G4, which can be completed 

generally only by searching a few paths such as the longest path, the 2
nd

 longest path, the 

shortest path or the 2
nd

 shortest path, and so on. 

 

4.2. Correctness of the Algorithm 

(1) For any node iv
 in the connected graph G, according to the Theorem 2 and the 
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Equation (23), 

 min

i i tv v vN L   
 

If i tN    , put above Equation into it that 

   min min

i t t iL L         
 

It means that the shortest path passing the node iv  is longer than  , thence all paths 

passing the node must be longer than  , which are all not required ones. Removing the 

node and its adjacent arcs is equivalent to removing all these paths. After removing all 

this kind of nodes and their adjacent arcs, we mark the remaining part of the graph G as 

the G1. 

(2) Similarly, for any arc i jv v
 in the G1, according to the Theorem 3 and the Equation 

(25), if xy tA   
, all paths passing the arc must be longer than  , which are also not 

required ones. Removing the arc is equivalent to removing all these paths. After removing 

all this kind of arcs, we mark the remaining part of the G1 as the G2.   

Thence, the paths which are removed by using Steps 1 and 2 of the algorithm in 

Section 4.1 are all longer than  . 

(3) For any node iv  in the connected graph G2, according to the Theorem 2 and the 

Equation (24), 

 max

i t iN L   
 

If i tN     , put above Equation into it that 

   max max

t i t iL L          
 

It means that the longest path passing the node iv  is shorter than  , thence all paths 

passing the node must be shorter than  , which are all not required ones. Removing the 

node and its adjacent arcs is equivalent to removing all these paths. After removing all 

this kind of nodes and their adjacent arcs, we mark the remaining part of the G2 as the G3. 

(4) Similarly, for any arc i jv v
 in the G3, according to the Theorem 3 and the Equation 

(26), if xy tA     
, all paths passing the arc must be shorter than  , which are also not 

required ones. Removing the arc is equivalent to removing all these paths. After removing 

all this kind of arcs, we mark the remaining part of the G3 as the G4. 

Thence, the paths which are removed by using Steps 3 and 4 of the algorithm in 

Section 4.1 are all shorter than  . 

According to above analysis, when removing the paths which are longer or shorter than 
 , all paths with the length   are reserved. It means that, although the G4 is simpler than 

the original graph G, it still contains all paths with the length   and can be used to solve 

the path problem instead of the G. Thence the algorithm for simplification in Section 4.1 

is correct. 

 

4.3. Complexity of the Algorithm 

Assume there are n nodes and m arcs in the connected graph G, and m n  based on the 

relationship between the node and the arc in the graph. The complexity of the algorithm in 

Section 4.1 is analyzed as follows: 

Step 1 is for computing the parameters i , i  and iN
 of each node iv

. Thereinto, for 

different kinds of connected graphs, the algorithms of computing the parameters i  and 
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i  are also different. 

(1) For the graph without cycle, the complexities of computing the parameter i  and 

i  are 
 O m

. 

(2) For the graph with cycles but without negative length arc, the algorithm of 

computing i  is similar to the Dijkstra algorithm, and its complexity is 
 logO m n n

; 

but the algorithm of computing i  is similar to the Bellman-Ford algorithm, and its 

complexity is 
 O mn

, thence the total complexity of computing the two parameter is 

 O mn
. 

(3) For the graph with cycles and negative length arcs, the complexity of computing the 

i  and i  are 
 O mn

. 

(4) The parameter iN  is equal to the difference between i  and i , thence the 

complexity of computing it is 
 O n

. 

Step 2 is for computing the parameter ijA

 of each arc i jv v
 by using the parameters i  

and i  of its nodes, and there are m arcs at most, thence the complexity of the step is 

 O m
. 

Steps 3 and 4 are similar to Steps 1 and 2. 

Therefore, for the connected graph without cycle, the complexity of the algorithm is 

 O m
; and for the connected graph with cycles, the complexity of the algorithm is 

 O mn
. 

