
International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016), pp.1-10

http://dx.doi.org/10.14257/ijmue.2016.11.9.01

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2016 SERSC

An Empirical Analysis of Android Apps Bug and Automated

Testing Approach for Android Apps

Yi Bie
1
, Sheng Bin

2
, Gengxin Sun

1*
 and Xicheng Zhou

1

1*
Software Technical College of Qingdao University, Qingdao, China

2
International College of Qingdao University, Qingdao, China

1
rjxy@qdu.edu.cn,

2
binsheng@qdu.edu.cn,

1*
sungengxin@qdu.edu.cn

Abstract

Android platforms and its applications (apps) have gained tremendous popularity

recently, hence the reliability of Android apps is becoming increasingly important. Due to

the novelty of the Android platform, apps are prone to errors, which would affect user

experience and requires frequent bug fixes. In this paper, an empirical study on bugs in

some widely-used open-source Android apps from diverse categories such as media, tools

and communication were performed. Based on the findings of the empirical study, an

approach for automating the testing process for detecting Android apps GUI bugs was

presented. We show how the approach helped to re-discover existing bugs and find new

bugs, and how it could be used to prevent certain bug categories. Our empirical study and

automated testing approach have the potential to help developers increase the quality of

Android apps.

Keywords: Google Android; Android apps; empirical bug analysis; test automation;

bug reports

1. Introduction

Android platform and the apps that run on the platform have gained tremendous

popularity recently. A major draw of Android platform is its ability to run applications, it

leads to an increasing impetus for ensuring the reliability of Android apps. Reliability is

particularly important for sensitive apps such as online banking, business management,

health care and so on. However, the low barrier to enter the Android Market means apps

are subject to limited scrutiny before dissemination, allowing error-prone apps through

and therefore affecting user experience.

In this paper we focus on ensuring the reliability of Android apps. The first step

towards ensuring the reliability is to understand the nature of bugs and the bug-fixing

process associated with Android apps. The open-source nature of a great deal of Android

apps provides an opportunity to conduct empirical researches and provide a quantitative

basis for improving the quality of open-source Android apps.

The main contribution of our empirical analysis is that several metrics are defined to

understand the quality of bug reports. We conduct an investigation of the categories of

GUI bugs in Android apps and perform an in-depth study of GUI bugs in our examined

Android apps. We categorized all confirmed bugs in the bug database. To detect and fix

these categories of bugs, we proposed an automated test approach. Our approach uses a

combination of case and event generation with runtime monitoring and log file analysis.

Most existing tools and techniques for automating the testing have so far focused

mostly on desktop and server applications [1]. However, the physical constraints of

mobile devices would make mobile applications prone to new kinds of bugs. For example,

an Android application consists of activities, services, broadcast receivers and content

providers. It is very different from standard server applications or desktop applications.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

2 Copyright ⓒ 2016 SERSC

The tendency of mobile applications to have bugs is evidenced by their high defect

density [2].

This paper is organized as follows. Section 2 is the overview of Android platform and

Android apps. A bug empirical analysis on 24 popular open-source Android apps is

introduced in Section 3. An automated test approach is proposed in Section 4, we employ

test and event generators to construct test cases and events sequences, then these test cases

are run to the application. Once a test case is running, detailed information about the

application is recorded in the system log file and a log file analysis is performed to detect

potential bugs. For the effectiveness of our approach, in Section 5 we compared bugs

which we found by generating test cases with bugs reported by users. We detected most

bugs reported, and found new bugs which have never been reported.

2. Overview of Android Apps and Android Bugs

As shown in Figure 1, the Android platform is composed of 4 layers: Applications at

the top, the Application Framework layer that provides services to applications, the

Library/VM layer and the Linux kernel at the bottom.

Figure 1. 4 Layer Architecture of Android Platform

Our work covers the top three layers in Figure 1. To test programs running in the

Application layer, system services from the Application Framework layer and

instrumentation tools in the Dalvik VM are used.

