International Journal of Multimedia and Ubiguitous Engineering
Vol.11, No.9 (2016), pp.59-66
http://dx.doi.org/10.14257/ijmue.2016.11.9.07

Design of a Dual-Warp Scheduler for Streaming Multi-Processors
Based GP-GPU

Do-Hyun Kim?! and Jong Joon Park %

!Department of Computer Engineering, Seokyeong University, Korea
2Department of Computer Science, Seokyeong University, Korea
kdh3190@skuniv.ac.kr, jong@skuniv.ac.kr

Abstract

In this paper, a warp scheduler is proposed for the improvement of multi-core
processor based GP-GPU performance. The proposed warp schedulers are di

odd and even warps, which are issued separately by applying the du@ ;

Furthermore, it can simultaneously process up to four instructions be warp
can issue two instructions through superscalar issue supersgal ue has a
limitation in that it cannot simultaneously processal jnst uctl aving data
dependence. To solve this limitation, the warp ,sekeduler deter the instruction
issuance by testing the issuing condition of the @ ore proﬁyand the read/write

register dependence. For scheduling aIgorithEE the*round-robi ithm was used. To

measure the performance of multi-core str proce he Gaussian filter mask

processing result of the GP-GPU using ¢he @\ osed warptsCheduler was compared with

that of the multi-core CPU on vari bedded forms. The experiment results

showed that the processing speed of X e warp scheduler was 6-7 times
ter on arm

faster. The GP-GPU also perf& e processing application.
Keywords: GP-GPU; Warp, hedu d Robin; SIMT
1. Introduction,
Recently, SI gle InsQ Multiple Threads) architecture for most GP-GPU
omwGPU) implementations, which is developed from the

(General P putln
convention@/t struction Multiple Data) architecture, has been using the
same instru set a architecture with a set of instructions for processing the
vector data in batc ough a single execution flow. However, SIMT architecture
differs from Sl at it can process different data simultaneously through the thread
execution flows.

The S based GP-GPU has introduced the concept of warp, which refers to the
request I%&(ructions in task unit. Each warp processor uses instructions in its own
thre p. The processor uses the SIMT structure to divide tasks that can be

elerated into warps, and assigns each task to warps. The Warp Scheduler inside the
ra

ssor of the SIMT structure selects a warp to process among the activated warps and
transfers it to the streaming multi-processor (SM). Then the SM processes the warp in the
multi-thread method using the stream processors that are loaded in the same number as
the number of threads assigned to each warp.

This can be expanded to a multi-core SIMT structure by increasing the number of SMs.
The design of the Warp Scheduler that efficiently distributes warps to each SM has a great
effect on the performance of the multi-core GP-GPU. In other words, the Scheduling
Algorithm in the Warp Scheduler is an important factor in the performance of GP-GPU.

* Corresponding Author

ISSN: 1975-0080 IJMUE
Copyright © 2016 SERSC

International Journal of Multimedia and Ubiguitous Engineering
Vol.11, No.9 (2016)

Therefore, one can greatly improve the performance of GP-GPU through the intensive
study of Scheduling Algorithm and the right selection of an Algorithm.

2. Scheduling Algorithm

The usage of cores depends on the Scheduling Algorithm in a multi-core structured
processor. The queuing time for a job in a process becomes longer when the rate of usages
of cores is not regular, and the total performance of the system becomes lower. Thus the
designer of the system should keep the rate of usages of the cores regular by selecting the
right Scheduling Algorithm.

2.1. FCFS (First-Come, First Served Scheduling)

FCFS is the simplest form of the Scheduling Algorithm and is implemented by the
method of FIFO (First-In, First-Out) Queue. FCFS is implemented simply by proCessi
the first job first, but the average total queuing time is irregular and is long co to
other algorithms. 0
2.2. SJF (Shortest-Job-First Scheduling) \ﬂ

SJF processes the shortest job first among the

job that needs the shortest processing time expect‘:

r first does the
re jobs. Also, the

average total queuing time can be reduced. So the * ethod i e appropriate for the
higher performance of the system by reducin queuing . However, SJF should be
informed of the expected job processing fi re the job'i eduling.