 

5. An algorithm for Searching the k
th

 Shortest Path 

In a connected graph, the path with the required length   is generally not the shortest 

path or the longest path, and it is very difficult to be searched directly, thence if wanting 

to find the path effectively, the idea of searching indirectly need be used. The idea of 

searching indirectly can be realized from two approaches, the one is that searching 

individually from the shortest path to long ones until to find the k
th
 shortest path with the 

length  , and the other one is that searching individually from the longest path to short 

ones until to find the k
th
 longest path with the length  . Su et al. (to be published) [4] 

proposed an algorithm for searching the k
th
 shortest path in acyclic networks. In this paper, 

we also consider other types of connect graphs. In this section, We design an algorithm 

for searching the k
th
 shortest path in any types of connect graphs, and further design an 

algorithm for searching the k
th
 longest path in next section. 

In order to discourse the algorithm conveniently, we first propose concepts and 

calculations of some new parameters, and then discourse the algorithm in detail. 

 

5.1. A Short Feature Parameter of the Terminal Node of Connected Graph 

The short feature parameter of the terminal node tv
 of a graph is defined as a value of 

the node to an arc, and it is also named that the terminal node tv  has a short feature 

parameter to an arc. 

(1) We mark the 1
st
 rank short feature parameter of the terminal node tv  as 

1 , and 

define its value as zero, that is 
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1 0                                                                     (29) 

(2) The 2
nd

 rank short feature parameter of the terminal node tv . 

If there is a path composed by arcs with the parameters 0A   and from a node rv  to 

the terminal node tv , and the parameter qrA

 of an arc q rv v
 is not zero in the former 

adjacent arcs of the node rv , then the terminal node tv  has the 2
nd

 rank short feature 

parameter to the arc q rv v
. We mark the short feature parameter as 

2

qr
, and define its 

value as 
2 1

qr qr qrA A    
                                                   (30) 

(3) The k
th
 rank short feature parameter of the terminal node tv . 

Assume the terminal node tv  has the 1k  th
 rank short feature parameter 

1k

de 

 to an arc 

d ev v , and 2k  , if there is a path composed by arcs with the parameters 0A   and from 

a node bv  to dv , and the parameter abA

 of an arc a bv v  is not zero in the former adjacent 

arcs of the node bv , then the terminal node tv  has the k
th
 rank short feature parameter to 

the arc a bv v . We mark the short feature parameter as 
k

ab , and define its value as 
1k k

ab de abA                                                        (31) 

 

5.2. An Algorithm for Searching the k
th

 Shortest Path 

 

5.2.1. Description of the Algorithm 

For finding the path with the length   in a connected graph, we design an algorithm 

for searching the k
th
 shortest path. 

Step 1. Search the 1
st
 shortest path 

1 . 

Step 1-1. Compute the parameter i  of each node iv  and the parameter ijA

 of each arc 

i jv v
. 

Step 1-2. Find connected arcs with the parameters 0A   forward from the terminal 

node tv  to the start node sv  to get a 
1 min   with the length 

 1

tL  
. This step 

cannot be stopped repeating until no other new 
1 . 

Step 2. Form short feature sets 1  and 2 . 

Step 2-1. Form a 1  , then compute the parameters 2 2a bA

 of all former adjacent arcs 

2 2a bv v
 of each node on the 

1 , and get 2 2 2 2

2 0a b a bA  
. 

Step 2-2. Form the 2  by putting 2 2

2

a b
 into the 1 . 

Step 3. Search the i
th
 ( 2i  ) shortest path 

i . 

Step 3-1. Find all minimum values j j

j

a b
 from the i . 

Step 3-2. According to the Equation (31) (the Equation (30) if 2i  ), find 

1 1

1

j j

j

a b
 



(assume it corresponds to a 
m

) and an arc j ja bv v
 with the parameter 

0
j ja bA 

. 

Step 3-3. Find connected arcs with the parameters 0A   forward from the node jav
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to the start node sv  to get a 

min

js a 
. The 

i  is composed by the 

min

js a 
, the arc j ja bv v

 and 

the j

m

b t 
, and its length is 

 
j j

i j

t a bL    
                                                     (32) 

Step 4. Check. 

If 
 iL  

, stop; and if 
 iL  

, turn to Step 5. 

Step 5. Form a short feature set 1i . 

Step 5-1. Find all former adjacent arcs 1 1j ja bv v
   with the parameters 1 1

0
j ja bA

 


 of each 

node on the 

min

js a 
, and then compute 1 1

1

j j

j

a b
 



 by using the Equation (31), 

1 1 1 1

1

j j j j j j

j j

a b a b a bA 
   

  
 

Step 5-2. Form a 1i  by removing j j

j

a b
 from the i  and putting 1 1

1

j j

j

a b
 



 into the i , 

then turn to Step 3. 

