
International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016), pp.59-66

http://dx.doi.org/10.14257/ijmue.2016.11.9.07

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2016 SERSC

Design of a Dual-Warp Scheduler for Streaming Multi-Processors

Based GP-GPU

Do-Hyun Kim1 and Jong Joon Park 2*

1Department of Computer Engineering, Seokyeong University, Korea
2Department of Computer Science, Seokyeong University, Korea

kdh3190@skuniv.ac.kr, jong@skuniv.ac.kr

Abstract

In this paper, a warp scheduler is proposed for the improvement of multi-core stream

processor based GP-GPU performance. The proposed warp schedulers are divided into

odd and even warps, which are issued separately by applying the dual-warp issue.

Furthermore, it can simultaneously process up to four instructions because each warp

can issue two instructions through superscalar issue. The superscalar issue has a

limitation in that it cannot simultaneously process two instructions having data

dependence. To solve this limitation, the warp scheduler determines the instruction

issuance by testing the issuing condition of the multi-core processor and the read/write

register dependence. For scheduling algorithm, the round-robin algorithm was used. To

measure the performance of multi-core stream processors, the Gaussian filter mask

processing result of the GP-GPU using the proposed warp scheduler was compared with

that of the multi-core CPU on various embedded platforms. The experiment results

showed that the processing speed of the GP-GPU using the warp scheduler was 6-7 times

faster. The GP-GPU also performed better on an image processing application.

Keywords: GP-GPU; Warp; Scheduling; Round-Robin; SIMT

1. Introduction

Recently, SIMT (Single Instruction Multiple Threads) architecture for most GP-GPU

(General Purpose computing on GPU) implementations, which is developed from the

conventional SIMD (Single Instruction Multiple Data) architecture, has been using the

same instruction set as SIMD architecture with a set of instructions for processing the

vector data in batches through a single execution flow. However, SIMT architecture

differs from SIMD in that it can process different data simultaneously through the thread

having a plurality of execution flows.

The SIMT based GP-GPU has introduced the concept of warp, which refers to the

request of instructions in task unit. Each warp processor uses instructions in its own

thread group. The processor uses the SIMT structure to divide tasks that can be

accelerated into warps, and assigns each task to warps. The Warp Scheduler inside the

processor of the SIMT structure selects a warp to process among the activated warps and

transfers it to the streaming multi-processor (SM). Then the SM processes the warp in the

multi-thread method using the stream processors that are loaded in the same number as

the number of threads assigned to each warp.
This can be expanded to a multi-core SIMT structure by increasing the number of SMs.

The design of the Warp Scheduler that efficiently distributes warps to each SM has a great

effect on the performance of the multi-core GP-GPU. In other words, the Scheduling

Algorithm in the Warp Scheduler is an important factor in the performance of GP-GPU.

* Corresponding Author

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

60 Copyright ⓒ 2016 SERSC

Therefore, one can greatly improve the performance of GP-GPU through the intensive

study of Scheduling Algorithm and the right selection of an Algorithm.

2. Scheduling Algorithm

The usage of cores depends on the Scheduling Algorithm in a multi-core structured

processor. The queuing time for a job in a process becomes longer when the rate of usages

of cores is not regular, and the total performance of the system becomes lower. Thus the

designer of the system should keep the rate of usages of the cores regular by selecting the

right Scheduling Algorithm.

2.1. FCFS (First-Come, First Served Scheduling)

FCFS is the simplest form of the Scheduling Algorithm and is implemented by the

method of FIFO (First-In, First-Out) Queue. FCFS is implemented simply by processing

the first job first, but the average total queuing time is irregular and is long compared to

other algorithms.

2.2. SJF (Shortest-Job-First Scheduling)

SJF processes the shortest job first among the core jobs. The processor first does the

job that needs the shortest processing time expected among the multi-core jobs. Also, the

average total queuing time can be reduced. So the SJF method is more appropriate for the

higher performance of the system by reducing the queuing time. However, SJF should be

informed of the expected job processing time before the job's scheduling.
SJF may not be the best algorithm, because it needs extra time for the additional

calculation to calculate the expecting processing time, and it may be different from the

real processing time, since one cannot know the exact processing time before it has done,

and the expected processing time is only usually the approximate time.