SJF may not be the best algorith se it s extra time for the additional
calculation to calculate the expectin %essin ’\ wend it may be different from the
real processing time, since one cal now the processing time before it has done,
and the expected processing ti %Iy ugu%[he approximate time.

2.2. Priority Scheduling
Priority Schedulm@ metho oﬁfocessmg jobs by the priority of the jobs that are

set by the process rity Sc g processes the job first that has the lowest priority
value, while SJ sses the first that has the shortest expecting job time. Hence it
shows dlff‘ ults in tetal_job processing. The decision of setting the priority value is
the most ifportant p improvement of the performance of a system in Priority
Scheduling. The pri ues are not decided simply like the expected processing time
as in SJF. There 0 methods in deciding the priority values. The first method is
Internally Defi iority and their priority values are determined by the features of
executing tige, resource usage, and dependency features in each core process.

The ;ex%& method is Externally Defined Priority and their priority values are
determl d) by external features such as process scheduling rule, the rate of power
;E on etc. Additional time expenditure may arise to decide the priority values as

ase of SJF. The biggest demerits of this method is the occurrences of starvation,
is the case of never getting to the lowest priority job due to the continuous
happenings of higher priority jobs.

2.3. Round-Robin

The system processes each core job within a time limit, and does the next job in turn in
Round-Robin scheduling algorithm. The system may change the appropriate processing
time according to the job environments and the performance of the system is improved. If
a job has not been finished in the given time limit, then the system calls an interruption to
do the next core job. The procedure of this processing method is called context switching.

60 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.9 (2016)

There are a lot of overhead loads on the system if a context switching occurs. Therefore,
the system performance of Round-Robin Scheduling would be improved by reducing the
occurrences of Context Switching. The average usage ratio of the core processor in
Round-Robin Scheduling is higher than the other algorithms, since Round-Robin
processes the jobs turn by turn. It has proposed Warp Scheduler which uses a turn by turn
way of Round-Robin Scheduling that minimizes the queuing time of each warp.

3. Proposed Warp Scheduler

The proposed Warp Scheduler of the SIMT structure GP-GPU can simultaneously
issue two warps by applying the dual-warp issue. The warps are divided into odd and
even warps, which are issued separately by two Warp Schedulers. Furthermore,
superscalar issues were used so that two instructions with no register dependence can be
issued simultaneously for each warp. Using this structure and the Warp Scheduler,
designed in this paper, up to four instructions can be issued for each stream proc \/

3.1. Superscalar Issue

Superscalar issue is a technique for simultaneously pr g‘mult nstructions by
running multiple processing elements in parallel. In thi oce performance
was enhanced by simultaneously processing fo |on rom two Warp
Schedulers. The superscalar issue has a limitation it can Itaneously process

two instructions having data dependence. To
determines the instruction issuance by testi
processor and the read/write register
dependence test result to the Instruc%

superscalar issue. &
ves activ; \p numbers and thread numbers assigned to
U and es them as active warps and active threads.
Furthermore, it re @e initia value to get the starting position of the program and
tiall posmons branched through the branch instruction.

reads instruction
re of the Warp Scheduler designed in this paper.

Figure 1 beb S the arc it
\

Ive thi the Warp Scheduler

itati
e |ssm%ndmon of the multi-core
nce. Each Warp Scheduler transfers the

3.2. Warp Scheduler

The Warp Scheduler r
the warps from the

External Network Interface |

.u o ;

Mux

x
Control ‘Path

3

v

Data Path

4 SP #0 SP #1 SP #7

‘ A uction Cache> ‘ Cache Regiter Register Regiter

hd Wan (8 Bank) (8 Bank) (8 Bank)
Request Response scheder [Crossbar | \ Crossbar \ \ Crossbar \