Note that, according to the algorithm in Section 2 of computing the parameter i  of 

each node iv , i  represents the length of the shortest path section from the start node sv  

to the node iv  and without cycle, thence the 1
st
 shortest path 

1 min   must be the 

shortest path without cycle in the graph. 

Similarly, we also can search the k
th
 shortest path in a connected graph by using the 

parameter i  of each node iv  and the parameter ijA 
 of each arc i jv v

, and the detail steps 

is similar to above algorithm. 

 

5.2.2. Correctness of the Algorithm 

According to the Theorem 4 and the Equation (27), 

  t ijL A


  

 

thence searching a 


 is equivalent to computing 
ijA


, for example, searching the 

1  is equivalent to computing the minimum value of 
ijA


, searching the 

2  is 

equivalent to computing the 2
nd

 minimum value of 
ijA


, …… , and searching the 

k  

is equivalent to computing the k
th
 minimum value of 

ijA


. 

In addition, according to the concept of the short feature parameter of the terminal node 

tv
 and the Equation (31), 

1 1

2 2 1 1

2 2 3 3

1

2

1

2

j j j j j j

j j j j j j

j j

i i

j j

a b a b a b

j

a b a b a b

a b a b a b

j

a bi

A

A A

A A A

A



 

  



 





 

   







 

  

    

  

Thence there is a path ja t 
, and the parameters A

 of only arcs j ja bv v
, 1 1j ja bv v

  , … , 

2 2a bv v
 on the path are nonzero, that is 
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2j j i i a tj

jj

a b a b xyi
A A






  
 

And according to the Theorem 1, there is a path 

min

j js a s a  
 from the start node sv  

to the node jav
, and 

0
xs a j

a yA

 


. The js a 

 and ja t 
 compose a s t   , thence 

aj j y

s a

tj

j a tj

j

a b xb

xy xy

xy

A

A A

A



 


















 





 


                                            (33) 

Therefore, the sum of the parameters A
 of all arcs on a path is equal to a short feature 

parameter i i

i

a b
 of the terminal node tv , and according to the Equation (32), 

 
j j

j

t a bL    
                                                       (34) 

Searching the 
k  is equivalent to computing the k

th
 minimum value of i i

i

a b
, thereinto 

the minimum value is 
1 0  . 

(1) The proof that all 
1  can be found by using Step 1 of the algorithm. 

According to the Equation (29), if 

1 0ijA


  

, the corresponding   is the shortest 

path 
min  that 

1 min  . 

According to the algorithm for computing the node parameter   and the arc parameter 

A
, except the start node sv , each arc has former arc with the parameter 0A  , thence 

the former adjacent arc q tv v
 with 

0qtA 
 of the terminal node tv  can be found; similarly, 

the former adjacent arc p qv v
 with 

0pqA 
 of the node qv

 also can be found; …… ; the 

process cannot be stopped until to the start node sv , and then a 
1  with 

1 0ijA




 is 

found. 

Since each arc may have more former adjacent arcs with the parameters 0A  , there 

may be more 
1 , and above process of searching the 

1  cannot be stopped repeating 

until no other new 
1 . 

Thence all 
1  can be found by using Step 1 of the algorithm. 

(2) For the 2
nd

 ~ k
th
 shortest paths, the algorithm uses recursive method to search them, 

thence here we use mathematical induction to prove its correctness. 

1) Firstly, we prove that all 
2
 can be found by using Steps 2~3. 

i) According to the Equation (30), if i i

i

a b
 is the 2

nd
 value that the minimum nonzero 

value, it corresponds to the 
2
. 

1 0ijA




, and according to Step 1, as long as the path 

r t   from a node rv  to the terminal node tv  meets 
0

r t
ijA

 


, then 

1

r t  
, thence 

according to the concept, the 2
nd

 rank short feature parameter 2 2

2

a b
 of the terminal node tv

 

is the nonzero parameter 2 2a bA

 of a former adjacent arc 2 2a bv v
 of each node on 

1 . 

