International Journal of Multimedia and Ubiquitous Engineering
Vol.12, No.1 (2017), pp.191-202
http://dx.doi.org/10.14257/ijmue.2017.12.1.16

Study on a Multi-Hierarchy Topological Sort Algorithm for
Automatic Calculation

Zhengguang Li“?, Huimin Zhao>**", Wu Deng"**?, Junwei Li*, Botao Li* and
Hao Tian®

'Software Institute, Dalian Jiaotong University, Dalian 116028 China
Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis,
Guangxi University for Nationalities, Nanning 530006 China
3Key Laboratory of Guangxi High Schools for Complex System & Computational
Intelligence, Guangxi University for Nationalities, Nanning 530006, China
*The State Key Laboratory of Mechanical Transmissions, Chongging University,
Chongqging 400044 China
*Traction Power State Key Laboratory of Southwest Jiaotong University, Chengdu
610031 China
*Corresponding author: Huimin Zhao, E-mail:hm_zhaol977@126.com

Abstract

Topological sort algorithm (Toposort) is widely used for practical problems. However,
standard toposort don’t solve the automatic calculation of formula problem (ACFP)
directly. To gain the feasible topological order of ACFP, this paper puts forward a
modified algorithm based toposort ,which models for ACFP using directed acyclic graph
(DAG) firstly, and then puts the 0 in-degree formula nodes into a level list in execution
process, lastly decreases the in-degree of other formula nodes ,whose parameters is
correlate to the 0 in-degree nodes and in-degree is not equal to 0.Application of the
modified algorithm in ACFP with 183 formulas, our system achieves a feasible
topological order and uses the order and reflection mechanism to gain the final correct
result. Compared to the customer's manual calculation, our algorithm spends a little time
but achieves the same results.

Keywords: Topological sort algorithm; Automatic calculation; Formula; DAG;
Reflection mechanism

1. Introduction

Many practical tasks such as reporting system, engineering calculation, includes lots of
formulas and these formulas depend on each other. If the calculation sequence is not
correct, huge loss will be caused. However, the calculation sequence is mainly depended
on manual generation, which spends the massive time and manpower. Some scholars have
carried out a lot of research and put forward the corresponding solution to the dependency
relationships among formulas and the performance optimization.

In [1], the sequence of calculation formulas in reporting system was gained by directed
graph algorithm. Juta Pichitlamken presented a high performance spreadsheet simulation
system which added power of parallel computing on Windows-based desktop grid into
popular Excel models by using standard Web Services and Service-Oriented Architecture
(SOA), and the proposed system obtained more than 7 times speedup for some test
application on a 8-PC system [2]. MA et al. [3] gave the solution for the directed cycle
graph. Semi-supervised quadratic partitional cluster algorithm ,which created directed
maximum acyclic graph and gained the better calculation order by cooperative
computation, was proposed in [4-5].

ISSN: 1975-0080 IJMUE
Copyright © 2017 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.12, No.1 (2017)

Topological sort algorithm is mature and widely used graph algorithm, the research
mainly focuses on two aspects, namely, the improvement of efficiency and the application
for different problems. Er [6] proposed a new topological sorting algorithm using the
parallel computation approach. David [7] presented a new algorithm for the problem of
maintaining the topological order of a DAG [8] in the presence of edge insertions and
deletions. In [9], Deepak et al. [10] presented a simple algorithm, which maintained the
topological order of a DAG under an online edge insertion sequence in O(n2.75).For
dense DAGs, this was an improvement over the previous best result. An 1/O-efficient
algorithm for topologically sorting directed acyclic graphs was proposed in [11] and the
algorithm was extremely inefficient and performs O(ne sort(m)) I/Os in the worst case but
achieved good performance in practice. David [12] improved the previous algorithm in
[7], by only recomputing those region(s) of order affected by the inserted edges to
maintain the topological order. Katriel and Bodlaender studied online algorithms to
maintain a topological ordering of a directed acyclic graph, it is optimal that the algorithm
was implemented to run in O(n log n) time on trees [13]. Haeupler et al. [14] proposed the
two algorithms for maintaining topological order, detecting the cycle when an arc was
added and maintaining the strong component by extending the new algorithms. Liu [15]
found a sorting algorithm, which was different from Kahn or DFS algorithm and owned
low complexity. Pang [16] studied the topological sorts of two directed acyclic graphs
(DAGS) and the associated properties, and the results showed these problems are solvable
either in linear time cost or in the same time cost as to compute the transitive closure.

