International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.9 (2016), pp.1-10
http://dx.doi.org/10.14257/ijmue.2016.11.9.01

An Empirical Analysis of Android Apps Bug and Automated
Testing Approach for Android Apps

Yi Bie', Sheng Bin?, Gengxin Sun'” and Xicheng Zhou*

"Software Technical College of Qingdao University, Qingdao, China
2Internatlonal College of Qingdao UnlverS|ty, Qingdao, China
Yrjxy@qdu.edu.cn,?binsheng@gqdu.edu.cn,* sungengxin@qdu.edu.cn

Abstract

Android platforms and its applications (apps) have gained tremendous popularity,
recently, hence the reliability of Android apps is becoming increasingly importa %ﬁ)
the novelty of the Android platform, apps are prone to errors, which woul %ﬁl

lgyﬁ u

experience and requires frequent bug fixes. In this paper, an empirical st gs in

some widely-used open-source Android apps from diverse ca ones S dia, tools
and communication were performed. Based on the f|n f the e al study, an
approach for automating the testing process for dete ndroi p UI bugs was
presented. We show how the approach helped to c ver |n gs and find new
bugs, and how it could be used to prevent certain b ategories emplrlcal study and

automated testing approach have the potentlaQ\help dgv ers increase the quality of
Android apps.

Keywords: Google Android; And pps bug analysis; test automation;
bug reports

1. Introduction
Android platform an apps t@ on the platform have gained tremendous

popularity recentl .A@or draw of Android platform is its ability to run applications, it
leads to an increaé% petu uring the reliability of Android apps. Reliability is

particularly i for sens apps such as online banking, business management,
health care on. Ho r, the low barrier to enter the Android Market means apps
are subject ited before dissemination, allowing error-prone apps through
and therefore affecti experience.

towards ensuri reliability is to understand the nature of bugs and the bug-fixing
process assqciated with Android apps. The open-source nature of a great deal of Android
apps pro %&n opportunity to conduct empirical researches and provide a quantitative
basis fo roving the quality of open-source Android apps.

T ain contribution of our empirical analysis is that several metrics are defined to
.

In this paper g us on ensuring the reliability of Android apps. The first step

and the quality of bug reports. We conduct an investigation of the categories of
ugs in Android apps and perform an in-depth study of GUI bugs in our examined
Android apps. We categorized all confirmed bugs in the bug database. To detect and fix
these categories of bugs, we proposed an automated test approach. Our approach uses a
combination of case and event generation with runtime monitoring and log file analysis.
Most existing tools and techniques for automating the testing have so far focused
mostly on desktop and server applications [1]. However, the physical constraints of
mobile devices would make mobile applications prone to new kinds of bugs. For example,
an Android application consists of activities, services, broadcast receivers and content
providers. It is very different from standard server applications or desktop applications.

ISSN: 1975-0080 IJMUE
Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.9 (2016)

The tendency of mobile applications to have bugs is evidenced by their high defect
density [2].

This paper is organized as follows. Section 2 is the overview of Android platform and
Android apps. A bug empirical analysis on 24 popular open-source Android apps is
introduced in Section 3. An automated test approach is proposed in Section 4, we employ
test and event generators to construct test cases and events sequences, then these test cases
are run to the application. Once a test case is running, detailed information about the
application is recorded in the system log file and a log file analysis is performed to detect
potential bugs. For the effectiveness of our approach, in Section 5 we compared bugs
which we found by generating test cases with bugs reported by users. We detected most
bugs reported, and found new bugs which have never been reported.

2. Overview of Android Apps and Android Bugs
As shown in Figure 1, the Android platform is composed of 4 layers: Appli@W‘

the top, the Application Framework layer that provides services to applica
Library/VM layer and the Linux kernel at the bottom. 6

Applications V

Android Runu. ve

Ce v Likary

Oalvik VM

Lit.ox Xernel

J

Fi{r\Q, Lay
Our work cggg he top t layers in Figure 1. To test programs running in the

Applicatio syste ervices from the Application Framework layer and
instrument ools in&ilvik VM are used.

