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Abstract 

Thanks to their multiple sensors, the Android smartphones have drawn significant 

attention for supporting vehicular sensing apps. These apps usually require continual 

sampling of sensors to collect the events of driving. However, the standard garbage 

collection (GC) of the Dalvik virtual machine blocks these apps from collecting sensing 

information for hundreds of milliseconds, which leads to the failure of detecting vehicular 

events. To alleviate this problem, we present a scheme that proactively invokes the app-

driven GC to reduce the duration of blocking based on free heap memory ratio or 

periodic calling. The experimental results show that we can significantly reduce 75% of 

the blocking time. 
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1. Introduction 

Vehicular sensing applications (VSA) are becoming important functionalities in 

intelligent transportation systems. These applications provide various information about 

the road conditions which can be used by advanced driver assistance system (ADAS) or 

road authority. In VSA, each vehicle plays a role of a sensors in gathering, processing and 

sharing the location-relevant data such as road surface anomaly [1]. These applications 

require (1) high sampling-rate sensors to gather sufficient samples, (2) computational 

power to process the raw sensor samples and to detect target event, and (3) 

communication ability to share the event information. In this paper, we focus on the road 

surface anomaly detection applications, particularly speed bumps and potholes detection, 

in which the requirement of sensor sampling rate is critical. 

In recent years, the Android smartphones have become promising platforms for VSA 

[2-3]. They are usually equipped with GPS, accelerometer sensor, gyroscope sensor, and 

camera, which fulfill the requirements of high sampling rate in VSA. For example, they 

can provide accelerometer and gyroscope sample whose sampling rate is up to 200 Hz. 

Together with continuous improvement in their processing power and integration of 

various communication technologies such as Wi-Fi and LTE, they are becoming 

comparable with the dedicated hardware platform for VSA [4-5]. On the other hand, the 

availability of the Android smartphones has enabled a large-scale deployment of VSA 

where each vehicle on the road can become a sensing source. 

In the Android smartphone, VSA can be implemented as a module in the ADAS app. 

In the road surface anomaly detection, the accelerometer samples are continuously 

accessed and processed at high rate to detect the existence of speed bumps and potholes. 

The results of this detection can be used directly by the ADAS or can be sent to central 

server. 

However, apps in Android-based smartphones are regularly blocked by garbage 

collection (GC) of the Dalvik virtual machine (VM) which leads to consecutive sensor 

sample losses. In the Android smartphones, the GC reclaims memory space occupied by 
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objects that are no longer in use. When there is not enough free memory space for a new 

object, Dalvik VM automatically invokes GC to gather the unused memory space which 

is known as GC_FOR_ALLOC [6] and blocks the whole app during which 

GC_FOR_ALLOC runs. As a result, a vehicular sensing app may not get the sensor 

samples during the blocking time, which leads to the failure in road anomaly detection. 

There exists a few works [7-8] attempting to alleviate the blocking of GC by modifying 

the Android operating system (Android OS). In [7], the real-time patch is added to linux 

kernel of Android OS besides the Android app framework to support the real-time apps, 

therefore, the apps do not suffer from GC blocking. The authors of [8] suggest to modify 

Dalvik GC to reduce its blocking time. However, all of these works require to change the 

Android OS itself, i.e., they cannot be applied to existing Android apps. Moreover, all 

existing works in road anomaly detection on the Android smartphones have not 

considered the impacts of GC blocking on the detection performance. 

In this paper, we first address how the Android smartphone can be used to detect road 

anomalies. Then, we figure out the problem of road anomaly detection in the Android 

smartphones and propose two approaches to reduce the blocking time of GC by 

proactively calling the explicit GC which is known as GC_EXPLICIT. The free heap 

memory ratio approach invokes GC_EXPLICIT when free heap memory ratio is below a 

given threshold while the periodic calling approach invokes GC_EXPLICIT periodically 

with a given period. Since these approach uses the built-in functionality of the Android 

OS, it is applicable to existing Android apps. In addition, we attempt to find the optimal 

threshold and calling period in which the GC blocking time is low while GC does not 

frequently run. The experiment results show that, the optimal setting from our approaches 

reduces 75 % of the blocking time of GC. 