2.2. Priority Scheduling

Priority Scheduling is the method of processing jobs by the priority of the jobs that are

set by the processor. Priority Scheduling processes the job first that has the lowest priority

value, while SJF processes the job first that has the shortest expecting job time. Hence it

shows different results in total job processing. The decision of setting the priority value is

the most important part in improvement of the performance of a system in Priority

Scheduling. The priority values are not decided simply like the expected processing time

as in SJF. There are two methods in deciding the priority values. The first method is

Internally Defined Priority and their priority values are determined by the features of

executing time, resource usage, and dependency features in each core process.
The second method is Externally Defined Priority and their priority values are

determined by external features such as process scheduling rule, the rate of power

consumption, etc. Additional time expenditure may arise to decide the priority values as

in the case of SJF. The biggest demerits of this method is the occurrences of starvation,

which is the case of never getting to the lowest priority job due to the continuous

happenings of higher priority jobs.

2.3. Round-Robin

The system processes each core job within a time limit, and does the next job in turn in

Round-Robin scheduling algorithm. The system may change the appropriate processing

time according to the job environments and the performance of the system is improved. If

a job has not been finished in the given time limit, then the system calls an interruption to

do the next core job. The procedure of this processing method is called context switching.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

Copyright ⓒ 2016 SERSC 61

There are a lot of overhead loads on the system if a context switching occurs. Therefore,

the system performance of Round-Robin Scheduling would be improved by reducing the

occurrences of Context Switching. The average usage ratio of the core processor in

Round-Robin Scheduling is higher than the other algorithms, since Round-Robin

processes the jobs turn by turn. It has proposed Warp Scheduler which uses a turn by turn

way of Round-Robin Scheduling that minimizes the queuing time of each warp.

3. Proposed Warp Scheduler

The proposed Warp Scheduler of the SIMT structure GP-GPU can simultaneously

issue two warps by applying the dual-warp issue. The warps are divided into odd and

even warps, which are issued separately by two Warp Schedulers. Furthermore,

superscalar issues were used so that two instructions with no register dependence can be

issued simultaneously for each warp. Using this structure and the Warp Scheduler

designed in this paper, up to four instructions can be issued for each stream processor.

3.1. Superscalar Issue

Superscalar issue is a technique for simultaneously processing multiple instructions by

running multiple processing elements in parallel. In this paper, the processor performance

was enhanced by simultaneously processing four instructions issued from two Warp

Schedulers. The superscalar issue has a limitation in that it cannot simultaneously process

two instructions having data dependence. To solve this limitation, the Warp Scheduler

determines the instruction issuance by testing the issuing condition of the multi-core

processor and the read/write register dependence. Each Warp Scheduler transfers the

dependence test result to the Instruction Dispatch Unit, which determines the use of

superscalar issue.

3.2. Warp Scheduler

The Warp Scheduler receives activated warp numbers and thread numbers assigned to

the warps from the host CPU and manages them as active warps and active threads.

Furthermore, it receives the initial PC value to get the starting position of the program and

reads instructions sequentially or at the positions branched through the branch instruction.

Figure 1 below shows the architecture of the Warp Scheduler designed in this paper.

<Instruction Cache>

<Warp Scheduler>

[0]

[1]

[2]

[29]

[30]

[31]

...

RDATA[0] RDATA[1] RDATA[2] RDATA[3]

Inst[0] Inst[1]

Pre-Fetch Controller

Mux

<Sub Module>

Odd Warp Scheduler

Odd Warp x 4 Even Warp x 4

Instruction_0 Instruction_1

x 8

Even Warp Scheduler

Instruction_2 Instruction_3

<Instruction Fetch Arbiter>

Response X 2Request X 8

ResponseRequest

Write
Dependency

[0]

[1]

[2]

[29]

[30]

[31]

...