Therefore, by using Step 2, all the 2
nd

 rank short feature parameters of the terminal node 

tv
 can be calculated and then combined to form the 2 . 
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ii) Assume 
 

2 2 2 2 2 2

2 2 2

2 , , ,a b c d x y   
, then according to the Equation (31), all nonzero 

short feature parameters of the terminal node tv  are the short feature parameters in the 2  

and the higher ranks short feature parameters generating based on these parameters, as in 

a 
*

2  that 

2 2 3 3

2 2 3 3

2 2 3 3

2 3

2 3

*

2

2 3

, , ,

, , ,

, , ,

l l

m m

n n

l

a b a b a b

m

c d c d c d

n

x y x y x y

  

  

  

 
 
 

   
 
 
  , , , , 2l m n   

And according to the Equation (31), 1 1

1

i i i i

i i

a b a b 
 

 
, so if 2 2

2

a b
 is the minimum value in 

the 2 , then it also is the minimum value in the 
*

2  and the 2
nd

 minimum value of i i

i

a b
. 

Therefore 2 2 2 2

2

a b a bA 
 corresponds to the 

2  which is composed by the 2

min

s a  , the arc 

2 2a bv v
 and the 2

1

a t  , and 
*

2

0
s a

xyA

 


. According to the Equation (34), the length of the 

2  is 

 
2 2

2 2

t a bL    
 

Base on above analysis, we view Step 3. 

The all minimum 2 2

2

a b
 are found by using Step 3-1, which are all minimum values in 

the 2 , and it ensures that all 
2  can be found by using Steps 3-2~3-3. 

In Step 3-2, according to the Equation (30), 

2 2 2 2 2 2

2 1

a b a b a bA A    
 

1  and the arc 2 2a bv v
 can be found based on above Equation. According to Step 1, 

1  

corresponds to the 
1 , thence the 2

1

a t   can be found. 

Searching the 2

min

s a   by using Step 3-3 is similar to searching the 
1  by using Step 1, 

and the only difference is that Step 3 starts from the node 2av
, thence the 2

min

s a   can be 

found by using Step 3-3. 

Hence all 
2
 can be found by using Steps 2~3 of the algorithm. 

2) Assume all 
k
 are found by using Steps 3~5, now we prove that all 

1k 

 can be 

found by using Steps 3~5. 

Step 4 is used to judge whether searching the 
1k 

 or not after finding the 
k  based on 

actual requirements. This step is independent to the process of searching the 
1k 

, thence 

we can omit it when proving the correctness of the algorithm for searching the 
1k 

. 

i) For all the 
k

 can be found, we analyze the step of searching the 
k

. Assume 

 , , ,
j j p p q q

j p q

k a b c d x y   
, then all the k

th
 minimum short feature parameters, the 1k  th

 

minimum one, … of the terminal node tv
 are showed in a 

*

k  that 
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1 1

1 1

1 1

1

1

*

1

, , ,

, , ,

, , ,

j j j j l l

p p p p m m

q q q q n n

j j l

a b a b a b

p p m

c d c d c d

k

q q n

x y x y x y

  

  

  

 

 

 







 
 
  

   
 
 
    

Assume all 
k  are found based on j j

j

a b
, according to Step 3-1, j j

j

a b
 is the minimum 

value in the k , which also is the minimum value in the 
*

k  and the k
th
 minimum value of 

i i

i

a b
, thence all short feature parameters bigger than j j

j

a b
 of the terminal node tv  are 

showed in a 
*

1k  that 

1 1 2 2

1 1

1 1

1 2

1

*

1

1

, , ,

, , ,

, , ,

j j j j l l

p p p p m m

q q q q n n

j j l

a b a b a b

p p m

c d c d c d

k

q q n

x y x y x y

  

  

  

   

 

 

 







 
 
  

   
 
 
    

The minimum value in the 
*

1k  is the 1k  th
 minimum value of i i

i

a b
, and it 

corresponds to the 
1k 

. Because 1 1

1

i i i i

i i

a b a b 
 

 
, finding the minimum value in the 

*

1k  is 

equivalent to finding the minimum value in 
 1

1 , , ,
j j p p q q

j p q

k a b c d x y  

 
. 

