
International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.10 (2017), pp.15-26

http://dx.doi.org/10.14257/ijmue.2017.12.10.02

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2017 SERSC

Intermediate Language Translation and Evaluation for Binary

Code Software Weakness Analysis
1

Junho Jeong1, Yunsik Son2 and Seman Oh2*

1Electronic Commerce Institute, Dongguk University
2Dept. of Computer Science and Engineering, Dongguk University

{yanyenli, sonbug, smoh}@dongguk.edu

Abstract

The use of third-party libraries has become a natural phenomenon as more programs

are built on a large scale. The problem with using third-party libraries is that, in most

cases, we only have access to the binary code. And due to the lack of access to source

code, software weakness analysis is very difficult. In this paper, we propose a method to

translate binary code to Smart Intermediate Language (SIL) for software weakness

analysis.

Keywords: Software weakness Analysis, IL Translation, Binary Code

1. Introduction

Recent uses of software have moved beyond simple applications to environments such

as military weapons, medical care, and automobiles. The problem with this is that a

variety of security incidents occur due to vulnerabilities inherent in such software, which

can lead not only to monetary loss, but also to loss of life [1-4].

In order to eliminate the vulnerability in software, various studies have been carried out

to remove software weaknesses that could lead to vulnerabilities. Among these studies,

research on static analysis based on source code to define, analyze and remove software

weaknesses that can be a threat in the development stage.

However, as computer software is manufacture on a large scale, it is natural to use

libraries that have been created by a large number of people as well as third-party

libraries. And, third-party libraries mare generally provided in the form of binary code

rather than source code [5, 6]. It is difficult to analyze and remove software weaknesses in

the development stage without the source code. This is because the binary code removes a

large amount of program syntax and semantic information that exists in source code.

This study was conducted to analyze the various software weaknesses in binary code.

The initial research was carried out through reverse engineering, but the process became

complicated and the analytical process was different and the efficiency was poor [7-9]. To

overcome this, a method of analyzing software weaknesses using an intermediate

language has been proposed [10-13]. This method has the advantage of being able to

utilize the same analysis method regardless of the type of binary code. However, the

problem of designing an intermediate language that is effective in analyzing software

weaknesses and converting missing information such as variables, data types, and

function information from binary code to intermediate language.

In this paper, we propose an effective intermediate language for software weakness

analysis and analyze the translation from binary code to intermediate language to analyze

software weaknesses using intermediate language. In Section 2, we discuss major

software weaknesses and their analysis methods based on binary code, and introduce the

Received (August 6, 2017), Review Result (October 7, 2017), Accepted (October 11, 2017)
* Corresponding Author

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.10 (2017)

16 Copyright ⓒ 2017 SERSC

intermediate language and translation techniques in Section 3. Section 4 analyzes the

results of the transformation. Our conclusions and future works of study are discussed in

Section 5.

2. Static Software Weakness Analysis on Binary Code

ITS4 was the earliest proposal to solve software security problems through source [14].

Prior to the introduction of static analysis tools to analyze security problems using source

code, errors and bugs in the source code were corrected by feedback through the error

reported by the compiler. However, vulnerabilities that are not easily found have become

increasingly dangerous over time, and the cost of correcting them have also increased,

requiring more powerful static analysis in addition to compilers.

Theoretically, examining source code is equivalent to examining compiled programs,

but checking individual source code is a time-consuming task, and although effective,

code inspectors must be aware of security vulnerabilities. However, with static analysis

tools, you can perform repetitive code reviews more quickly and with the equivalent

security knowledge to that of the security inspector. Static analysis methods can be tested

more simply than dynamic analysis, and must be performed at a level of meaningful

compilation.

Among the software weaknesses that can be detected using static analysis, Memory

Corruption causes security problems such as changing program execution flow, elevation

of privilege and by-passing authentication. Examples of specific attacks using such

memory contamination include buffer overflow, use after free (UAF), and integer variable

overflow. Memory corruption often occurs in C / C ++, where complex memory

structures can be used.

There are various tools to analyze software weaknesses in source code. However, there

is no perfect tool or analysis method to analyze software weaknesses of binary code. This

study analyzes binary code as follows.

2.1. Buffer Overflow Weakness

Stack and Heap buffer overflows were the most common security problems in the mid

and late 2000s have continuously been reported. The security problem is caused by the

presence of a vulnerable function in the source code that does not check the size of the

buffer and executes the user’s command. Especially when data input from external

sources (files, sockets, etc.) are used for these vulnerable functions, which can cause

security problems.