There are four types of components used to construct applications in Android: Activity,

Broadcast Receiver, Content Provider and Service, which require specific management

rules and a particular lifecycle. Activities are focused user interfaces in which the user

interaction takes place. Only one activity can be active at a time. All visible portions of

applications are Activities. Services run in the background and do not interact directly

with the user. Other components can bind to a Service, which lets the binder invoke

methods that are declared in the target Service's interface. A Content Provider manages

data for a certain application and controls the accessibility of the data. It can be acted as a

mechanism for sharing information between applications. Broadcast Receivers listen and

react to broadcast announcements. They are triggered by the receipt of an appropriate

Intent and then run in the background to handle the event.

A description of typical bugs encountered in Android apps shows that frequent bugs

are due to incorrect management of the Activity component lifecycle [3]. This component

provides crucial functions for the application’s user interface and reacts to events

generated by users and other system components [4]. Incorrect management of these

events often results in wrong or unsatisfactory application behavior.

Activities are the main GUI components of an Android app, an activity error usually

occurs due to incorrect implementations of the activity protocol. Event errors occur when

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

Copyright ⓒ 2016 SERSC 3

the application performs a wrong action as a result of receiving an event. Dynamic type

errors arise from runtime type exceptions. Unhandled exceptions are exceptions the user

code does not catch and lead to an application crash. API errors are caused by

incompatibilities between the API version assumed by the application and the API version

provided by the system. I/O errors stem from I/O interaction. Concurrency errors occur

due to the interaction of multiple processes or threads. There are some bugs categorized as

other due to errors in the program logic.

Though our approach can be general enough to facilitate bug detection for all Android

components, in this paper we focus on bugs related to activities and events generated by

users and system.

3. Empirical Analysis of Android Apps Bug

To identify the most frequent Android bugs, the empirical study on 24 popular open-

source Android apps was performed. We chose Android apps from a wide range of

categories to reduce selection bias. At the same time, the Android apps that form the

target of our bug empirical study are available for free in Android Market, have high

download counts, which ensures we get a broad range of representative bugs.

In our empirical analysis, we mainly analyze the bug reports of Android apps. Some

prior work has shown that bug report quality critically affects software quality [5].

Empirical studies on desktop applications such as Mozilla and Apache have shown that

bug reports with certain qualities significantly help developers to understand the problem

and reduce the bug-fix time [6]. We define five metrics to measure bug report quality for

the Android apps we considered:

 Description Length, which counts the number of words in the bug description.

 Reproduce Steps, which represents the percentage of bug reports that have steps to

reproduce the bug in the bug description.

 Output Details, which represents the percentage of bug reports that contain details

of expected output and actual output.

 Additional Information, which represents the percentage of bug reports containing

additional information about the bug, besides the standard bug report.

 All Details, which measures the percentage of bugs that have all three details:

Reproduce Steps, Output Details and Additional Information.

High values of these metrics indicate high quality bug reports. In Table 1, we present

the values of all these metrics for each Android app.

Table 1. Bug Description Metrics

Application
Description

Length (words)

Reproduce

Steps (%)

Output

Details (%)

Additional

Information (%)

All Details
(%)

Firefox Mobile 323.91 0.02 0.12 N/A 0

ADW Launcher 116.50 31.71 28.99 13.55 10.03

DealDroid 327.09 49.46 47.08 9.29 8.86

SMSPopup 128.32 58.36 57.34 31.06 28.67

WiFiTether 153.39 80.94 74.04 46.51 44.36
XBMC Remote 157.69 60.86 58.38 23.38 21.56

AnkiDroid 136.26 32.43 26.05 12.76 11.30

CallMeter3G 95.99 42.02 40.28 15.32 13.90

ConnectBot 169.52 53.38 49.36 25.78 24.50

CSipSimple 152.97 62.92 57.75 38.72 36.49
CyanogenMod 281.16 74.55 0.19 10.04 0.02