There are four typ mponents used to construct applications in Android: Activity,
Broadcast Rec
rules and a pa

e%chltecture of Android Platform

eiv tent Provider and Service, which require specific management
@ lifecycle. Activities are focused user interfaces in which the user
interaction takeS\place. Only one activity can be active at a time. All visible portions of
applicatio\%ie Activities. Services run in the background and do not interact directly
with th . Other components can bind to a Service, which lets the binder invoke
met at are declared in the target Service's interface. A Content Provider manages
a certain application and controls the accessibility of the data. It can be acted as a
anism for sharing information between applications. Broadcast Receivers listen and
react to broadcast announcements. They are triggered by the receipt of an appropriate
Intent and then run in the background to handle the event.

A description of typical bugs encountered in Android apps shows that frequent bugs
are due to incorrect management of the Activity component lifecycle [3]. This component
provides crucial functions for the application’s user interface and reacts to events
generated by users and other system components [4]. Incorrect management of these
events often results in wrong or unsatisfactory application behavior.

Activities are the main GUI components of an Android app, an activity error usually
occurs due to incorrect implementations of the activity protocol. Event errors occur when

2 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.9 (2016)

the application performs a wrong action as a result of receiving an event. Dynamic type
errors arise from runtime type exceptions. Unhandled exceptions are exceptions the user
code does not catch and lead to an application crash. API errors are caused by
incompatibilities between the API version assumed by the application and the API version
provided by the system. I/O errors stem from 1/O interaction. Concurrency errors occur
due to the interaction of multiple processes or threads. There are some bugs categorized as
other due to errors in the program logic.

Though our approach can be general enough to facilitate bug detection for all Android
components, in this paper we focus on bugs related to activities and events generated by
users and system.

3. Empirical Analysis of Android Apps Bug

To identify the most frequent Android bugs, the empirical study on 24 populag open-,
source Android apps was performed. We chose Android apps from a wide%n;\yf
the
e high

categories to reduce selection bias. At the same time, the Android apps that
target of our bug empirical study are available for free in Android Market
download counts, which ensures we get a broad range of représengative

In our empirical analysis, we mainly analyze the bui\ﬁs of A

prior work has shown that bug report quality cr::? ffects

apps. Some
e quality [5].
Empirical studies on desktop applications such a ilfa an have shown that
bug reports with certain qualities significantly hel elopers erstand the problem
and reduce the bug-fix time [6]. We define fi@etrics to @sure bug report quality for

the Android apps we considered: . }
® Description Length, which count l@ S in the bug description.

® Reproduce Steps, which repre e f bug reports that have steps to
cription. %
ce

reproduce the bug in the bu

@ Output Details, which r ts the ntage of bug reports that contain details
of expected output an al outpu \t

® Additional Informatign, which esents the percentage of bug reports containing
additional infor @about th , besides the standard bug report.

® All Detail i

Outp alls and Additional Information.
High va these metrics fadicate high quality bug reports. In Table 1, we present

the values hese rrétr@or each Android app.
(h able 1. Bug Description Metrics

Application eseription Reproduce Output Additional All Details

pp ngth (words) Steps (%) Details (%0) Information (%) (%)
Firefox Makil 732301 0.02 0.12 N/A 0