Rawat et al. have detected a buffer overflow loop (BOIL) in the binary file [15]. If such

a BOIL exists, it is defined as a buffer overflow vulnerable function (BOP) and proposed

based on the BinNavi reverse engineering framework. The initial binary executable code

is converted into assembly code through IDA Pro and converted into intermediate

language through REIL. After that, we analyze the buffer overflow by creating a module

(Static Analysis Module) that can be accessed through the Jython API through the Call

Graph and Control flow graph (CFG) provided by REIL.

Lee et al. proposed a tool called BinaryReviser to detect buffer overflows in binary

files [16]. The tool directly analyzes the binary file to find the part that causes a buffer

overflow. It also able to remove vulnerabilities through code patching.

2.2 Use After Free Weakness

Use After Free(UAF) software weakness is the most common software weakness since

the late 2000s. According to Common Vulnerabilities and Exposures(CVE) reports, more

than 60% of recent security problems are caused by use after memory release.

A typical example of this analysis is that Feist and others convert binary files into

REIL intermediate languages to find UAF software weaknesses. In this study, we propose

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.10 (2017)

Copyright ⓒ 2017 SERSC 17

GUEB (Graph of Use after Exploit Binary) tool and define UAF software weakness

through the UAF sample source code. The vulnerability was actually found in the

ProFTPD program and its contents are registered as CVE 2011-4130. However, loop

statements in source code are only executed one, ignored, and the defined content are not

formalized. And, the integrated environment cannot be provided.

2.3 Integer Overflow Weakness

Integer overflows are not directly used for attacks, but they cause problems such as

denial of service attacks or program malfunctions. Integer variables are often used to

determine execution paths in branch statements (if, etc.) or loop statements (for, while,

etc.), and it is difficult to predict the program execution flow if integer variable overflow

occurs. Corner Case) occurs.

IntScope proposed by Wang et al. Proposed a method to detect a phenomenon called

overflow, which is common in variable types storing integer values such as Integer type

whose memory size is fixed [17]. It converts the binary executable into an intermediate

language called PANDA, and in the process, creates a CFG and call graph. Then, using

the component extractor and the profile constructor, we can select the flows that are

directly or indirectly connected to the sinks function and creates a separate chop function.

The generated chop function is used to output a flow suspected to be an integer type

variable overflow using a depth-first search method. However, the final integer variable

overflow must be determined by the user.

3. Binary Code to Intermediate Language Translation

In this paper, we propose a system for selecting an effective intermediate language to

analyze the software weakness inherent in the binary code, and converting the binary code

to the corresponding intermediate language. To verify the conversion result efficiently, we

analyze the control flow for the binary code and intermediate language code and

implement the tool to visualize the result.

3.1 Smart Intermediate Language for Software weakness

Based on previous studies, there are three major factors to effectively analyzing major

software weaknesses. First, it should be able to fully express information about variables

and their data types. It is very difficult to infer variables and data types from binary code

or assume that such information is sufficient to be represented in the intermediate

language. Secondly, the control flow of the program should be sufficiently expressible

and the control flow unit should be easy to analyze. This is because it is a major software

weakness where the branch from the control flow to the wrong code occurs. Third, it

should be able to express information about the function. The use of vulnerable functions

is one of the most significant software weaknesses. It is important to be able to perform

not only predefined vulnerable functions but also user defined functions based on

information on return types and parameters for functions used in the program. For this

reason, we selected the SIL as an intermediate language for analyzing software

weaknesses.

The SIL is a language designed for operation in stack-based virtual machines,

independent of the programming language and hardware platform. It is divided into 7

operation codes as shown in figure 1. Since the operation code of the language is basically

stack-based code, the operand used in the operation is taken from the operand stack and

the result of the operation is stored in the operand stack. It also has a maximum of two

operands, and has a single result through an instruction. It is structured as <operand 1,

operand 2, operation result>. An opcode is represented by two bytes and can have

instruction parameters as needed. The enumeration value of the opcode processed by the

interpreter and the mnemonic to be expressed in the SAF text format are defined. The

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.10 (2017)

18 Copyright ⓒ 2017 SERSC

mnemonic of the operation code is a language defined by a combination of alphabets and

integers meaning operation for readability of code. When type information is needed

according to the type of operation code, the type symbol is padded with the symbol

‘.’(dot). Therefore, each operation satisfies the first condition including the data type

information of the operand performing the operation, the control flow is sufficiently

expressed, and the control flow unit can be effectively analyzed. In addition, existing

functions can be predefined, and user-defined functions can be effectively expressed,

which can be effectively utilized for software weakness analysis.