GAOSP 153.62 53.46 48.85 11.35 11.35

IMSDroid 201.43 69.44 66.98 31.17 30.56

JustPictures 114.05 36.39 33.33 0 0

Rokon 209.78 62.90 49.38 31.73 30.01

My Tracks 157.23 38.13 33.11 9.76 8.97
OpenIntents 165.11 51.59 47.81 25.30 24.10

OsmAnd 140.05 37.88 30.88 9.53 8.81

OSMDroid 161.10 31.56 28.57 14.95 14.29

Sipdroid 200.28 50.37 48.27 28.65 26.23

SoftKeyboard 118.30 42.73 39.98 27.49 26.69

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

4 Copyright ⓒ 2016 SERSC

TransDroid 106.75 29.49 0.54 0.27 0.27

WebSMSDroid 93.97 51.47 45.89 19.85 18.92

CMIS 175.38 46.49 43.42 24.05 22.34

From Table 1 we can see that Description Length varies significantly, from a low of

93.97 words to a high of 327.09 words, and Reproduce Steps which contain steps to

reproduce the bug in the bug description varies from 0.02 to 80.94%. Note that the steps

to reproduce a bug are not mandatory but have the potential to increase the chances of the

bug being fixed quickly. Most Android apps have the highest percentage of bug reports

that contain information about the expected and actual output (Output Details). To

summarize, we found that bug reports of most Android apps have high quality. Bug

reporters usually provide long textual descriptions of the problem, steps to reproduce the

bug, and explanation of the difference between expected and the actual outputs.

To understand the effects of bug report quality for bug fixing time, a regression

analysis on the bug report quality metrics is performed. We observed that Description

Length is highly correlated with the other metrics. Therefore, to understand the effects of

bug report quality for bug fixing time, a linear regression with Description Length as the

single independent variable is performed. We found a negative correlation for the apps we

considered between Description Length and bug fixing time. The negative values of the

correlation coefficient indicate that Description Length is a good predictor of bug-report

quality and that high-quality bug reports get fixed faster.

In our empirical analysis, the bug counts categorized by bug type for each Android app

is also analyzed, the analysis results are presented in Table 2.

Table 2. Bug Categories and Bug Counts

Application

Bug category

Unhandled

exception
API I/O Concurrency Other

Firefox Mobile 1 0 0 0 4
ADW Launcher 2 0 0 0 6

DealDroid 0 1 0 0 4

SMSPopup 5 1 3 1 57

WiFiTether 0 0 1 0 3

XBMC Remote 2 1 0 0 8
AnkiDroid 3 0 4 0 14

CallMeter3G 0 0 1 0 2

ConnectBot 6 1 0 0 2

CSipSimple 0 2 0 0 5

CyanogenMod 4 1 0 0 3
GAOSP 2 0 0 0 2

IMSDroid 3 2 1 1 2

JustPictures 0 0 0 0 1

Rokon 2 1 0 0 5

My Tracks 2 0 0 0 1

OpenIntents 2 0 0 0 1
OsmAnd 1 0 0 0 1

OSMDroid 0 0 0 0 1

Sipdroid 1 7 0 0 1

SoftKeyboard 2 0 1 0 2

TransDroid 1 1 0 0 1
WebSMSDroid 0 0 0 0 1

CMIS 1 0 0 0 1

From Table 2 we can see, many errors are program logic related errors, some of which

can be found using standard techniques, such as static analysis or model checking. But

these techniques can't be applied directly to Android apps because of their structure and

libraries differ substantially. Therefore, we proposed an automated approach that can

detect a variety of Android bugs and show how it can be used to detect activity, event and

type errors.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

Copyright ⓒ 2016 SERSC 5

4. Automated Testing Approach for Detecting Android Apps Bugs

Our automated testing approach consists of automatic test case and event generation

tools to log file analysis. Firstly, JUnit [7] which is a Java test case generation tool is used

to generate test cases for Android apps. Because most Android apps are GUI-based, for

each test case, we may need to add some events which are used for simulating user

interaction to make the application move from one state to another. So we use Monkey [8],

an automatic event generation tool, to produce events in both random and deterministic

ways and feed these events to the application. Once a test case is running, detailed

information about the application is recorded in the system log file. After each test case

run, a log file analysis to detect potential bugs is performed. The overview of our

approach is shown as Figure 2.

