
International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016), pp.145-152

http://dx.doi.org/10.14257/ijmue.2016.11.8.16

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2016 SERSC

Research on Cloud Task Scheduling Algorithm of Particle Swarm

Optimization Algorithm Based on Fission Mechanism

Youwei Shao

School of Applied Electronics, Chongqing College of Electronic Engineering,

Chongqing, China

E-mail:

Abstract

Task scheduling and resource scheduling are the core issue in cloud computing.

Pointing at the premature problem in the scheduling algorithm of particle swarm, we

propose a scheduling algorithm of cloud task particle swarm based on “fission”

mechanism in this paper. The particle in traditional particle swarm algorithm gets

“fission” by the new algorithm in appropriate place, to get more kinds of the particles,

contributing to the particle swarm diversity, avoiding premature convergence of the

swarm. As the experimental result shows that, the algorithm in this paper has faster

scheduling efficiency than the FIFO and the PSO, also solves the premature problem in

PSO.

Keywords: cloud computing, particle swarm algorithm, fission, premature

1. Introduction

The appearance of cloud computing brought a tremendous change in IT industry

development ,users no longer have to spend much on expensive hardware, neither on the

problems as storage capacity, software upgrades, software maintenance etc., the cloud

computing SP will setup servers in cloud to offer all the service the users need [1]. As

cloud computing has several certain commercial properties, and needs to meet the

demands of different users, so the task scheduling issue in cloud computing environment

is a quite complicated but important problem. Currently, most cloud environment are

based on the Hadoop architecture, and its scheduling algorithm includes the FIFO (First

Input First Output),computing capacity scheduling algorithm and fair scheduling

algorithm[2-4],which can hardly meet the demands on the cloud computing task

scheduling issue. Therefore, academic circles have carried on the optimization and

improvement, and achieved certain results, especially to apply the bionic algorithm into

the Hadoop-based cloud platform, which makes good sense. Goyal optimized the task

scheduling issue in cloud computing with genetic algorithm, reducing the scheduling time

effectively [5]. Gsior improved the ant colony optimization and applied it into the cloud

environment, which also has good results in increasing the task scheduling efficiency

[6].Gupta applied particle swarm optimization (PSO) into the task scheduling issue in

cloud environment, compared with the above two methods, the PSO alleviates the

jobTracker load because of less steps [7], but causes “premature” and local optimum in

the task allocation process, which influences the task scheduling effect seriously, making

it an urgent problem [8].

The purpose of this paper is to improve the cloud task scheduling problem in PSO, to

achieve better effect.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

146 Copyright ⓒ 2016 SERSC

2. Scheduling Algorithm Based on “Fission” Mechanism

2.1. General Idea of Algorithm Design

There are two major deficiencies in traditional PSO:

One is to cause “premature ” in the optimization, which is because of insufficient

velocity update capability of each particle in late particle swarm optimization, making

particles gather tightly in some place and unable to search globally more detailed and in

greater extent. In terms of the swarm diversity, the diversity is insufficient at this time,

there is little difference between the particles, unable to promote the development of the

particle swarm.

The others is that the particle iterative update is in the synchronous mode, all the

particles need to update synchronously in each iteration to get information of other

particles, the next iteration never executes until the previous one finished, which means

iteration of all the particles must synchronously calculate the exchanging information

between particles(self best location and global best location),which will cause particles

losing their independence largely, information of the best particle can not be fully shared,

the convergence is slow.

Therefore, pointing at the above two shortages in PSO, we introduce “fission” into

PSO in this paper. “Fission” can maintain the swarm diversity effectively, avoiding

premature convergence in the algorithm.

2.2. Traditional PSO

Suppose there are m particles in the swarm, the dimension of the searching space is D,

then the velocity and location information of the particle i at time t are as formula (1) and

(2) show:

},,{ 21

t

id

t

i

t

i

t

i vvvv 
 (1)

},,{ 21

t

id

t

i

t

i

t

i cccc 
 (2)

In which,
t

iv
 indicates velocity of the i-th particle at time t,

t

ic
indicates location

information of the i-th particle at time t, they both have component of d.