ADW Lau 116.50 3171 28.99 1355 10.03

@ 327.09 49.46 47.08 9.29 8.86

ORLp 128.32 58.36 57.34 31.06 28.67

ather 153.39 80.94 74.04 46.51 44.36

Remote 157.69 60.86 58.38 23.38 21.56

i 136.26 3243 26.05 12.76 11.30

95.99 42.02 40.28 15.32 13.90

ConnectBot 169.52 53.38 49.36 25.78 24.50

CSipSimple 152.97 62.92 57.75 38.72 36.49

CyanogenMod 281.16 74.55 0.19 10.04 0.02

GAOSP 153.62 53.46 48.85 11.35 11.35

IMSDroid 201.43 69.44 66.98 3117 30.56
JustPictures 114.05 36.39 33.33 0 0

Rokon 209.78 62.90 49.38 3173 30.01

My Tracks 157.23 38.13 33.11 9.76 8.97

Openlntents 165.11 51.59 47.81 25.30 24.10

OsmAnd 140.05 37.88 30.88 9.53 8.81

OSMDroid 161.10 31.56 2857 14.95 14.29

Sipdroid 200.28 50.37 48.27 28.65 26.23

SoftKeyboard 118.30 42.73 39.98 27.49 26.69

Copyright © 2016 SERSC 3

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.9 (2016)

TransDroid 106.75 29.49 0.54 0.27 0.27
WebSMSDroid 93.97 51.47 45.89 19.85 18.92
CMIS 175.38 46.49 43.42 24.05 22.34

From Table 1 we can see that Description Length varies significantly, from a low of
93.97 words to a high of 327.09 words, and Reproduce Steps which contain steps to
reproduce the bug in the bug description varies from 0.02 to 80.94%. Note that the steps
to reproduce a bug are not mandatory but have the potential to increase the chances of the
bug being fixed quickly. Most Android apps have the highest percentage of bug reports
that contain information about the expected and actual output (Output Details). To
summarize, we found that bug reports of most Android apps have high quality. Bug
reporters usually provide long textual descriptions of the problem, steps to reproduce the
bug, and explanation of the difference between expected and the actual outputs.

To understand the effects of bug report quality for bug fixing time, a regression
analysis on the bug report quality metrics is performed. We observed that Deschptign®
Length is highly correlated with the other metrics. Therefore, to understand the of

bug report quality for bug fixing time, a linear regression with Descriptio as the
single independent variable is performed. We found a negativg correlati @apps we
considered between Description Length and bug fixing He negéti alues of the
correlation coefficient indicate that Description Lengt d predicter of bug-report
quality and that high-quality bug reports get fixed %

O 0

In our empirical analysis, the bug counts categ by bqur each Android app
is also analyzed, the analysis results are presented in Table 2

L

Table 2. Bug Ca s and u?%ounts
B
Application Unhanc_iled Concurrency Other
exception A Qi ;
“ ¢

Firefox Mobile 1
0 \
1
1 \

ADW Launcher 2
DealDroid
SMSPopup
WiFiTether

o

0
%)
XBMC Remote ¢ Q
AnkiDroid “
> NQ
0

2\

2

IMSDroid

JustPictures @
Rokon

My Tracks

CyanogenM
GAOSP

CallMeter3G
ConnectBot
CSipSimpIO

N

Openlintents

CORONOOOORONORN K
OC0OO0OHROO0OO0OO0OO0OO0OOROOOORRMAORWOOO
OO0 0OO0O0O0O0OO0OO0OOHROO0OO0O0O0OOR OO0
PRrRrNRRPRRRRORNMDNVYOONND R0 o~

PORFRPNRFPOERFPDN

From Table 2 we can see, many errors are program logic related errors, some of which
can be found using standard techniques, such as static analysis or model checking. But
these techniques can't be applied directly to Android apps because of their structure and
libraries differ substantially. Therefore, we proposed an automated approach that can
detect a variety of Android bugs and show how it can be used to detect activity, event and
type errors.

4 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.9 (2016)

4. Automated Testing Approach for Detecting Android Apps Bugs

Our automated testing approach consists of automatic test case and event generation
tools to log file analysis. Firstly, JUnit [7] which is a Java test case generation tool is used
to generate test cases for Android apps. Because most Android apps are GUI-based, for
each test case, we may need to add some events which are used for simulating user
interaction to make the application move from one state to another. So we use Monkey [8],
an automatic event generation tool, to produce events in both random and deterministic
ways and feed these events to the application. Once a test case is running, detailed
information about the application is recorded in the system log file. After each test case
run, a log file analysis to detect potential bugs is performed. The overview of our

approach is shown as Figure 2.
Monkey Log file
Analysis

Application ¢ Junit [T\
v
QCUTWD ’ Events ||| /—=
4 GUI
@ \[Events
Initial
I 4 Conditio
| Events v
== T el
C_ Activity4 | Events

Figure 2. O

IR\ Qg
4.1. Test Case Generation A \
In our approach, J;Uh&sed to g@ several classes of test cases based on source

%

code of Android gp ause activiti€s are the main entry points and control flow
drivers in Android\gprs»our tes eneration is based on activities.