4 I
<Instruction Fetch Arbiter> |
PC

Request X 8 Response X 2 [arp Mask_| ‘ Crossbar | ‘ Crossbar | | eee ‘ Crossbar |

p Scheduler> Thread Mask ‘ ALU ‘ ‘ ALU ‘ ‘ ALU ‘
X 8|
[OE;@SG ‘ ALU ‘ ‘ ALU ‘ ‘ ALU ‘
<Sub Module> Controller ‘ w0 ‘ ‘ ‘ ‘ ‘
ALU ALU
n-n- - nmam SPPC Pre-Fetch Controller] L)
ALY fws 1 ws] [ws]
RDATA[O] RDATA[1] RDATA[Z] RDATAI3] Controller -
Load/Store Load/Store Load/Store
t unit Unit
'WB Controller 'y 'y

Load/Store
Controller

DL

Memory Operation Interface

L1 Data|Cache

.

v

v

L1 Data Cache Request and Response Crossbars

0Odd Warp x 4 Even Warp x 4 i i ‘lA' ¢
2 2 M
Odd Warp Scheduler Even Warp Scheduler v ”"‘fg“‘"k L1 DataBark g g @f [Data Bank H Ha”dh‘:; Unit
ion_0 ion_1 ion_2 ion_3 v 3
A\l v Al Al I

L2 Data Cache Request and Response Crossbars
X

Memory Operation System

|

I L2 Data Cache or Main Memory |

Copyright © 2016 SERSC 61

International Journal of Multimedia and Ubiguitous Engineering
Vol.11, No.9 (2016)

Figure 1. Warp Scheduler

3.3. Warp Scheduler Sub Module

The sub modules of the Warp Scheduler are matched to warps and then manages them.
According to this structure, as many sub modules of the Warp Scheduler are created as
the number of used warps. In this paper, a total of eight warps were used in the processor,
and eight sub modules were created. Of these, four sub modules each are matched to the
odd and even Warp Schedulers, respectively.

3.4. Scheduling

Each sub module requests the instruction cache for the address of the main memory
from which the required instruction is located through the PC value received fram thee
host CPU, and this request occurs in every sub module that has an active warp.

is impossible to simultaneously process the memory access request of ever odule,
the requests of sub modules are processed according to the round-robin e warp
waiting time can be reduced by equally distributing the nfount arp using
the round-robin scheduling such as Figure 2.

3.5. Scheduling Example O

Figure 3 shows the execution result f n examp k where Round-Robin
Scheduling is applied. This paper proposes eduler th process two sub-modules
simultaneously using dual warp issue. In@xampl odule 0, 3, 7, 10, 12, 14 are

Non-Active. So sub module 1, 2 i NW ing point. In the first step is
represented by TO. Sub module 1 ssued 0 warp scheduler. In the second

step T1, except for sub mo uIe ause it is;non<active - sub module 4, 5 are issued. In
the third step, sub module ued as 5 warp and sub module 9 is issued as an
odd warp. Sub module 8 isdssued in t ep as even warp with sub module 11.

)Ion Cache> ‘

axLo
anvad
daavy
v1vad

~~ 128 Bit

\\Q
i [

O(\
TII T T Bl B

sUB suB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB
4 5 6 7 8 9 10 11 12 13 14 15
O Active WARP g%g Non-Active WARP

@O Figure 2. Round-Robin Scheduling

a

%
Yt
aa
ax1o

aInvA;
aIvagy
arvagy
arnvagy
arnvagy
dIrvagy
arvagy
arnvagy
NMVAdY
NVAdY
arnvagy
arnvagy ——

62 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.9 (2016)

T0 ;
& B | B BB
\ \
SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB
o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

@LL@LLJ&%L@@@J

SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB
1 2 3 4 7 8 9 10 11 12 13 14 15

SUB SUB SUB suB SUB SUB SUB SUB suB SUB SUB SUB SUB SUB SuB SUB
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Active WARP @ Non-Active WARP

\/
Figure 3. Scheduling Example 0;

4. Results \%’ @
The usage of a GPU has been extended to gengnq rocesmw an accelerated
the pre \? is simply for the

computing, which uses high parallel processing, @
graphic processing. With these procedures, the GPUas devel to a form of GPGPU,
and the index of performance is not onIy fé‘aphlc cpr@smg but also for general
computability.
This paper includes two experimen ave Qonducted to confirm the higher
performance of Warp Scheduling. g exp % to test a general computing for
the accelerated computability @ cond on to test a graphic process for the
improvement of an image, tg en the er image.