In [17], Abo-Tabl proposed new definitions of lower and upper multiset
approximations, basic concepts of the rough multiset theory, using concept of multiset
topology and ambiguity. Reininghaus et al. [18] designed a stable multi-scale kernel using
topological machine learning, and the proposed approach gained considerable
performance in 3D shape classification/retrieval and texture recognition. Barnat et al. [19]
presented a new technique that guaranteed correct construction of the reduced state space
graph w.r.t. the cycle proviso using topological sort proviso. The proposed technique has
been implemented within the parallel and distributed-memory LTL model checker
DIVINE and indicated the similar performance, comparing to the traditional approaches.
High efficiency algorithm for vertex with a level (denoted by LAOV) was researched and
the novel algorithm for LAOV was proposed [20].

For automatic calculation of our formulas, the algorithms mentioned above, do gain the
feasible toplogical order, however, they don't hierarchize the formulas in order to
calculate them in different cycles. So we add the level list to store the topological order
which includes all the current nodes, calculated in the current cycle. Meanwhile, for
decreasing the cycle times, we add a flag to distinguish between creating a new list and
using the last created list. By testing the customer's practical dataset with 183 formulas,
our algorithm gain the feasible topological order and the last result. Compared to the
result provided by the customer, we achieve the same results but spend a little time.

2. Problem Description and Modeling

Our customer provides a list of formulas, and uses the all formulas to calculate about
2000 lines data. Some of formulas depend on other formulas’ calculation results.
Meanwhile, some of formulas also need to adjust its parameters because of the calculation
result inaccuracy. So we must be very careful with the order of their execution, which is
generated automatically. If the relationship between these formulas are simple enough we
could represent them as a linked list or trees, which would be great and we will know the
exact order of their execution. The problem is that sometimes the relations between the
different formulas are more complex and some formulas depend on two or more other
formulas even other lines’ results such as previous, next line.

192 Copyright © 2017 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.12, No.1 (2017)

Thus we can’t model this problem using linked lists or trees. The only rational solution
is to model the problem using a directed acyclic graph (DAG) .Our DAG is defined as
following rules.

(1) each formula ,needing to be calculated ,is viewed as a vertex.

(2) if formula A depends on calculation result of formula B, we add an arc, B ->A.

(3) if formula A depends on next line calculation result of formula B, we add a flag,
called next flag, to B ,denoting formula B and formula A can’t be calculated in same level
cycle.

For example, we have formulas: A, B, C, D, E, F, G, each formula’s parameter lists as
Table 1.According to the Table 1 and rules mentioned above, the modeled DAG shows in
Figure 1.

Table 1. One Sample of Formulas

Formula Parmeters Formula | Parmeters
A B,B|INEXT,C E F,.G
B C F
C D,E G
D F.G

Figure 1. Modeled DAG of Sample

*representing node with next flag.

Our target is search the order of the DAG created by the above rules. Especially, the
formula with next flag, must be calculated before the other formula and not be calculated
in same level cycle.

3. Standard Topological Sort Algorithm

The Topological sort algorithm (Toposort [10]) first described by Kahn (1962) [21],
works by choosing vertices in the same order as the eventual topological sort. First, find a
list of "start nodes" whose in-degree equal 0 and insert them into a set S; at least one such
node must exist in a non-empty acyclic graph. Then, remove the edges whose start node
in S but end node not in S from the graph. If the graph is a DAG, a solution will be
contained in the list L (the solution is not necessarily unique). Otherwise, the graph must
have at least one cycle and therefore a topological sorting is impossible. The procedure is
showed in the pseudo code in Figure 2.