Read
Dependency

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

SP PC

L1 Data Cache

 Control Path

Warp
Scheduler

Warp
Scheduler

PC

Thread Mask

Operand
Fetch

Controller

Operand
Fetch

Controller

Load/Store
Controller

Warp Mask

Dispatch UnitDispatch Unit

SP #0

Register
File

(8 Bank)

O
F
U

Load/Store
Unit

Crossbar

SP #1

Register
File

(8 Bank)

Load/Store
Unit

Crossbar

SP #7

Register
File

(8 Bank)

Crossbar

Load/Store
Unit

L1 Data Cache Request and Response Crossbars

L2 Data Cache Request and Response Crossbars

L2 Data Cache or Main Memory

Memory Operation System

Memory Operation Interface

Miss
Handling Unit

L1 Data Bank
#0

L1 Data Bank
#1

L1 Data Bank
#7

O
F
U

ALU

WB Controller

ALU
Controller

ALU
Controller

ALU
Controller

Instruction
Cache

External Network Interface

Data Path

Crossbar

WB

ALU

ALU

O
F
U

O
F
U

ALU

Crossbar

WB

ALU

ALU

O
F
U

O
F
U

ALU

Crossbar

WB

ALU

ALU

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

62 Copyright ⓒ 2016 SERSC

Figure 1. Warp Scheduler

3.3. Warp Scheduler Sub Module

The sub modules of the Warp Scheduler are matched to warps and then manages them.

According to this structure, as many sub modules of the Warp Scheduler are created as

the number of used warps. In this paper, a total of eight warps were used in the processor,

and eight sub modules were created. Of these, four sub modules each are matched to the

odd and even Warp Schedulers, respectively.

3.4. Scheduling

Each sub module requests the instruction cache for the address of the main memory

from which the required instruction is located through the PC value received from the

host CPU, and this request occurs in every sub module that has an active warp. Because it

is impossible to simultaneously process the memory access request of every sub module,

the requests of sub modules are processed according to the round-robin method. The warp

waiting time can be reduced by equally distributing the used amount of each warp using

the round-robin scheduling such as Figure 2.

3.5. Scheduling Example

Figure 3 shows the execution result for an example that where Round-Robin

Scheduling is applied. This paper proposes a scheduler that can process two sub-modules

simultaneously using dual warp issue. In this example sub module 0, 3, 7, 10, 12, 14 are

Non-Active. So sub module 1, 2 is Round robin’s starting point. In the first step is

represented by T0. Sub module 1, 2 are issued using two warp scheduler. In the second

step T1, except for sub module 3 - because it is non-active - sub module 4, 5 are issued. In

the third step, sub module 6 is issued as an even warp and sub module 9 is issued as an

odd warp. Sub module 8 is issued in the next step as even warp with sub module 11.

Active WARP Non-Active WARP

<Instruction Cache>

Instruction Fetch Arbitration

A
R
V
A
L
ID

A
R
R
E
A
D

Y

A
R
A
D

D
R

C
T
X
ID

C
T
X
ID

R
V
A
L
ID

R
A
D

D
R

R
D

A
T
A

128 Bit

A
R
V
A
L
ID

A
R
V
A
L
ID

A
R
V
A
L
ID

A
R
V
A
L
ID

A
R
V
A
L
ID

A
R
V
A
L
ID

A
R
V
A
L
ID

A
R
V
A
L
ID

A
R
V
A
L
ID

A
R
V
A
L
ID

A
R
V
A
L
ID

A
R
V
A
L
ID

A
R
V
A
L
ID

SUB
0

SUB
1

SUB
2

SUB
3

SUB
4

SUB
5

SUB
6

SUB
7

SUB
8

SUB
9

SUB
10

SUB
11

SUB
12

SUB
13

SUB
14

SUB
15

Figure 2. Round-Robin Scheduling

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

Copyright ⓒ 2016 SERSC 63

T0

Active WARP Non-Active WARP

SUB
0

SUB
1

SUB
2

SUB
3

SUB
4

SUB
5

SUB
6

SUB
7

SUB
8

SUB
9

SUB
10

SUB
11

SUB
12

SUB
13

SUB
14

SUB
15

T1

SUB
0

SUB
1

SUB
2

SUB
3

SUB
4

SUB
5

SUB
6

SUB
7

SUB
8

SUB
9

SUB
10

SUB
11

SUB
12

SUB
13

SUB
14

SUB
15

T2

SUB
0

SUB
1

SUB
2

SUB
3

SUB
4

SUB
5

SUB
6

SUB
7

SUB
8

SUB
9

SUB
10

SUB
11

SUB
12

SUB
13

SUB
14

SUB
15

Figure 3. Scheduling Example

4. Results

The usage of a GPU has been extended to general processing by an accelerated

computing, which uses high parallel processing, while the previous GPU is simply for the