Figure 2. Overview of Our Approach

4.1. Test Case Generation

In our approach, JUnit is used to generate several classes of test cases based on source

code of Android apps. Because activities are the main entry points and control flow

drivers in Android apps, our test case generation is based on activities.

We first identify all activities in an application and then use the Activity Testing which

is shipped with the Android SDK in JUnit to generate test cases for each activity. Activity

Testing works in conjunction with JUnit and provides three kinds of testing:

 Initial condition testing tests whether the activity is created properly.

 GUI testing tests whether the activity performs according to the GUI specification.

 State management testing tests whether the application can properly enter and exit

a state.

Above three kinds of testing are used for identifying activity bugs. For more effective

GUI tests, we used an event generation tool. For helping generate GUI events, the

Monkey event generator, which comes with the Android SDK, was used. Monkey can

generate random or deterministic event sequences and feed these events to the Android

application.

Once the test cases are generated, they would be run on the application through the

Dalvik VM. To monitor the execution of test cases, we configure the Dalvik VM to log

the details of each test case into a trace file. Our traces capture three kinds of events: GUI

events, method calls, and exceptions.

4.2. Log File Analysis and Bug Detection

Once test cases are generated for a certain application, we run the application on these

test cases and log the performance of each test case so that we can detect errors. With the

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

6 Copyright ⓒ 2016 SERSC

log file, we use patterns to identify potential bugs. Each kind of errors has an associated

pattern, these patterns can indicate proper operation or bug.

Implementations of Activities consist of responding to events generated by users and

the system. Activity bugs stem from incorrect implementation of the Activity class, for

example, one activity might be destroyed in the wrong way so that it will make the

application crash. In practice, almost every Android application we analyzed has activity

bugs because it is hard to check whether each base function has been properly

implemented.

An activity has a life cycle described by a state machine shown as Figure 3, Hence

violations of this state machine lead to activity bugs.

Figure 3. State Machine of an Android Activity

Each activity can be in one of five states: Active, Pause, Stop, Restore or Destroy. To

ensure a correct state sequence, the corresponding user defined event methods should be

called in a valid order as specified by the state machine. Activity base class contains event

methods that govern the life cycle of an activity as follows:

 onCreate(): Called when the activity is first created

 onStart(): Called when the activity becomes visible to the user

 onResume(): Called when the activity starts interacting with the user

 onPause(): Called when the current activity is being paused and the previous

activity is being resumed

 onStop(): Called when the activity is no longer visible to the user

 onDestroy(): Called before the activity is destroyed by the system

 onRestart(): Called when the activity has been stopped and is restarting again

The called relations between event methods are shown as Figure 4.

Figure 4. Called Relations Between Event Methods

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

Copyright ⓒ 2016 SERSC 7

The state machine as a specification and match event method calls from log file entries

against it. Violations of the state machine would be flagged as potential bugs. For

example, the correct state sequence Start-> Active-> Pause-> Restore-> Active-> Destroy

corresponds to a valid event method order onCreate()-> onPause()-> onResume()->

onDestroy().

For example, we found a new activity bug in ConnectBot. The bug manifests itself as

an onCreate() without a subsequent onPause(), which is a violation of the state machine

specification. The bug corresponds to a situation where the user sets up a default shell

host beforehand and then starts the application, which would crash the application. Figure

5 is a screen shot of the application crash when the scenario described above unfolds.

Figure 5. Screenshot of ConnectBot Activity Failure

Besides Activity bugs, our approach can also detect event bugs and type errors.