Based mentioned above algorithm, the example of Table 1,the toposort order may be F,
G,D,E,C, B, A

Copyright © 2017 SERSC 193

https://en.wikipedia.org/wiki/Topological_sorting#CITEREFKahn1962
https://en.wikipedia.org/wiki/Directed_acyclic_graph

International Journal of Multimedia and Ubiquitous Engineering
Vol.12, No.1 (2017)

4. Multi-Hierarchy Topological Sort Algorithm

Directly using standard topological sort algorithm, we can’t gain the solution to ACFP
for the next node in the DAG created by rules for practical calculation formulas. The
constraint condition requires the topological order is not only order but also hierarchy
calculation sequence. However there is not the hierarchy calculation mechanism in the
standard toposort, and so we have to modify the standard topsort from following two
aspects.

1 sortList <-Empty list which will contain the sorted elements
2 5¢-5Setof all nodeswhose in-degree is equalto0

3 while(5 is not empty)

4 remove anoden from S

5 add n to tail of sortList

& foreach{node mwith an edge e from n to m)
7 remove edge e from the graph

8 if m.in-degree=0 then

9 insert minto 5
10 end if

11 endforeach

12 end

13 if graph.edgesisnotemptythen

14 returnerror.//graph has at least one cycle
15 else then

16 return sortList

17 endif

Figure 2. Pseudo Code of the Algorithm Described by Kahn

(1) adds a list to store each level topological order and the ordering nodes of each level
also be stored another list.

For gaining the hierarchy calculation order and the order in every level, a level list,
whose elements are also list, needs to be created. The list represents the hierarchy
information and each element in the list is used to store the order list of current level.

(2) for enhancing the calculation efficiency, needs to add a flag to distinguish between
creating a new list and using the last created list.

Each element of the level list all needs to be calculated in one loop. The number of
elements in the level list affects the number of loop which determines the execution
efficiency. So We use the next flag to reduce the number of loop iterations .

The procedure of Modified algorithm is indicated in the pseudo code in Figure 3.

According to modified algorithm, the execution processes of sample Table 1 are listed
as follows.

Initialization:Formula_list={A:2,B*:1,C:2,D:2,E:2,F:0,G:0},S={},LevelList={}.A:nu
m representing formula A node’s in-degree is equal to num. For example,A:2 means node
A’s in-degree is 2.

Stepl:next_flag=true,LevelList[0]={F,G},S={F,G},

after removing nodes in S, Formula_list= {A:2,B*:1,C:2,D:0,E: 0},

Step2:next_flag=false, LevelList[0]={F,G,D,E}, S={D,E}

after removing nodes in S, Formula_list= {A:2,B*:1,C:0 };

194 Copyright © 2017 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.12, No.1 (2017)

Step3:next_flag=false, LevelList[0]={F,G,D,E,C}, S={C}

after removing nodes in S, Formula_list= {A:1,B*:0};

Step4:next_flag=true, LevelList[1]={B* }, S={B*}

after removing nodes in S,Formula_list={A:0 };

Step5:next_flag=false, LevelList[1]={B* A },S={A}

after removing nodes in S,Formula_list={};

So, the sample Table 1 will be splited 2 levels, one level is {F,G,D,E,C} and another is
{B*,A}.

LevelList£-a listwhich will contain all the sorted and hirachical
elements for storing list

Formula_list<-a list which contains all the formulas,waiting to
be sorted and hierarchized.

S<-aMapfor storing topological ordering of current leve .

next_flag=true
while{Formula_list is not empty)
if next_flag=true then
LevelList.add({new List(})
end if
next_flag=false
foreach{min Formula_list)
it m.in-degree =0then
LevelList[LevelList.count-1].add{m}
S.put{m.name,m)
if m.next_flag=true then
next flag=true
end if
remove m from Formula_list
end if
end foreach
foreach(Fin Formula_list)
foreach (pin F.parameters)
if (S.contains{p))then
F.in-degree--
end if
end foreach
endforeach
S.clear()
end