We first ide activitie n‘application and then use the Activity Testing which
is shipped yiitf Androi K'in JUnit to generate test cases for each activity. Activity

m‘ ith JUnit and provides three kinds of testing:

® [nitial conditi g tests whether the activity is created properly.
® GUI testin hether the activity performs according to the GUI specification.
® State m ement testing tests whether the application can properly enter and exit

a state.
Above\%okinds of testing are used for identifying activity bugs. For more effective
GUI te

e used an event generation tool. For helping generate GUI events, the
ent generator, which comes with the Android SDK, was used. Monkey can

Once the test cases are generated, they would be run on the application through the
Dalvik VM. To monitor the execution of test cases, we configure the Dalvik VM to log
the details of each test case into a trace file. Our traces capture three kinds of events: GUI
events, method calls, and exceptions.

4.2. Log File Analysis and Bug Detection

Once test cases are generated for a certain application, we run the application on these
test cases and log the performance of each test case so that we can detect errors. With the

Copyright © 2016 SERSC 5

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.9 (2016)

log file, we use patterns to identify potential bugs. Each kind of errors has an associated
pattern, these patterns can indicate proper operation or bug.

Implementations of Activities consist of responding to events generated by users and
the system. Activity bugs stem from incorrect implementation of the Activity class, for
example, one activity might be destroyed in the wrong way so that it will make the
application crash. In practice, almost every Android application we analyzed has activity
bugs because it is hard to check whether each base function has been properly
implemented.

An activity has a life cycle described by a state machine shown as Figure 3, Hence
violations of this state machine lead to activity bugs.

Q Y

Figure 3. State Machlne$
Each activity can be in one of five state@ ive, Pau ?&p, Restore or Destroy. To

ensure a correct state sequence, the co dingu fined event methods should be
called in a valid order as specified b %ate ctivity base class contains event

methods that govern the life cycle act|V|ty owWs:

onCreate(): Called W@a tivity t created

onStart(): Called when ctivity E%s visible to the user
onResume(): Call en the arts interacting with the user

onPause(): Ca en the cukkent activity is being paused and the previous
act|V|ty is sumed

when @Itl ity is no longer visible to the user
alled fore"the activity is destroyed by the system

) ¢): Call n the activity has been stopped and is restarting again
The called elatlo en event methods are shown as Figure 4.

AC‘ Stfrts
Called when the activity creates visible to users

@O —/

.
e

Called when the Called when the activity in background

Called when the
activity destroy
or finish

activity again
comes in
foreground

Figure 4. Called Relations Between Event Methods

6 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.9 (2016)

The state machine as a specification and match event method calls from log file entries
against it. Violations of the state machine would be flagged as potential bugs. For
example, the correct state sequence Start-> Active-> Pause-> Restore-> Active-> Destroy
corresponds to a valid event method order onCreate()-> onPause()-> onResume()->
onDestroy().

For example, we found a new activity bug in ConnectBot. The bug manifests itself as
an onCreate() without a subsequent onPause(), which is a violation of the state machine
specification. The bug corresponds to a situation where the user sets up a default shell
host beforehand and then starts the application, which would crash the application. Figure
5 is a screen shot of the application crash when the scenario described above unfolds.