Figure 1. Proposed Language Opcode Categories

3.2 Binary Code Analysis and Intermediate Language Translation

There were some problems with the translation into the SIL presented by analyzing the

binary code. The first is that there are too many assembly codes. Converting all of these

assembly code to SIL is a very inefficient task. Even assembly instructions are CISC

(Complex Instruction Set Computer) instructions, and SIL is a Reduced Instruction Set

Computer (RISC) instruction. Therefore, to overcome this problem, we replaced the

assembly code with the RISC instruction in the assembly instruction and converted it into

the corresponding SIL.

Table 1 shows the selected generalized set of assembly instructions. We have solved

this problem by allocating independent stack space to store EFLAGS and register

information, and implemented RISC instructions that do not use flags and conditional

branch instruction.

Another problem is that x86 / 64 commands are basically pipeline structure commands.

Each pipeline has different registers, but if the pipeline is shortened on compilation, it

becomes a problem. However, it is not a factor when solving the first problem, because

the conversion is rather long.

Table 1. Selected General X86 Instruction Set for SIL Translation

Stack

management
nop pop push

Logical &

arithmetic

operations

mov add sub xor

or and xchg shl

sal shr sar rol

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.10 (2017)

Copyright ⓒ 2017 SERSC 19

ror not mul imul

div idiv neg inc

dec cmp test

Control flow

jmp ja jnbe jae

jnb jb jnae jbe

jna jg jnle jge

jnl jl jnge jle

jge jz jnz ret

call

String

processing

command
rep movs lods stos

However, the problem remains that one assembly instruction is replaced by too many

SIL instructions. Nonetheless, the lengthy sentence itself does not compromise the syntax

and semantics of existing code, so it is not require converting from binary code to SIL.

The process of converting the binary code into the SIL in the proposed system can be

expressed in three stages. The first step is to analyze binary files written in C / C ++ and

classify them by analyzing the written language and type of files. Even with the same

source code, different types of binary code are generated depending on the compiler and

the target machine, so pre-classification is required. Therefore, the proposed system

performs analysis on x86 / 64-bit binary code in PE format written in C / C ++, and treats

other objects as errors.

The second step is to analyze the binary code to extract each function used in the

program and convert the extracted functions into assembly code by constructing a general

block based on the CFG.

Figure 2 shows two memory concepts RAW and RVA (Related Virtual Address) used

in the PE format structure as input of the proposed system. RAW is the offset used in the

file. It is called RVA when the actual program is reallocated when it is loaded into

memory. In consideration of this, it is necessary to correctly calculate the inverse of the

function to be extracted so that it can be determined from which position of the file to

extract.

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.10 (2017)

20 Copyright ⓒ 2017 SERSC

Figure 2. PE Structure (RAW, RVA)

The main section analyzed in the binary code is the .rdata area, and the .rdata area

contains the IMAGE_EXPORT_DIRECTORY structure, which contains information

about how many functions that code exports, what the name is, and what offset (RVA).

We could use this information to distinguish and extract functions that exist in the binary

code.

CFG is important because it can analyze the control flow of the program, understand

the overall program configuration, and scan the basic blocks to build programs more

efficiently. The proposed system does not show the calling relation of each function but

the flow is separated and expressed as CFG when a branch according to the condition

appears.

The final step is to convert the assemblies into generalized assembly instructions of our

choosing and convert them into SIL that contain information on data types based on CFG

and basic data type inference.

In this process, x86 / 64 has a register in the CPU, but the SIL to be converted has a

one-to-one correspondence between the register and the specific area of the stack so that it

could act as a register. That is, the register is also considered to be a kind of stack

succession and is converted. Therefore, the role of registers in the existing SIL as shown

in <Table 2>, has been previously allocated to the stack area.

In addition, SIL requires data type deduction for variables from binary files because the

instructions vary depending on the data being handled. In the proposed system, we find

the pattern [ebp ± constant], [esp ± constant], [ebp + register * constant-constant] patterns

and set char, short, int variable and int array types.

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.10 (2017)

Copyright ⓒ 2017 SERSC 21

Table 2. Mapping of Registers and Stack Addresses

Register Name(x86) stack (base, offset)

rax (0, 0)

rbx (0, 8)

rcx (0, 16)

rdx (0, 24)

rsp (0, 32)

rbp (0, 40)

rsi (0, 48)

rdi (0, 56)

rip (0, 64)

4. Experiments

To analyze the performance of the converter, we generated the source code with

software weakness as binary code, parsed the corresponding binary code into assembly

code, parsed the function and generated CFG accordingly. This is a very important step in

code conversion and performance analysis. Because the source code and the following

process must be converted correctly from the first binary code to the intermediate

language without losing the semantics of the existing code, it is very inefficient to simply

analyze it with the code. To overcome this, we implemented a visualization tool that can

effectively analyze the CFG to effectively analyze and evaluate the results of binary code

to SIL conversion.