Figure 3. Pseudo Code of the Modified Algorithm

5. Results and Discussion

5.1. Dataset

We use dataset with 183 formulas provided by our customer to test and verify
validation of our algorithm. The parameters and dependencies among part formulas are
showed in Table 2.To facilitate our calculation and representation, we ignore the
parameter or formula which is the formula itself (for example, parameter NXT|ST5_Q is
the formula ST5_Q), and the known parameters such as “ranges”, although they are listed
in Table 2. Converting these data into network graph with 183 vertexes and more than
700 edges, showed in Figure 4, we analyze the distribution of the degree in the graph

Copyright © 2017 SERSC 195

International Journal of Multimedia and Ubiquitous Engineering

Vol.12, No.1 (2017)

using graph package [22], the Figure 5 shows that the node degree mainly concentrated on
4-10,namely, lots of formulas depend on 4-10 other formulas.

Table 2. Part Practical Data Provided by Customer

Formula Parameters Formula Parameters Formula Parameters Formula Parameters
ST3_Z ST5_BNXT|ST3_B.3
5T3 AFE.ST3 T5_AMSTS_AL.ST3_AHST PRE|ST5_Z, ST5_BM. ST3
T ra BT 5_AO,5T5_8.8T3_XST3 AE _BE. PRE|ST5_AB. NXTS
ST3_AB AM__p;.r;__ ST3_ ST5_B ST3_P ST5_BE 375 NPREST3 N PREFR ST5_BQ T5 AR PRESTS N,
EISTS_NNXT|STS_NNXTN TS M, 8TS N
XTIST3_N B B
ST5_Z.5T5_AL8TS AYSTS
ST5_FST3_Q, _AHPRESTS NNXTSTS_ 8T5_BN,ST5_BESTS_ABST
STRAC 5 F e ST-C ST3.Q STS.BF jers neTs 1875 KSTS SLO-BR 5_NSTS_ K
LATS_AV
ST3_EN.PRE|ST3_BIN,ST3_
ST5_Z.5T5_AL.STS AZSTS ABFPREISTS_ABFPREISTS_
- - _AHPREISTS_AHSTS_AW, N.8T3_N,ST5_K,5T3_IST3_
STI_AD ST3_WST3_S 5T5_D ST3_Y ST5_BG ST N.ST5 BST3 V.STS T S5T5_BS AAparaSTS B STS.EMS
ST3_AE.ST3_R T5_BIST5_BR.PRE|STS_BL
PREIST5_BQ
STS_N, STS_AA STS_NNXTISTS N
STS_AM, ST3_ZNXT|ST3_AL.ST3_B .para 5T5_ABNXT|STS_B.S
ST3_S.8T3_W STS_M, ASTS_AHNXTSTS_AHST T5_K.ST5_LSTS BMNXTS
ST3AE AT T SE STS_L ST3_EH 5_AXST5_Q.5T3_N.ST3_5, ST3_BT T5_BM.ST5_BN.NXTISTS B
STS_E, ST3_WST5_USTS_AF N.NXTISTS_BQNXTISTS_B
ST3_J LST3_BR.S8T3_BQ.ST3_BI
PRESTS F ST5_B.ST5_AM.ST5_BE.ST
ST3_AF ST3_XST3_S8 ST5_F ST B ST5_BI 5_AL NXTIST5_BNXT|ST5_ ST5_BU ST5_BS,ST5_BT

N.PREIST5_N.8T5_N

Note: if a parameter don’t be included in column “Formula”, it means the parameter is

known. PRE means using previous line data and NXT represents using next line data.

* normainode

* node with next fig

® ®® @

196

Figure 4. Network Graph of Dataset

Copyright © 2017 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.12, No.1 (2017)

@ —

f

s &

5 o

L

= _

w

T 3

p)

2 o

i

U) —

=
=]
o nﬁ
o I I

40 50

node degree

Figure 5. Distribution of Node Degree

5.2 Initialization In-degree

For above dataset, each formula’s in-degree is calculated before using the modified
algorithm. The procedure of initialization in-degree is illustrated as follows.

Stepl: scan any one parameter in the formula.