The rest of this paper is organized as follows: In Section 2, we describe the detection of 

road anomalies. Section 3 provides the detailed description of our approaches to reduce 

the loss of sensor sample. The experimental results are discussed in Section 4. Finally, we 

conclude our paper in Section 5. 

 

2. Vehicular Sensing in the Android Smartphones 
 

2.1. Detection of Speed Bumps and Potholes 

In this section, we describe the detection mechanism of speed bumps and potholes in 

the Android smartphone. There are several methods in the literatures to detect speed 

bumps and potholes using smartphone accelerometer sensors. They can be detected based 

on the different visual appearance [9] from the road surface, or based on the acceleration 

perpendicular to the ground surface, which is generated when the vehicle travels through 

these road anomalies [2-3]. The latter approach is suitable for smartphones since it 

requires less computational power. To simplify the description, we assume that the 

smartphone is mounted on a vehicle in the way that the direction of gravity vector has 

opposite direction with smartphone’s local x-axis. With this assumption, acceleration 

caused by speed bumps and potholes impacts mostly on the x-axis. The approach that we 

use in our app is based on peak-to-peak average acceleration value from accelerometer 

sensor. 

Figure 1 shows a detection example of speed bumps and potholes using accelerometer 

sensor. Figure 1(a) shows the x-axis acceleration value when the vehicle travels over a 

potholes. The interval TP that the vehicle crosses over the potholes is (4.4, 5.1) sec. 

Because of the vibration of the vehicle and smartphone mounting device, there is always 

oscilation in accelerometer value. Therefore, the change in acceleration from smartphone 

measument itself can not be used directly to indicate the existence of speed bumps. 
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(a) X-Axis Acceleration on Pothole 

 

(b) Peak-to-Peak Average Acceleration on Pothole 

 

(c) X-Axis Acceleration on Speed Bump 

 

(d) Peak-to-Peak Average Acceleration on Speed Bump 

Figure 1. Pothole Detection Using the Android smartphone 

However, the average value acceleration in one oscillation period reflects the actual 

change caused by speed bumps and potholes. We call this value as peak-to-peak average 

acceleration. 

Figure 1(b) shows the peak-to-peak average acceleration of the corresponding 

acceleration in Figure 1(a). We can see that there is a clear pattern when the vehicle enters 

and leaves the potholes. First, when the front wheels enter the potholes, the vehicle moves 

downward which means accelerating to the opposite direction of smartphone x-axis, when 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Database Theory and Application 

Vol.9, No.7 (2016) 

 

 

68   Copyright ⓒ 2016 SERSC 

the front wheels leave the potholes, the vehicle moves upward. When the rear wheels 

enter and leave the potholes, they create a similar pattern as front wheels. 

Similarly, Figure 1(c) and Figure 1(d) show the acceleration and peak-to-peak average 

acceleration when  the vehicle travels over speed bumps. The interval TB that the vehicle 

crosses over the speed bump is (50.2, 51.5) sec. A reverse pattern can be seen from the 

peak-to-peak average in Figure 1(d), except that the pattern is reversed. The reason is that 

the vehicle accelerate in the same direction of smartphone x-axis first and then the 

opposite direction when the wheels travel over speed bumps. 

In order to categorize a given period of road segment as the segment with speed 

bumps, with potholes or normal segment, a threshold-based or a machine learning 

approach can be applied to the pattern of peak-to-peak average acceleration. 

 
2.2. Continual Sensing of Speed Bumps and Potholes Detection 

To process each sensor sample, the vehicular sensing app needs to create several 

temporary objects which gradually fill up memory over time. Therefore, 

GC_FOR_ALLOC is regularly invoked by the Dalvik VM to clean up these objects. In 

the Android smartphones, GC_FOR_ALLOC is invoked when there is not enough free 

memory space to allocate a new object. During this time, the app is blocked at the object 

allocation command. As a result, vehicular sensing app cannot receive and process the 

sensor samples from the accelerometers during the blocking time of GC_FOR_ALLOC. 

Usually, the period of GC_FOR_ALLOC can be more than 100 msec. 