Android apps should be prepared to receive events and react to events in any state of an

activity. If developers fail to provide proper implementations of event handlers associated

with certain states, the application can either enter an incorrect state or crash outright. In

our approach, we can detect that the application crashes when Monkey feeds it with an

unhandled event. While detecting type errors is quite simple, once the type error has been

triggered, a ClassCastException entry will appear in the log file.

5. Testing Results

Our verification approach turned out to be effective in practice. We report the number

of bugs we found using our approach in Table 3. For each class of bugs we were able to

re-discover bugs already reported (the Old columns) as well as new bugs that have not

been reported yet (the New columns).

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

8 Copyright ⓒ 2016 SERSC

Table 3. Old (Re-Discovered) Bugs and New (Not Previously Reported) Bugs

Application Activity bugs Event bugs Type errors

Old New Old New Old New
Firefox Mobile 3 0 2 0 1 4

ADW Launcher 1 0 1 2 2 1

DealDroid 2 1 2 3 2 1

SMSPopup 2 1 2 2 2 1
XBMC Remote 2 1 0 0 0 0

AnkiDroid 1 0 0 1 0 0

ConnectBot 0 1 0 0 1 0

CSipSimple 0 2 0 0 1 0

CyanogenMod 1 0 0 1 0 0
GAOSP 2 0 0 0 0 1

IMSDroid 1 2 1 1 0 2

Rokon 2 1 0 0 1 0

We took each event sequence which our approach has found automatically and played

it manually, through GUI interaction, to make sure the bug can actually be reproduced in

practice. We had reported the new bugs to the developers, two of the bugs have been

confirmed, while others are in the process of confirmation.

Acknowledgments

This paper is granted by the national training programs of innovation and

entrepreneurship for undergraduates (No. 201511065006).

References

[1] A. Zeller, “Why programs fail: a guide to systematic debugging”, Elsevier, (2009).

[2] A. Kumar Maji, K. Hao, S. Sultana and S. Bagchi, “Characterizing failures in mobile oses: A case study

with android and symbian”, Proceedings of Software Reliability Engineering (ISSRE), 2010 IEEE 21st

International Symposium on, (2010).

[3] C. Hu and I. Neamtiu, “Automating GUI testing for Android applications”, Proceedings of the 6th

International Workshop on Automation of Software Test, (2011).

[4] F. Belli, C. J. Budnik and L. White, “Eventbased modelling, analysis and testing of user interactions:

approach and case study: Research Articles”, Software Test. Verif. Reliab., vol. 16, no. 1, (2006), pp. 3-

32.

[5] P. Hooimeijer and W. Weimer, “Modeling bug report quality”, Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineering, (2007).

[6] N. Bettenburg and S. Just, “What makes a good bug report”, Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of software engineering, (2008).

[7] JUnit, May 2010. http://www.junit.org/.

[8] Monkey UI/Application Exerciser, May 2010. http://developer.android.com/guide/developing/tools/

Authors

Yi Bie, is currently an undergraduate in the S College at Qingdao

University. Her main research interests include Electronic Commerce,

Android programming, digital media technology and data mining.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

Copyright ⓒ 2016 SERSC 9

Gengxin Sun, received his Ph.D. degree in Computer Science

from Qingdao University, China in 2013. He is currently an

Associate Professor in the School of Computer Science and

Engineering at Qingdao University. His main research interests

include digital media technology, Android programming, complex

networks, web information retrieval and data mining.

Sheng Bin, received her Ph.D. degree in Computer Science from

Shandong University of Science and Technology, China in 2009. She

is currently a lecturer in the School of Software Technology at

Qingdao University, China. Her main research interests include

digital media technology, Android programming, complex networks,

cloud computing and data mining.

Xicheng Zhou, is currently an undergraduate in the International

College at Qingdao University. His main research interests include

Electronic Commerce, Android programming, digital media

technology and data mining.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.9 (2016)

10 Copyright ⓒ 2016 SERSC

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