The process of generating CFG at the time of code conversion is as follows. Parsing

the binary code extracts the functions of the assembly type, and analyzes and graphs the

control flow based on the parsed file. The basic blocks composing the CFG are

constructed based on the branch, and the control flow is expressed through the trunk line

between the basic blocks. So, we implemented the visualization tool using Dagre open

source which can take the JSON format as an input and express blocks and trunks. Then,

CFG of binary code and SIL code is generated using this tool, and the performance of the

conversion technique is analyzed by comparing and analyzing the results. Figure 3 below

shows the JSON format for CFG representation. The contents of the basic block are

expressed as "block name [label =" text content "]" and the edges connecting the blocks

are expressed as "block name -> block name".

Figure 3. JSON Format for CFG Representation

Since we created the binary from the source code, we know the CFG of the program

and compare the results of the CFG generated from the assembly code. In this study, we

tested transformations using various test cases. Figure 4 below shows the source code

where Integer Overflow software weakness is embedded. When the wrapperMalloc

function is called in the integerOverFlowExam function, the second parameter, i, is used

as a parameter to the mal-loc function. The value of i may be negative. The parameter of

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.10 (2017)

22 Copyright ⓒ 2017 SERSC

the malloc function in C language is size_t, which represents only a positive number, so

the source code performs very large dynamic allocation when i is input as a negative

number.

Figure 4. An Example Program for Analysis

 Figure 5. JSON Format Data for CFG Representation of Example Code

The assembly code generated from this source code and the JSON formatted data for

the CFG representation of the code are shown in Figure 5. the block name and contents of

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.10 (2017)

Copyright ⓒ 2017 SERSC 23

the corresponding block are described in Figure 3. Finally, the CFG is expressed by

representing the flow trunk of the blocks. To analyze whether this data is equivalent to the

control flow of actual source code, we can obtain the visualized CFG result as shown in

Figure 5 using our own visual tool.

Figure 6. The CFG Generated from the Binary Code

In addition, SIL requires data type deduction for variables from binary files because the

instruc-tions vary depending on the data being handled. In the proposed system, we find

the pattern [ebp ± constant], [esp ± constant], [ebp + register * constant-constant] patterns

and set char, short, int vari-able and int array types. scanf is called first in block 2768, and

int type variables i and j are input. i is used as the size of the dynamically allocated array,

and j is set in the local variable to be used as a position to set the value. Finally, the start

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.10 (2017)

24 Copyright ⓒ 2017 SERSC

address of the dynamically allocated array is allocated to the [ebp-0x20] address

corresponding to the ap variable, and the block is finalized after initialization of the loop

statement.

In block 2866 k and i are compared, if k is smaller, it is compared with j in block 2874.

If k is still smaller, we go to block 2897, insert a value into the array corresponding to k

index, and increment k by 1 in block 2857. If k is smaller than i but larger than j, go to

block 2882, put 0 in the corresponding array, go to block 2857, and increment k by 1.

Finally, if k is not less than i, the call to a function prints the value corresponding to the

index of j in array # 2914.

As mentioned earlier, the software weakness of the source is that a negative number

can be entered when calling wrapperMalloc, and the information necessary for analyzing

the flow and the function can be seen in Figure 6. Therefore, if the control flow of the

corresponding code and execution contents are well converted to the SIL code, software

weakness analysis can be performed well through the SIL.

In the final step, we generated the CFG of the SIL code and the SIL code by

performing the conversion to the SIL through basic type inference using CFG information

and assembly code. Figure 7 shows that the contents of block 2656 in Figure 6 are

converted to SIL code. You can see that the assembly code has been converted to SIL

code with equivalent semantics, and the reasoning behind the basic data type for the used

variable.

Figure 6. SIL Code of wrapperMalloc Function

Finally, the CFG of the SIL code is also represented by the flow as shown in the left

side of Figure 7, and the connection of the block is the same as the CFG of Figure 5. As

described above, since one assembler code is converted into a plurality of SIL codes, the

entire code length becomes very long, so it is difficult to express the contents of the entire

code, so blocks 2822, 2857, 2597 and 2912 have been enlarged. The right side of Figure 7

shows that each code is converted.