A Sorry! .
The application ConnectBot

(process org.connectbot) has

stopped unexpectedly Please V
try again. \

Figure 5. reensho XmectBot Activity Failure

Besides Activity
Android apps sho
activity. If de

our app ac can also detect event bugs and type errors.

prep ceive events and react to events in any state of an
fa|I to pr e proper implementations of event handlers associated
with certal the on can either enter an incorrect state or crash outright. In
our approach e can % at the application crashes when Monkey feeds it with an
unhandled event. Whi ecting type errors is quite simple, once the type error has been
triggered, a Class ception entry will appear in the log file.

ation approach turned out to be effective in practice. We report the number
found using our approach in Table 3. For each class of bugs we were able to
er bugs already reported (the Old columns) as well as new bugs that have not
reported yet (the New columns).

Copyright © 2016 SERSC 7

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.9 (2016)

Table 3. Old (Re-Discovered) Bugs and New (Not Previously Reported) Bugs

Application Activity bugs Event bugs Type errors
Old New old New Old New

Firefox Mobile
ADW Launcher
DealDroid
SMSPopup
XBMC Remote
AnkiDroid
ConnectBot
CSipSimple
CyanogenMod
GAOSP
IMSDroid
Rokon

w

NENROORNNNE
PNOONRORRELROO
O OO0OO0OO0OO0OONNEN
OrRrORrROORONWNO
POOORRFPROONNNE
ONRFRPOO0OO0OORELE A

We took each event sequence which our approach has found automatically and
it manually, through GUI interaction, to make sure the bug can actually be repr in
practice. We had reported the new bugs to the developers, two of the byQs e been

confirmed, while others are in the process of confirmation. % N %

Acknowledgments

This paper is granted by the national t prog\ f innovation and
entrepreneurship for undergraduates (No. 2015&6 006).
*

References ‘\ AN

[1]1 A. Zeller, “Why programs fail: a guide %natic x@Elsevier, (2009).

[21 A. Kumar Maji, K. Hao, S. Sultana gchi, “% izing failures in mobile oses: A case study
with android and symbian”, Progee of Software Rehability Engineering (ISSRE), 2010 IEEE 21st
International Symposium on 4(2010). .

[31 C. Hu and I. Neamtiu, “Auto g GU. t r Android applications”, Proceedings of the 6th
International Workshop o tomation Test, (2011).

[4] F. Belli, C. J. Budnik White, “Ev ed modelling, analysis and testing of user interactions:
approach and casest@esearch %es”, Software Test. Verif. Reliab., vol. 16, no. 1, (2006), pp. 3-

32.
odéling bug report quality”, Proceedings of the twenty-second

[5] P. Hooimeije . Weim@
IEEE/A’ ! national cozren on Automated software engineering, (2007).

[6] N. Bette gland S. Just, at makes a good bug report”, Proceedings of the 16th ACM SIGSOFT
International’Symposi undations of software engineering, (2008).

[71 JUnit, May 2010. h junit.org/.

[81 Monkey Ul/Appli xerciser, May 2010. http://developer.android.com/guide/developing/tools/

Authors

Yi Bie, is currently an undergraduate in the S College at Qingdao
University. Her main research interests include Electronic Commerce,
Android programming, digital media technology and data mining.

8 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.9 (2016)

Gengxin Sun, received his Ph.D. degree in Computer Science
from Qingdao University, China in 2013. He is currently an
Associate Professor in the School of Computer Science and
Engineering at Qingdao University. His main research interests
include digital media technology, Android programming, complex
networks, web information retrieval and data mining.

Sheng Bin, received her Ph.D. degree in Computer Science from
Shandong University of Science and Technology, China in 2009. She
is currently a lecturer in the School of Software Technology at
Qingdao University, China. Her main research interests include
digital media technology, Android programming, complex networks,

cloud computing and data mining. V’
I;

Xicheng Zhou, is currently an undergraduate in_th&, Intgrnational
College at Qingdao University. Hisymail\ résear erests include
Electronic Commerce, Android@ gramming, gital media

technology and data mining. O V

Copyright © 2016 SERSC 9

Internat ional Journal | of Multimedia and Ubiqguitous Engineering
Vol.11, No.9 (2016)

10 Copyright © 2016 SERSC