Step2: if the parameter is equal to the formula or not included in formula list (known
parameter), ignore it; else, the in-degree of the formula increase by 1.

Step3: repeat stepl-2 to scan over all parameters of the formula.

5.3 Role of Next Flag

For analyzing the role of next flag, we run the algorithm without flag and with flag
respectively. The former splits the formulas into 28 lists, including different formulas.
However, the formulas are only divided into 10 lists when executing the latter. The Figure
6 and Figure 7 show the comparison results of the algorithm using or not using next flag.
The results in Figure 6 shows that the maximum node number is about 80 in the 10th level
gained by the latter algorithm. Meanwhile, this level merges 80% nodes, that is, from the
10th to 28th divided by the former ,showed by the Figure 7. The Figure 7 also shows that
the second and 7" level merge the 60% and 20% nodes, respectively.

D —
® — nodes_befare
5 24 nodes_after
0
E
2 g9 -
LiH]
e
g g 4
o - —_—-———__H’—-’ ___»"“'\-,_‘H—_’_,—“-—,__.’,___ .
I I T T T I |
0 5 10 15 20 25 30
level

Figure 6. Node Number in Different Level, Gained by Algorithm Using and
not Using Next Flag

Copyright © 2017 SERSC 197

International Journal of Multimedia and Ubiquitous Engineering
Vol.12, No.1 (2017)

merged ratio
04

level

Figure 7. Merge Ratio of the Algorithm Using Next Flag

5.4. Execution Result and Comparison

By using the modified algorithm, we gain a feasible topological order and topological
levels, showed in Table 3.The Figure 8 shows the results of data visualization for better
understanding the final data. The results satisfying not only the topological order but also
topological levels such as ST5 B. The formula, ST5_B, as parameter with next flag,
emerges in ST5_BE, ST5 Bl and ST5_BT. The level of ST5_B is 1 but their levels are 4,
7, 10 respectively. For gaining the last result expected by our customer, we adopt the
reflection mechanism [23] to accomplish the last task and write the last result to the text
file named “cfile.txt”. Meanwhile, we change the calculation result, provided by the
customer, to the text file named “pfile.txt”. Comparing the differences between the two
files using “beyond compare”, a tool for comparing files, results show there are no
differences. Our algorithm gains the expected result but spends a little time.

Table 3. Toposort Order of Customer’s Dataset

Level Formulas

ST3_AST3_CST3_DST3 B,ST2 BEST3_ADST3 AEST3 AFST3 AGST3 AILST2 AOST? APST3 AR ST2 ASST3 CL.ST2
_DC,8T3_DEST3_DQ.ST3_ED

ST3_EST3_O,ST3_AAST3_AHST3 AQST3_ECST3 IST3 HST3 IST3 K ST MSTS_GST3_AB.ST3 AILST3_AVETS Z

(=]

3 §TS_N8T3_L.STS_R.ST5_8.8TI_T.ST5 USTi_V.STi_WST_XST5_V.5T3I_Al

4 STS_PST5_Q.8T5_AE,ST3_AF,ST3 AGSTS ALSTS_AKST5_AMST3 BE

5 ST5_E.ST5_AL.ST3 AJST3S_ANSTS_AO.ST5_APSTS AS,ST5_BB

6 §TS_AC,ST3_ADSTS_AHSTS_AQ.ST3 AR ST3_ATSTS_AUSTS AVSTS AVSTS BC.STF_ED,ST3I_AC

. STS_AWSTS_AX ST5_AZST5_BA,STS_BE,STS_BFST3_AK ST AL ST3_AT,ST3_CR.ST5_BISTS_BGST5_BH,ST5_BE,ST5_
BLST3_AM

8 §TS_BM.ST3_EL.ST5_EN,ST3_AB.ST3_CE

9 ST5_BQ,ST5_BO,ST3_BR,ST3_BR.ST3_AN

ST5_BS,5T5_BT,STS_BV,ST5 BW,ST3_DR.ST5_BU.ST5_BX,5T3_DX.ST3_AX,ST3_BGST3_BH,ST3_DW,ST3_AW,ST3_BLST3
_DE,ST3_DIST3_BIST3_DD,ST3_DS,ST3_AZ5T3 BC,ST3_BK,ST3 BLST3 BP.ST3_BQ.ST3 BR.ST3_BA.ST3 BM.ST3 BNS