As described in the previous section, the detection of speed bumps and potholes 

depends on the pattern of peak-to-peak average acceleration measurement. If vehicles 

pass speed bumps or potholes during the period that GC_FOR_ALLOC executes, the 

pattern of peak-to-peak average acceleration may not be correctly recognized. In Figure 

1(a), blocking period of 100 msec means more than 14 % of TP. Especially, when these 

periods overlap with one of the highest or lowest value in Figure 1(b), potholes may not 

be detected. In this example, vehicle speed is below 5 m/sec which is relatively low speed, 

however, if vehicle speed is larger, the period that vehicle crosses the pothole is much 

smaller. As a result, 100 msec of blocking time may cover a much bigger ratio of pothole 

period, the problem of detection is even severer. 

 

3. App-Driven Garbage Collection 

In this section, we start by describing the difference between GC_FOR_ALLOC and 

GC_EXPLICIT. Then, we describe two approaches to proactively GC_EXPLICIT call: 

free heap memory ratio and periodic calling. As stated in the previous section, 

GC_FOR_ALLOC is invoked automatically when there is not enough memory to allocate 

an object. GC_EXPLICIT, on the other hand, is called by the app through System.gc() 

command. It runs on a different thread from the app, therefore, the app can still run in 

parallel with GC_EXPLICIT on smartphones with multi-core processors which are 

popular in the recent smartphones. As a result, the blocking time of GC_EXPLICIT is 

smaller than GC_FOR_ALLOC. 

To reduce the blocking time, we utilize the GC_EXPLICIT to gather the temporary 

objects of vehicular sensing app before the memory becomes full and GC_FOR_ALLOC 

is invoked. We proposed two approaches for utilizing GC_EXPLICIT: a free heap 

memory ratio approach and periodic calling approach. 
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Table 1. Experiment Smartphone Specification 

Phone Name S3 S3 Neo Note2 

Model SHV-E210L GT-I9300I SHV-E250L 

Android Version 4.4.4 4.4.4 4.4.2 

Processor core 4 4 4 

Processor frequency 1.4 GHz 1.4 GHz 1.6 GHz 

RAM 2 GB 1.5 GB 2 GB 

 

In free heap memory ratio approach, we schedule a Timer object to periodically check 

the ratio of free heap memory. Free heap memory ratio is calculated by accessing the 

amount of free heap memory using method Runtime.freeMemory() and total memory 

using method Runtime.totalMemory(). If the ratio is below a given threshold R, 

GC_EXPLICIT will be called. If the threshold R is set too high, the blocking time is 

smaller but GC_EXPLICIT will be called more frequently. On the other hand, the low R 

leads to less frequent run of GC_EXPLICIT, but there will be a possibility that 

GC_FOR_ALLOC is called before GC_EXPLICIT is called. In this case, there is little 

benefit of using GC_EXPLICIT. 

In the periodic calling approach, we schedule GC_EXPLICIT to run repeatedly every T 

period using a Timer object regardless of free heap memory ratio. The small T value is 

expected to cause shorter blocking time but GC_EXPLICIT runs more frequent. The 

larger T value may increase the blocking time since there are more objects to be freed but 

GC_EXPLICIT runs less frequent. In the meantime, GC_FOR_ALLOC may be invoked 

by Dalvik VM before GC_EXPLICIT. The optimal R and T values variate depending on 

smartphone model and are determined by the experiment results in the next section. 

 

4. Experimental Results 

In order to examine the performance of different app-driven garbage collection 

approaches, we conduct a set of experiments using the vehicular sensing app in Section 2. 

The set of experiment smartphones includes Samsung Galaxy S3, Samsung Galaxy S3 

Duo, and Samsung Galaxy Note 2. The detailed specification is given in Table 1. 

In free heap memory ratio approach, the threshold R is set to 5 to 20 %. In periodic 

calling,  the calling period T ranges from 60 to 360 sec. In each experment, the app will 

run for approximately 30 min. We investigate two performance metrics of the approaches 

in terms of GC blocking time and inter-GC execution period to find the optimal value. GC 

blocking time is the average blocking time caused by both GC_EXPLICIT and 

GC_FOR_ALLOC if existed. This metric indicates how good an approach can reduce the 

impact of GC blocking. On the other hand, inter-GC excecution period shows how 

frequent the GC runs. A good approach should simultaneously achieve a low GC blocking 

time and a high inter-GC execution period. 