4.1. General Processing erlmen

The Warp Sc @ esigned\ in thls paper can simultaneously process four
instructions. To m rocessing performance of instructions, a Gaussian
filter mask u- W|th mu calculations and high parallelism was used for this

experiment the expe tal environment, Xilinx’s VC-707 FPGA platform board
was used. Tabi€ 1 sho result of the 5*5 Gaussian filter mask operation using the
SIMT based GP-GP ich the designed Warp Scheduler was applied, compared with
the results of th operation using a multi-core CPU on the embedded platforms.
Because the o@g frequency of each processor is different, the performance time
when calgulating*at 100 MHz operating frequency was compared for every processor
(unit: ml%ble 2 shows the 3*3 Gaussian filter mask operation results in the same
envir as in Table 1. The experiment results showed improved performance for
@ and 3*3 Gaussian filter mask operation.

%h
Table 1. Comparison of Processing Time - 5*5 Gaussian Filter Mask
Operation (ms)

Processor 1Core 2Core 3Core 4Core

ARM Cortex-A15(1.6GHz) 587.84 298.56 201.60 156.80

ARM Cortex-A9(1.7GHz) 1065.73 621.69 418.37 323.51

ARM Cortex-A9(1.4GHz) 999.60 703.78 590.94 484.68
SIMT based GPGPU(50MHz) 153.625 N/A N/A N/A

Copyright © 2016 SERSC 63

International Journal of Multimedia and Ubiguitous Engineering
Vol.11, No.9 (2016)

Table 2. Comparison of Processing Time - 3*3 Gaussian Filter Mask
Operation (ms)

Processor 1Core 2Core 3Core 4Core

ARM Cortex-A15(1.6GHz) 441.61 222.88 153.12 124.96

ARM Cortex-A9(1.7GHz) 778.43 444.21 299.03 234.94

ARM Cortex-A9(1.4GHz) 705.18 526.26 428.26 360.08
SIMT based GPGPU(50MHz) 118.17 N/A N/A N/A

4.2. Image Processing Experiment

An important application of this new GP-GPU is image processing. It is applied,on an,
image enhancement algorithm to improve the brightness of an image. The si
image used in this experiment is QVGA (320x240), and the experiment for i ng the

environment. Figure 4 is the original image that is used in thi xperim%ﬂ
a

igure 5 is
the improved image to which was applied the enhance rithm e developed
GP-GPU. From the comparison of these two ima i ds, the lanes,
and the sign post in Figure 5 are more clarified th@ i es Iso the test result
of the PSNR of these two images is 17.77 and has proved improvement of the

brightness by which one can see the parts whic cannof.b erentiated in the original
image.

Figure 5. Enhancement Image

64 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.9 (2016)

5. Conclusions

The Warp Scheduler is indispensable in GP-GPU for multi-processing according to the
SIMT architecture. In this paper, a new Warp Scheduler was designed to process
instructions in the superscalar issue. The proposed Warp Scheduler issues warps from the
even and odd Warp Schedulers by applying the dual-warp issue. Furthermore, to solve the
limitation of the superscalar issue, the Warp Scheduler performs a dependence test and
simultaneously issues two instructions for instructions that have no dependence. Through
the aforementioned process, the application of the Warp Scheduler designed in this paper
can simultaneously process four instructions because two instructions are issued
separately from two warps. The warp waiting time was reduced by evenly distributing the
used amount of each warp using the round-robin method as the scheduling algorithm.