Therefore, after calculating j j

j

a b
 and 

k  by using Step 3, we form a 1k  by using 

Step 5 that removing j j

j

a b
 from the k  and putting 1 1

1

j j

j

a b
 



 into the k . 

ii) Assume the minimum value in the 1k  is p p

p

c d
, then it corresponds to the 

1k 

 

based on 2)-i). According to the Equation (34), the length of the 
1k 

 is 

 1

p p

k p

t c dL     
 

According to the Equation (31), 

1 1

1

p p p p p p

p p

c d c d c dA 
 

 
 

Assume 1 1

1

p p

p

a b
 



 corresponds to the 
m , since the node pdv

 locates on a 1p

m

s c


, and 

1 1

min

p p

m

s c s c 
  

 based on the composition of the 
m

, we know that 

min

1 1 1

0m m
d c s c s cp p p p

xy xy xyA A A  

      

    
 

According to the Equation (33), 

1 1

1

1 1

min

1

p p p p p p

m
p pc tp

m m
p pd c c tp p p

m
p pd tp

m
p ps c d tp p

p p

c d c d c d

xy c d

xy xy c d

xy c d

xy c d xy

A

A A

A A A

A A

A A A



 



  

 

 



  

 

 
 



  



 

 

 

  

 

  



 



 
 

thereinto 
min 0
s cp

xyA

 


. Thence the 

1k 

 is composed by the 

min

ps c 
, the arc p pc dv v
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and the p

m

d t 
. 

Base on above analysis, we view Step 3. 

All minimum p p

p

c d
 are found from the 1k  by using Step 3-1, and it ensures that all 

1k 

 can be found by using Steps 3-2~3-3. 

Because 1 1

1

p p

p

a b
 



 and corresponding 
m  are found based on the Equation (31) by using 

Step 3-2, the p

m

d t 
 can be found. 

Searching the 

min

ps c 
 by using Step 3-3 is similar to searching the 

1  by using Step 1, 

and the only difference is that Step 3 start from the node pcv
, thence the 2

min

s a   can be 

found by using Step 3-3. 

Therefore, after forming the 1k by using Step 5, all 
1k 

 can be found by using Step 

3. 

In summary, all the 2
nd

 shortest paths can be found by using Steps 2~3, and all the 

3
rd

~k
th
 shortest paths can be found by using Steps 3~5 repeatedly. 

According to (1) and (2), the algorithm is correct. 

 

5.2.3. Complexity of the Algorithm 

Assume there are n nodes and m arcs in a connected graph, and according to the steps 

of the algorithm except the step of computing the parameter   in Section 5.2.1, searching 

the 1k  th
 shortest path on the basis of the k

th
 shortest path by using the algorithm is 

equivalent to considering each arc and its parameter A
 at most once, thence its 

complexity is 
 O m

 and the complexity of searching the k
th
 shortest path is 

 O km
. 

By combining with the complexity of computing the parameter  , we know that, for 

the connected graph without cycle, the complexity of the algorithm in Section 5.2.1 for 

searching the k
th
 shortest path is 

     O m O km O km 
 

For the connected graph with cycles but without negative length arc, the complexity of 

the algorithm in Section 5.2.1 for searching the k
th
 shortest path is 

   
 

 

,

,

O m nlogn
O m nlogn O km

O km

 
   

  

1

1

k

k



  
And for the connected graph with cycles and negative length arcs, the complexity of 

the algorithm in Section 5.2.1 for searching the k
th
 shortest path is 

   
 

 

,

,

O mn
O mn O km

O km


  

  

n k

n k



  
 

6. An Algorithm for Researching the k
th

 Longest Path 

According to the algorithm and its principle in Section 5 for searching the k
th
 shortest 

path in connected graph, we can design an algorithm for searching the k
th
 longest path by 

using the longest path model that the parameters   and 


 of each node and the 

parameters A   and A   of each arc. The longest path problem in the connect graph with 

cycles is NP-hard, therefore we mainly consider the k
th
 shortest path in connected graph 

without cycle in the section. Here we mainly design an algorithm by using the parameters 

 
 and A  . 
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Similarly, in order to discourse the algorithm conveniently, we first propose concepts 

and calculations of some new parameters, and then discourse the algorithm in detail. 

 

6.1. A Long Feature Parameter of the Start Node of Connected Graph 

A long feature parameter of the start node sv  of graph is defined as a value of the node 

to an arc, and it is also named that the start node sv  has a long feature parameter to an arc. 

(1) We mark the 1
st
 rank long feature parameter of the start node sv  as 

1  , and define 

its value as zero, that is 
1 0                                                                 (35) 

(2) The 2
nd

 rank long feature parameter of the start node sv . 