10 T3_B0,ST3_BS,ST3_BX,8T3_CGST3 CHST3 CLST3 DY,ST3_AYST3 BT,8T3 CE,8T3_BU.ST3 BV,5T3 BWST3_CBST3_EB
ST3_BY.ST3_BZST3_CAST3_CD.ST3_CIST3_CK.ST3_CC,ST3_CM.ST3 CN,ST3_CO.ST3_CFST3_CQ.ST3_DH,ST3_DIST3_
€8,8T3_CT,5T3_CU.ST3_CW,ST3_CX.ST3 CVST3_DK,ST3_CV,ST3_CZST3_DL.ST3 DMST3_DO,ST3_DA.ST3_DEST3_DF,
ST3_DN,5T3_DT,ST3_DZ,ST3_BD,ST3 DGST3 DVST3_EB,5T3 DUST3_EA

198 Copyright © 2017 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.12, No.1 (2017)

* Lev1
* Le2
* Levd
Levd
Lavs
* Levs
Lev?
* Levd
Levd
Lev10

Figure 8. The Results of Data Visualization

6. Conclusion

In this study, we have proposed a modified topological algorithm to gain the feasible
execution sequence of the formula dataset with hundreds of formulas. To gain our the
target, a feasible order and level, we add a level list to store the current level topological
order and a flag distinguished between creating a new list and using the last created list to
improve the execution efficiency based on standard topological algorithm.

Compared to the customer’s manual calculation result, our system gains the same result
but spend a little time. This shows our algorithm is effective in solving automatic
calculation of formula dataset which includes many formulas (more than 100) and is
constrained by previous or next line data.

Acknowledgments

The authors would like to thank all the reviewers for their constructive comments. This
research was supported by the National Natural Science Foundation of China
(U1433124,51475065), the Natural Science Foundation of Liaoning Province
(2015020013), Open Fund of Key Laboratory of Guangxi High Schools for Complex
System & Computational Intelligence(15CI06Y), Open Project Program of Guangxi Key
laboratory of hybrid computation and IC design analysis(HCIC201507,HCIC201402),
Open Project Program of the Traction Power State Key Laboratory of Southwest Jiaotong
University (TPL1403), Open Project Program of State Key Laboratory of Mechanical
Transmissions(Chongging University)(SKLMT-KFKT-201416, SKLMT-KFKT-201513).

Copyright © 2017 SERSC 199

International Journal of Multimedia and Ubiquitous Engineering
Vol.12, No.1 (2017)

References

(1]
[2]
(3]
(4]
(5]

(6]
[7]

(8]
(9]

[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]
[23]

H. Fengling, L. Lei, and Z. Xiaozhi, “Solve the problem of formula evaluation seguence by directed
graph”, Computer Engineering and Application, vol. 39, no. 6, (2003), pp. 87-90.

J. Pichitlamken, S. Kajkamhaeng, and P. Uthayopas, “high performance Spreadsheet Simulation on a
desktop Grid”, in: Proceeding- Winter Simulation Conf., (2008), pp. 663-670.

W. Q. Ma, J. Z. Li, Z. Y. Jin and K. Ding, “Algorithm for dependent cell re-computation in report
system”, in: Computer Engineering, vol. 32, no. 13, (2003), pp. 49-51.

C. C. Zhao, L. Y. Zhao, and X. M. Zhang, “Research on enterprise spreadsheet model based-on
semantic”, in: 6th Int. Conf. Fuzzy Syst. Knowledge Discov. FSKD 2009, vol. 7, (2009), pp. 441-446.
Q. Partitional and C. Algorithm, “Semi-supervised Quadratic Partitional Clustering Algorithm and its
Application in Spreadsheet System”, Journal of Chines Computer Systems, vol. 32, no. 3, (2011), pp.
409-505.