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.10 (2017)

Copyright ⓒ 2017 SERSC 25

Figure 7. A CFG Example with SIL Code

5. Conclusions and Further Researches

We have selected and modified the SIL for techniques that utilize intermediate

languages, which is one of the techniques for statically analyzing software weakness

inherent in binary code. We also convert the binary code into a modified SIL for use in

software weakness analysis and generate a CFG to prove that the semantics of the

transformed intermediate language are valid. And analyzed the results using the

visualization tool we created. As a result, we can confirm that the actual meaning of the

binary code is maintained and converted into the equivalent SIL.

However, when converting from binary code to intermediate language, the inference

about the data type is made only for the basic data type, so that the inference about the

complex data type is not done and the whole code is converted as the CISC code x86 / 64

assembly language into RISC type SIL code. The problem is that the overall length of the

code is too long.

Future research will focus on more accurate data type inferences for basic data types

and complex data types from binary codes and extracting only the parts needed for

weakness analysis to reduce the length of the SIL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.10 (2017)

26 Copyright ⓒ 2017 SERSC

Acknowledgments

The authors gratefully acknowledge the financial support provided by Defense

Acquisition Program Administration and˙Agency for Defense Development under the

contract UD160035ED.

References

[1] N. Mehta, “The Heartbleed Bug”, (2014) April.

[2] S. Chazelas, “The Shellshock vulnerability,” (2014) September.

[3] B. Möller, T. Duong and K. Kotowicz, “This POODLE bites: exploiting the SSL 3.0 fallback,” (2014).

[4] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel, J. Steube, ... and E. Käsper, “DROWN:

Breaking TLS using SSLv2,” Proceedings of the 25th USENIX Security Symposium, AUSTIN, USA,

(2016) August 10-12.

[5] GRAMMATECH, “Find Defects in Third-Party Code,” http://www.grammatech.com/products/binary-

analysis

[6] GRAMMATECH, “Eliminating Vulnerabilities in Third-party Code with Binary Analysis,”

http://www.grammatech.com/products/codesonar

[7] A. Mycroft, “Type-based decompilation (or program reconstruction via type reconstruction),”

Proceedings of the 8th European Symposium on Programming Languages and Systems, Amsterdam,

Netherlands, (1999) March 22-28.

[8] W. Jin, C. Cohen, J. Gennari, C. Hines, S. Chaki, A. Gurfinkel, and P. Narasimhan, “Recovering c++

objects from binaries using inter-procedural data-flow analysis,” Proceedings of ACM SIGPLAN on

Program Protection and Reverse Engineering Workshop, San Diego, USA, (2014) January 22-24.

[9] K. Yoo and R. Barua, “Recovery of object oriented features from C++ binaries,” Proceedings of the 21th

Asia-Pacific Software Engineering Conference (APSEC), Washington, USA, (2014) December 01-04.

[10] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome, P. Poosankam

and P. Saxena, "BitBlaze: A new approach to computer security via binary analysis," Proceedings of the

4th International Conference on Information Systems Security, Hyderabad, India, (2008) December 16-

20.

[11] G. C. Necula, S. McPeak, S. P. Rahul and W. Weimer, "CIL: Intermediate language and tools for

analysis and transformation of C programs," Proceedings of the 11th international Conference on

Compiler Construction, Grenoble, France, (2002) April 8-12.

[12] T. Dullien, and S. Porst, "REIL: A platform-independent intermediate representation of disassembled

code for static code analysis," Proceeding of CanSecWest (2009).

[13] S. Cesare, and X. Yang, "Wire-A Formal Intermediate Language for Binary Analysis,” Proceedings of

IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications

(TrustCom), Liverpool, UK, (2012) June 25-27.

[14] J. Viega, J.T. Bloch, Y. Kohno and G. McGraw, “ITS4: A static vulnerability scanner for C and C++

code,” Proceedings of IEEE 16th Annual Conference on Computer Security Applications, New Orleans,

USA, (2000) December 11-15.

[15] S. Rawat and L. Mounier, “Finding buffer overflow inducing loops in binary executables,” Proceedings

of IEEE 6th International Conference on Software Security and Reliability (SERE), Gaithersburg MD,

USA, (2012) June 20-22.

[16] J.M. Lee, H.W. Kim and W.H. Ahn. “BinaryReviser: A Study of Detecting Buffer Overflow

Vulnerabilities suing Binary Code Patching,” Proceedings of the Korean Institute of Information

Scientist and Engineers Conference, Gyeongju, South Korea, (2011) June 29-July 1.

[17] T. Wang, T. Wei, Z. Lin and W. Zou, “IntScope: Automatically Detecting Integer Overflow

Vulnerability in X86 Binary Using Symbolic Execution,” Proceedings of 16th Network and IT Security

Symposium, (2009) San Diego, USA, February 8-11.