If there is a path composed by arcs with the parameters 0A    and from the start node 

sv  to a node rv , and the parameter rpA 
 of an arc r pv v

 is not zero in hinder adjacent arcs 

of the node rv , then the start node sv  has the 2
nd

 rank long feature parameter to the arc 

r pv v
. We mark the long feature parameter as 

2

rp 
, and define its value as 

2 1

rp rp rpA A       
                                                   (36) 

(3) The k
th
 rank long feature parameter of the start node sv . 

Assume the start node sv  has the 1k  th
 rank long feature parameter 

1k

ef 
 to arc e fv v

, 

and 2k  , if there is a path composed by arcs with the parameters 0A    and from a 

node fv
 to gv

, and the parameter ghA 
 of an arc g hv v

 is not zero in hinder adjacent arcs of 

the node gv
, then the start node sv  has the k

th
 rank long feature parameter to the arc g hv v

. 

We mark the long feature parameter as 
k

gh 
, and define its value as 

1k k

gh gh ghA      
                                                           (37) 
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6.2. Description of the Algorithm 

For finding the path with length   in a connected graph, we design an algorithm for 

searching the k
th
 longest path. 

Step 1. Search the 1
st
 longest path 

1 . 

Step 1-1. Compute the parameter i   of each node iv  and the parameter ijA 
 of each 

arc i jv v
. 

Step 1-2. Find connected arcs with the parameters 0A    backward from the start 

node sv  to the terminal node tv  to get 
1 max    with the length 

 1

tL   
. This step 

cannot be stopped repeating until no other new 
1 . 

Step 2. Form long feature sets 1
  and 2

 . 

Step 2-1. Form a 1
  , then compute the parameters 2 2a bA 

 of all hinder adjacent arcs 

2 2a bv v
 of each node on the 

1 , and get 2 2 2 2

2 0a b a bA   
. 

Step 2-2. Form a 2
  by putting 2 2

2

a b 
 into the 1

 . 

Step 3. Search the i
th
 ( 2i  ) longest path 

i . 

Step 3-1. Find all minimum values j j

j

a b 
 from the i

 . 

Step 3-2. According to the Equation (37) (the Equation (36) if 2j  ), find 1 1

1

j j

j

a b
 


 

(assume it corresponds to a 
m ) and an arc j ja bv v

 with the parameter 
0

j ja bA  
. 

Step 3-3. Find connected arcs with the parameters 0A    backward from the node jbv
 

to the terminal node tv  to get a 

max

jb t 
. 

i  is composed by the 

max

jb t 
, the arc j ja bv v

 and 

the j

m

s a 


, and its length is 

 
j j

i j

t a bL      
                                                    (38) 

Step 4. Check. 

If 
 iL   

, stop; and if 
 iL   

, turn to Step 5. 

Step 5. Form a long feature set 1i


. 

Step 5-1. Find all hinder adjacent arcs 1 1j ja bv v
   with the parameters 1 1

0
j ja bA 

 
 

 of each 

node on the 

max

jb t 


, and then compute 1 1

1

j j

j

a b
 


 by using the Equation (37), 

1 1 1 1

1

j j j j j j

j j

a b a b a bA  
   

   
 

Step 5-2. Form a 1i
  by removing j j

j

a b 
 from the i

  and putting 1 1

1

j j

j

a b
 


 into the i

 , 

then turn to Step 3. 

Similarly note that the 1
st
 longest path 

1 max    must be the longest path without 

cycle in the graph. 

The analysis on correctness of the algorithm is similar to the analysis on correctness of 

the algorithm of ―searching the k
th
 shortest path‖ in Section 5.2.2. And for the complexity 

of the algorithm, similarly, except computing the parameter 


 of each node, the 

complexity of searching the k
th
 shortest path is 

 O km
. But by combining with the 
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complexity of computing the parameter 


, because there are differences between 

computing the parameters 

 and   according to Section 2, the total complexity of the 

algorithm is also a little different to the complexity of the algorithm in Section 5.2.1. For 

the connected graph without cycle, the complexity of the algorithm for searching the k
th
 

longest path is 

     O m O km O km 
 

And for the connected graph with cycles, the complexity of the algorithm for searching 

the k
th
 longest path is 

   
 

 

,

,

O mn
O mn O km

O km


  

  

n k

n k



  
Similarly, we also can search the k

th
 longest path in a connected graph by using the 

parameter i  of each node iv  and the parameter ijA 
 of each arc i jv v

, and the detail steps 

is similar to above algorithm. 