M. C. Er, “A parallel computation approach to topological sorting”, in: Computer Journal, vol. 26, no. 4,
(1983), pp. 293-295.

D. J. Pearce and P. H. J. Kelly, “A dynamic topological sort algorithm for directed acyclic graphs”,
Journal Exp. Algorithmics, vol. 11, no. 1, (2007), p. 1-7.
https://en.wikipedia.org/wiki/Topological_sorting.

D. Ajwani and T. Friedrich, “An O(n 2.75) Algorithm for Incremental”, ACM Trans. Algorithms, vol.
4, no. 4, (2008), pp. 1-14.

D. Ajwani, A. Cosgaya-Lozano, and N. Zeh, “A topological sorting algorithm for large graphs”, Journal
Exp. Algorithmics, vol. 17, no. 1, (2012), pp.1-8.

D. Ajwani, A. Cosgaya-lozano, and N. Zeh, “Engineering a Topological Sorting Algorithm for Massive
Graphs”, Alenex, vol. 2011, (2011), pp. 139-150.

D. J. Pearce and P. H. J. Kelly, “A batch algorithm for maintaining a topological order”, Conf. Res.
Pract. Inf. Technol. Ser., vol. 102, no. 1, (2010), pp. 79-87.

I. Katriel and H. L. Bodlaender, “Online topological ordering”, ACM Trans. Algorithms, vol. 2, no. 3,
(2006), pp. 364-379.

B. Haeupler, T. Kavitha, R. Mathew, S. Sen, and R. E. Tarjan, “Incremental Cycle Detection,
Topological Ordering, and Strong Component Maintenance”, ACM Trans. Algorithms, vol. 8, no. 1,
(2011), pp.1-7.

R. Liu, “A Low Complexity Topological Sorting Algorithm for Directed Acyclic Graph”, in: Int. J.
Mach. Learn. Computer, vol. 4, no. 2, (2014), pp. 194-197.

C. Y. Pang, J. H. Wang, Y. Cheng, H. L. Zhang and T. L. Li, “Topological sorts on DAGs”, Information
Processing Letter, vol. 114, no. 2, (2015), pp. 298-301.

E. A. A. Tabl, “Topological approaches to generalized definitions of rough multiset approximations”, Int.
J. Mach. Learn. Cybern., vol. 6, no. 3, (2015), pp. 399-407.

J. Reininghaus, S. Huber, U. Bauer, M. Tu, and R. Kwitt, “A Stable Multi-Scale Kernel for Topological
Machine Learning”, ARXIV, http://arxiv.org/abs/1412.6821.

J. Barnat, L. Brim, and P. Rockai, “Parallel partial order reduction with topological sort proviso”, in:
Proc. - Softw. Eng. Form. Methods, SEFM 2010, no. 10, (2010), pp. 222-231.

G. P. Wang and S. Zhang, “The LAOV network and its topological sorting algorithm”, in: Computer
Engineering & Science, vol. 34, no. 3, (2012), pp. 170-175.

A. B. Kahn, “Topological sorting of large networks”, in: Commun. ACM, vol. 5, no. 11, (1962), pp.
558-562.

http://www.igraph.org

https://msdn.microsoft.com/enus/library/ms173183(VS.80).aspx

Authors

200

Zhengguang Li, Lecture, received the Master degree in computer
science and technology from Dalian Jiaotong University in 2007. His
research interests: Artificial intelligence, Algorithm.

Copyright © 2017 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.12, No.1 (2017)

Huimin Zhao, Associate Professor, received the Doctor degree in
mechanical engineering and automation from Dalian Jiaotong
University in 2013. Her research interests: Artificial intelligence,
Signal processing, Algorithm.

Wu Deng, Professor, received the Doctor degree in computer
science and technology from Dalian Maritime University in 2012.
My research interests: Artificial intelligence, Computer application.

Copyright © 2017 SERSC 201

International Journal of Multimedia and Ubiquitous Engineering
Vol.12, No.1 (2017)

202 Copyright © 2017 SERSC