graphic processing. With these procedures, the GPU has developed into a form of GPGPU,

and the index of performance is not only for graphic processing but also for general

computability.

This paper includes two experiments that have been conducted to confirm the higher

performance of Warp Scheduling. The first experiment is to test a general computing for

the accelerated computability. The second one is to test a graphic process for the

improvement of an image, to enhance the original image.

4.1. General Processing Experiment

The Warp Scheduler designed in this paper can simultaneously process four

instructions. To measure the parallel processing performance of instructions, a Gaussian

filter mask operation with multiple calculations and high parallelism was used for this

experiment. For the experimental environment, Xilinx’s VC-707 FPGA platform board

was used. Table 1 shows the result of the 5*5 Gaussian filter mask operation using the

SIMT based GP-GPU to which the designed Warp Scheduler was applied, compared with

the results of the same operation using a multi-core CPU on the embedded platforms.

Because the operating frequency of each processor is different, the performance time

when calculating at 100 MHz operating frequency was compared for every processor

(unit: ms). Table 2 shows the 3*3 Gaussian filter mask operation results in the same

environment as in Table 1. The experiment results showed improved performance for

both 5*5 and 3*3 Gaussian filter mask operation.

Table 1. Comparison of Processing Time - 5*5 Gaussian Filter Mask
Operation (ms)

Processor 1Core 2Core 3Core 4Core

ARM Cortex-A15(1.6GHz) 587.84 298.56 201.60 156.80

ARM Cortex-A9(1.7GHz) 1065.73 621.69 418.37 323.51

ARM Cortex-A9(1.4GHz) 999.60 703.78 590.94 484.68

SIMT based GPGPU(50MHz) 153.625 N/A N/A N/A

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

64 Copyright ⓒ 2016 SERSC

Table 2. Comparison of Processing Time - 3*3 Gaussian Filter Mask
Operation (ms)

Processor 1Core 2Core 3Core 4Core

ARM Cortex-A15(1.6GHz) 441.61 222.88 153.12 124.96

ARM Cortex-A9(1.7GHz) 778.43 444.21 299.03 234.94

ARM Cortex-A9(1.4GHz) 705.18 526.26 428.26 360.08

SIMT based GPGPU(50MHz) 118.17 N/A N/A N/A

4.2. Image Processing Experiment

An important application of this new GP-GPU is image processing. It is applied on an

image enhancement algorithm to improve the brightness of an image. The size of the

image used in this experiment is QVGA (320×240), and the experiment for improving the

brightness of an image has been done with the same state as in the general processing

environment. Figure 4 is the original image that is used in this experiment, and Figure 5 is

the improved image to which was applied the enhancement algorithm with the developed

GP-GPU. From the comparison of these two images, it is clear that the roads, the lanes,

and the sign post in Figure 5 are more clarified than the original ones. Also the test result

of the PSNR of these two images is 17.77 and has been proved by the improvement of the

brightness by which one can see the parts which cannot be differentiated in the original

image.