 

7. Illustration 

Find all paths with lengths 500 from the graph in Figure 1. 

Because the graph is complex, it is very difficult to research paths directly, and we 

adopt the ideal that first simplifying the graph and then searching the required paths in the 

simple graph.  

(1) Simplify the connected graph. 

The graph has no cycle, therefore we could simplify the problem based on the path 

model in Section 2.1. 

 

 

Figure 1. Example of a Connected Graph 

Step 1. Mark the graph in Figure 1 as G. Because there is no cycle in the G, we can use 

the algorithm in Section 2.1.1 to compute the parameters i  and i  of each node iv  in 

the G, as in Figure 2. 
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Figure 2. Graph G 

Compute the parameter iN  of each node iv  in the G, and remove nodes 6v , 7v , 12v , 

13v , 18v , 19v , 24v , 25v , 30v , 31v , 36v  and 37v  with 38 500 235 265kN       , and also 

remove their adjacent arcs. Then we obtain a graph G1, as in Figure 3. 

Step 2. Compute the parameter ijA

 of each arc i jv v
 in the G1. Because there is no arc 

with 38 265ijA    
, we obtain a graph 2 1G G . 

 

 

Figure 3. Graph G1 

Step 3. Compute the parameters i  and i   of each node iv  in the G2 by using the 

algorithm in Section 2.1.2, as in Figure 4. 
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Figure 4. Graph G2 

Compute the parameter iN 
 of each node in the G2, and remove nodes 2v , 3v , 8v , 9v , 

14v , 15v , 20v , 21v , 26v , 27v  and 32v  with 38 570 500 70kN        , and remove their 

adjacent arcs. Then we obtain a graph G3, as in Figure 5. 

 

 

Figure 5. Graph G3 

Step 4. Compute the parameter ijA 
 of each arc i jv v

 in the G3, and remove arcs 4 10v v , 

10 16v v , 23 28v v  and 28 35v v  with 38 70ijA      
. Then we obtain a graph G4, as in Figure 

6. 

 

 

Figure 6. Graph G4 

All paths with the lengths 500 in Figure 1 are also in Figure 6, thence we only need to 

search these paths in Figure 6. Obviously, Figure 6 is much simpler than Figure 1. 

(2) Search paths with the lengths 500. 

Compute the parameter ijA 
 of each arc i jv v

 by using the parameter i   of each node 

iv  in Figure 6, and then search the k
th
 longest path by using the algorithm in Section 6.2. 

1) Search the 1
st
 longest path 

1
. 

Find connected arcs with the parameters 0A    backward from the start node 1v
 to 
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the terminal node 38v  to get a 
max . Let 

1 max    that 
1 max

1 5 11 17 23 29 35 38v v v v v v v v     
and its length is 

 1 1

38 38 570L          
 

Because 
 1 570 500L     

, continue to search the 2
nd

 longest path 
2 . 

2) Search the 2
nd

 longest path 
2 . 

i) Form a 1
  . 

ii) Because 
1 0  , in Figure 6, the parameters 0A    of hinder adjacent arcs of each 

node on the 
1  is the 2

nd
 rank long feature parameters of the start node 1v . Form a 2

  by 

putting these parameters into the 1
  that 

 2 2 2 2

2 5,10 11,16 17,22 29,3470, 60,       40,   70            
 

iii) Find the minimum value 
2

17,22 40 
 from the 2

 . 

iv) According to the Equation (36), find 
1   which corresponds to 

2

17,22 
 and 

1 . 

v) Find connected arcs with the parameters 0A    backward from the node 22v  to the 

terminal node 38v  to get a 
max

22 38 22 28 34 38v v v v   . The 
2  is composed by the 

max

22 38  , the 

arc 17 22v v  and the 
1

1 17 


, that is 

2 1 5 11 17 22 28 34 38v v v v v v v v 
 

and its length is 

 2 2

38 17,22 530L       
 

Because 
 2 530 500L     

, continue to search the 3
rd

 longest path 
3 . 

3) Search the 3
rd

 longest path 
3 . 

i) In Figure 6, find a hinder adjacent arc 28 33v v  with the parameter 0A    of each 

node on the 
max

22 38 22 28 34 38v v v v   , and compute by using the Equation (37) that 
3 2

28,33 17,22 28,33 40 20 60A        
                                      (39) 

ii) Form a 3
  by removing 

2

17,22 
 from the 2

  and putting 
3

28,33 
 and 

3

4,8
 into the 2

 . 