Figure 2 shows the GC block time as well as inter-GC execution period for different 

free heap memory threshold R. We can see from Figure 2(a) that the larger R value leads 

to lower GC blocking time. The lowest blocking time is achieved at 20 %. At R=10 %, 

GC blocking time of S3 and Note 2 significantly reduces after this ratio. At these 

threshold, GC_FOR_ALLOC is replaced completely by GC_EXPLICIT therefore the GC 

blocking time relatively low and the same at 10, 15 and 20 %. In case of S3 Neo, this 

optimal range of threshold is 15 or 20 %. 
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(a) GC Blocking Time 

 

(b) Inter-GC Execution Period 

Figure 2. Inter-GC Execution Period and GC Blocking Time of Free Heap 
Memory Ratio Approach 

In Figure 2(b), we can see that inter-GC execution period reduces with the increasing 

of threshold R. Among the optimal values in Figure 2(a), R=10 % achieves the longest 

inter-GC execution time for S3 and Note 2. Since Ropt,1=10 % is the lowest threshold, it 

takes almost double the time to reach the threshold comparing to R=15 % and more than 

3 times comparing to R=20 %. In case of S3 Neo, the optimal value is Ropt,2=15 %. 

Figure 3 shows the GC blocking time as well as inter-GC execution period for different 

GC_EXPLICIT calling period T. We can see from Figure 3(a) that the larger T value 

leads to higher GC blocking time. The lowest blocking time is achieved at 60 sec. At 300 

sec, the GC blocking time of S3 and Note 2 significantly increases and keep at high value 

at 70 msec. This sudden change happens at 240 sec in S3 Neo. After these point, 

GC_FOR_ALLOC is invoked before GC_EXPLICIT is called therefore the GC blocking 

time is high. 
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(a) GC Blocking Time 

 

(b) Inter-GC Execution Period 

Figure 3. Inter-GC Execution Period and GC Blocking Time of Periodic 
GC_EXPLICIT Calling Approach 

In Figure 3(b), we can see that inter-GC execution period is the same with 

GC_EXPLICIT calling period until 300 sec for S3 and S Neo and 240 sec for Note 2. 

After that, inter-GC execution period is half of GC_EXPLICIT calling period at higher 

period since GC_FOR_ALLOC runs in between GC_EXPLICIT. At these points, the 

maximum  inter-GC execution period is achieved. From these results, we see that the 

optimal GC_EXPLICIT calling period Topt,1 of S3 and S3 Neo is 300 sec and Topt,2 of Note 

2 is 240 sec, since they outperforms the higher GC_EXPLICIT calling period in both GC 

blocking time and inter-GC execution period and has a double inter-GC execution period 

while slightly higher blocking time comparing to lower GC_EXPLICIT calling period. 

Next, we compare the performance of the optimal point in two approaches. We can see 

that the GC blocking time of Ropt,1 is about 20 msec and of Ropt,2 is 25 msec is almost 

similar as  the one of Topt,1 is about 25 msec and of Topt,2 is 20 msec. However, the inter-

GC execution time of the periodic approach is at least 4 times larger than free heap 

memory ratio approach. Therefore, we can conclude that periodic approach performs 

better and the optimal period value is 300 sec for S3 and S3 Neo and 240 sec for Note 2. 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Database Theory and Application 

Vol.9, No.7 (2016) 

 

 

72   Copyright ⓒ 2016 SERSC 

Moreover, the GC blocking time of 25 msec only overlaps 4 % of the pothole period in 

Figure 2(b). 

 

5. Conclusion 

In this paper, we propose the app-driven garbage collection to reduce the blocking time 

of GC_FOR_ALLOC in the Android smartphone. The solution is based on the built-in 

feature the Android smartphone called GC_EXPLICIT. We propose two approaches to 

call GC_EXPLICIT based on free heap memory ratio or periodic calling. We find optimal 

value in each approaches based on experimental results. The results show that the periodic 

calling approach outperforms the free heap space ratio approach in terms of inter-GC 

execution time. Moreover, the optimal value of periodic calling approach reduces 75 % of 

the GC blocking period and requires infrequent GC execution. 

From the Android version 5.0, the improvement of GC has resolved the problem of 

GC_FOR_ALLOC. However, the majority of current Android smartphones are below 

version 5.0, therefore, they have not yet benefited from these improvement. As a result, 

the proposed solution is still a viable method in near future. 
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