As a result of the parallel processing performance experiment, the GP-GPU to which
the proposed Warp Scheduler was applied to had the processing speed that was at Jeast 2,
percent faster than various embedded CPUs in the 5*5 Gaussian filter mask and%.oS

percent faster in the 3*3 Gaussian filter mask. Also, the image has been impro ing
the improvement of brightness algorithm with GPGPU, and has clarifi@ arious
elements of the image from the result of the above experimenty o

Increasing the used amount of multiple cores by applyi design p Scheduler
when configuring the GP-GPU of multi-core SIMT_byde ing SIMT architecture

is expected to improve the processing efficiency roc increase the total

performance of the GP-GPU.

Q-
Acknowledgments O N\
This work was supported by the % ial @hnology Development Program
gﬁﬁiu

(10049192, Development of a s motivi S SW-SoC for a self-driving car)
funded By the Ministry of Tr ustry &Energy and was supported by Seokyeong
University in 2014. *

References @ ’\,\Q
*

[1] M. Garland, S. Q Nickollsi3Anderson, J. Hardwick, S. Morton, E. Phillips, Y. Zhang and V.
Volkov, “Para uting exp @ esiwith CUDA", IEEE Micro, Vol. 28, no. 4, pp. 13-27, 2008.

[2] B. H. Lgem{A,D8sign of a GP-8PU using the Multi-Threaded Pipeline and the General Register
ArchiteT e Gral a@vool of Seokyeong University, (2010).

[3] J. L. Hetagséy and D erson, “Instruction-level parallelism and its exploitation”, in Computer
Architecture: A Quanati Approach, 4th ed., San Francisco, CA: Morgan Kaufmann Pub., (2007), pp.
66-153.

[4] A.Levinthal

[5] K. Sharma, Sdi

=

“Chap, “A SIMD graphics processor”, In SIGGRAPH, (1984), pp. 77-82.
h and I. Moon, “GPU-Based Optimization of Self-Organizing Map Feature Matching
ereo Vision”, Journal of information and communication convergence engineering, vol.

for Real-Time
12, nc%ém), pp. 128-134.
[6] W. . Fung, |. Sham, G. Yuan and M. Tor, “DynamicWarp Formation and Scheduling for Efficient
ntrol Flow”, Microarchitecture 2007. MICRO 2007. 40th Annual IEEE/ACM International

osium, (2007), pp. 407-420.
@. J. Seo and H. W. Kim, “Study of Modular Multiplication Methods for Embedded Processors”,
Journal of information and communication convergence engineering, vol. 12, no. 3, (2014), pp. 145-153.
[8] W.W. L. Fung, I. Sham, G. Yuan and M. Tor, “DynamicWarp Formation and Scheduling for Efficient
GPU Control Flow”, Microarchitecture 2007. MICRO 2007. 40th Annual IEEE/ACM International
Symposium, (2007), pp. 407-420.
[91 R. A. Lorie and H. R. Strong, “Method for conditional branch execution in SIMD vector processors”,
US Patent, vol. 4, (1984), pp. 435,758.
[10] E. Lindholm, J. Nickolls, S. Oberman and J. Montrym, “NVIDIA Tesla: A Unified Graphics and
Computing Architecture”, Micro IEEE, vol. 28, no. 2, (2008), pp. 39-55.

Copyright © 2016 SERSC 65

International Journal of Multimedia and Ubiqguitous Engineering
Vol.11, No.9 (2016)

Authors

Do-Hyun Kim, 2014: BS degree in Computer Engineering,
Seokyeong University, 2014~present: Master course in Electronics
and Computer Engineering, Seokyeong University

Jong-Joon Park, 1978 BS degree in Physics, Sogang University.
1980: MS degree in Electronics Engineering, Yonsei University.
1980~1990: Assistant Professor in the Dept. of Computer Sgience,,
College of Industry, Chosun University. 1994: Ph.D in 5\0&
Science, College of Art and Science, Florida Stat ersity.
1995~Present: Professor in Computer Scienc eong
University.

66 Copyright © 2016 SERSC