Figure 4. Original Image

Figure 5. Enhancement Image

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

Copyright ⓒ 2016 SERSC 65

5. Conclusions

The Warp Scheduler is indispensable in GP-GPU for multi-processing according to the

SIMT architecture. In this paper, a new Warp Scheduler was designed to process

instructions in the superscalar issue. The proposed Warp Scheduler issues warps from the

even and odd Warp Schedulers by applying the dual-warp issue. Furthermore, to solve the

limitation of the superscalar issue, the Warp Scheduler performs a dependence test and

simultaneously issues two instructions for instructions that have no dependence. Through

the aforementioned process, the application of the Warp Scheduler designed in this paper

can simultaneously process four instructions because two instructions are issued

separately from two warps. The warp waiting time was reduced by evenly distributing the

used amount of each warp using the round-robin method as the scheduling algorithm.
As a result of the parallel processing performance experiment, the GP-GPU to which

the proposed Warp Scheduler was applied to had the processing speed that was at least 2

percent faster than various embedded CPUs in the 5*5 Gaussian filter mask and at least 5

percent faster in the 3*3 Gaussian filter mask. Also, the image has been improved using

the improvement of brightness algorithm with GPGPU, and has clarified the various

elements of the image from the result of the above experiment.
Increasing the used amount of multiple cores by applying the designed Warp Scheduler

when configuring the GP-GPU of multi-core SIMT by expanding the SIMT architecture

is expected to improve the processing efficiency of the processor and increase the total

performance of the GP-GPU.

Acknowledgments

This work was supported by the Industrial Core Technology Development Program

(10049192, Development of a smart automotive ADAS SW-SoC for a self-driving car)

funded By the Ministry of Trade, industry & Energy and was supported by Seokyeong

University in 2014.

References

[1] M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips, Y. Zhang and V.

Volkov, “Parallel computing experiences with CUDA", IEEE Micro, Vol. 28, no. 4, pp. 13-27, 2008.
[2] B. H. Lee, “A Design of a GP-GPU using the Multi-Threaded Pipeline and the General Register

Architecture”, The Graduate School of Seokyeong University, (2010).
[3] J. L. Hennessy and D. A. Patterson, “Instruction-level parallelism and its exploitation”, in Computer

Architecture: A Quantitative Approach, 4th ed., San Francisco, CA: Morgan Kaufmann Pub., (2007), pp.

66-153.
[4] A. Levinthal and T. P. Chap, “A SIMD graphics processor”, In SIGGRAPH, (1984), pp. 77-82.
[5] K. Sharma, Saifullah and I. Moon, “GPU-Based Optimization of Self-Organizing Map Feature Matching

for Real-Time Stereo Vision”, Journal of information and communication convergence engineering, vol.

12, no. 2, (2014), pp. 128-134.
[6] W. W. L. Fung, I. Sham, G. Yuan and M. Tor, “DynamicWarp Formation and Scheduling for Efficient

GPU Control Flow”, Microarchitecture 2007. MICRO 2007. 40th Annual IEEE/ACM International

Symposium, (2007), pp. 407-420.
[7] H. J. Seo and H. W. Kim, “Study of Modular Multiplication Methods for Embedded Processors”,

Journal of information and communication convergence engineering, vol. 12, no. 3, (2014), pp. 145-153.
[8] W. W. L. Fung, I. Sham, G. Yuan and M. Tor, “DynamicWarp Formation and Scheduling for Efficient

GPU Control Flow”, Microarchitecture 2007. MICRO 2007. 40th Annual IEEE/ACM International

Symposium, (2007), pp. 407-420.
[9] R. A. Lorie and H. R. Strong, “Method for conditional branch execution in SIMD vector processors”,

US Patent, vol. 4, (1984), pp. 435,758.
[10] E. Lindholm, J. Nickolls, S. Oberman and J. Montrym, “NVIDIA Tesla: A Unified Graphics and

Computing Architecture”, Micro IEEE, vol. 28, no. 2, (2008), pp. 39-55.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

66 Copyright ⓒ 2016 SERSC

Authors

Do-Hyun Kim, 2014: BS degree in Computer Engineering,

Seokyeong University, 2014~present: Master course in Electronics

and Computer Engineering, Seokyeong University

Jong-Joon Park, 1978 BS degree in Physics, Sogang University.

1980: MS degree in Electronics Engineering, Yonsei University.

1980~1990: Assistant Professor in the Dept. of Computer Science,

College of Industry, Chosun University. 1994: Ph.D in Computer

Science, College of Art and Science, Florida State University.
1995~Present: Professor in Computer Science, Seokyeong

University.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