 2 2 2 3

3 5,10 11,16 29,34 28,3370, 60,       70,   60            
 

iii) Find the minimum values 
2

11,16 60 
 and 

3

28,33 60 
 from the 3


. 

iv) According to the Equation (36), find 
1   which corresponds to 

2

11,16 
 and 

1
; and 

according to the Equation (39), find 
2

17,22 
 which corresponds to 

3

28,33 
 and 

2 . 

v) For 
2

11,16 
, find connected arcs with the parameters 0A    backward from the node 

16v  to the terminal node 38v  to get a 
max

16 38 16 23 29 35 38v v v v v  
. The 

3  is composed by the 
max

16 38  , the arc 11 16v v  and the 
1

1 11 


, that is 
3

1 5 11 16 23 29 35 38v v v v v v v v 
 

and its length is 

 3 2

38 11,16 510L       
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For 
3

28,33 
, find connected arcs with the parameters 0A    backward from the node 

33v  to the terminal node 38v  to get a 
max

33 38 33 38v v   . The 
3  is composed by the 

max

33 38  , 

the arc 28 33v v  and the 
2

1 28 


, that is 
3

1 5 11 17 22 28 33 38v v v v v v v v   
and its length is 

 3 3

38 28,33 510L       
 

Because 
 3 510 500L     

, continue to search the 4
th
 longest path 

4 . 

4) Similarly, we can find the 4
th
 longest path 

4 , that are 
4

1 5 10 17 23 29 35 38

4

1 5 11 17 23 29 34 38

4

1 5 11 16 22 28 34 38

v v v v v v v v

v v v v v v v v

v v v v v v v v







 

 

 
 

And their lengths are 
 4 500L    

. Thence, there are 3 paths with lengths 500 in 

Figure 1 that 

1 5 10 17 23 29 35 38

1 5 11 17 23 29 34 38

1 5 11 16 22 28 34 38

v v v v v v v v

v v v v v v v v

v v v v v v v v












 

Therefore, after simplifying Figure 1 to Figure 6, all paths with required the lengths 

500 in Figure 1 can be obtained only by searching the 4
th
 longest path in Figure 6. 

 

8. Conclusion 

As a core problem of the graph theory, the path problem is very important in theory 

and practice. The shortest path problem is the most classic issue. But both of the shortest 

and longest path problems are only special path problems, and there are many extended 

problems of them in practice, such as the problem of searching path with required length, 

and so on. Comparing with the shortest path problem and the longest path problem, these 

path problems under general sense can be applied more widely, but they are also more 

difficult. Especially in current and future circumstances, problems in practice will have 

much larger scale and be much more complex. The path problem is also no exception, 

when its scale is very large and the structure of a graph is very complex, it is difficult to 

resolve effectively by using any algorithm, let alone those NP-hard problems. Thence the 

main bottlenecks of solving the path problem effectively in practice are the large-scale, 

high degree of difficulty and the resulting huge computation. 

For overcoming the bottlenecks, we apply the idea of simplification to shrink scale of 

problems under the precondition of not affecting final results, which can greatly reduce 

the corresponding computation of using any algorithm to solve the problem. Aiming at 

the path problem with required length in connected graph, the process of ―first 

simplifying and then solving‖ is used in this paper to solve the problem effectively, that 

is, design a simple algorithm to simplify the problem and further design simple an 

polynomial algorithm to search the k
th
 shortest or longest paths in a connected graph. 

For designing simple algorithms to simplify and solve the path problem conveniently, 

the shortest path models and the longest path models are first founded in this paper. On 

one hand, simplification for the path problem with required length in connected graph is 

actually to remove unnecessary paths. Although the unnecessary paths is much more than 

the required paths, removing the former is much easier than searching the latter by using 

the path models which are founded in this paper, thence the path problem can be 
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simplified by using a very simple algorithm. On the other hand, for searching the path 

with required length in connected graph, the complex relationships between paths in the 

graph can be represented by using simple parameters of the path models, thence if 

substituting paths and their lengths by these parameters, the paths with required lengths 

can be found by using a simple algorithm to search the k
th
 shortest or longest paths. 
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