According to the value of fitness function, the self best location and global best

location of particle i at time t are judged as formula (3) and (4) show:

},,{ 21

t

id

t

i

t

i

t

i cccc 
 (3)

},,{ 21

t

id

t

i

t

i

t

i gggg 
 (4)

The velocity updating formula of particle i at time t+1 is as follow:

)()(2211

1 t

id

t

id

t

id

t

id

t

id

t

id cgDccDvv  
 (5)

The location updating formula of particle i at time t+1 is as follow:
11   t

id

t

id

t

id vcc
 (6)

In the formulas, 1 , 2 indicate learning factors, 1D , 2D are random numbers between

(0,1).  is inertia weight, which plays an important role in global and local searching

capacity of the coordinated particle, a larger  helps the particle in global searching,and a

smaller  helps in local searching.

2.3. Fission

In traditional PSO, it uses formula (5) and (6) to iterative update the velocity and

location information of the particle, making it approach the optimal location gradually, to

get the optimal solution finally. If 01  , as the particle only considers about “global ”,

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

Copyright ⓒ 2016 SERSC 147

the convergence rate may be fast but easily trapped into local optimum, causing the

“premature” problem. If 02  , as the particle only considers about the self “inheriting”,

there will be no information communication between particles, the information sharing is

zero, which causes little chance to obtain solutions, also losing the meaning of PSO.

In traditional PSO, the particle considers about both the current self best location and

global best location, however, when the distance between the self best location and global

best location of a particle is too long, and the difference of their fitness function is quite

little, it proves that the current self best location and global best location are both

excellent solutions, the velocity updating formula of standard algorithm will lead to the

losing of the excellent solution. In order to avoid getting trapped into local optimum and

maintain the swarm diversity, the particle can be fission to two parts at this time, one part

moves towards the direction of the global best location, and the others is towards the self

best location, which can maintain the excellent solutions in the searching effectively,

increasing the swarm diversity, so to solve the “premature” problem fundamentally. The

two particles in “fission” uses the following new velocity updating formula:

)(11

1 t

id

t

id

t

id

t

id ccDvv  
 (7)

)(22

1 t

id

t

id

t

id

t

id cgDvv  
 (8)

Particle using formula (7) to update velocity will move towards the direction of the self

best location, and particle using formula (8) will move towards global best location.

The processing steps of the “fission”-based PSO are as follows:

Step 1, initialize the velocity and location of each particle. If the location of the particle

at time t is
t

ic
, then the self-best location is

t

ic
.The global best location

t

ig
 can be

obtained with fitness function.

Step 2, judge the relationship between the difference of the distance 1d -between
t

ic

and
t

ig
-and the fitness function and the threshold value.

When the distance is too long and the difference of the fitness function is small, it

proves that there is also an excellent solution far away from the current global best

location. In order to avoid being trapped into local optimum and maintain the swarm

diversity, the particle can be “fission” into two parts, one is moving towards the direction

of the global best location, and the other one is towards the self best location.

1 is the threshold value limiting the distance 1d between
t

ic
 and

t

ig
, 2 is the

threshold value limiting the difference between the fitness functions, we choose 2 to be

the fitness function tolerant error.

When 11 d and the difference is less than 2 , the particle is “fission” into two

parts. They will respectively move towards the global best location and self best location

with the different velocity updating formula (7) and (8).In other situations, we choose the

updating formula (5) in standard PSO.

Step 3, update the location of the particle with formula (6).

Step 4, judge whether fitting the end condition or not. If the difference of the fitness

functions is less than the tolerant error or reaching the maximum iterative times, the

iteration will be terminated and output the best solution. Otherwise, repeating step 2 and

step 3.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

148 Copyright ⓒ 2016 SERSC

2.4. Building the Cloud Task Scheduling Algorithm

2.4.1. Set Up the Objective Function and Fitness Function

In this paper, we set up a objective function besides the fitness function, which is used

to guide the moving track of the subtask, and be the standards to judge the self best

location and the global best location of the subtask, the larger the value of the objective

function is, the better the location will be. The fitness function is used to control the

loading balancing situation of the cloud resource pools, as the standards to judge whether

the whole task scheduling process terminates or not, the smaller the value is, the more

balancing the loading between resource nodes will be.

Finally, the objective function and fitness function are as formula (9) and (10) show:

)1(min ,
11

,, qi
wq

mapiim snfF


 
 (9)

)2(min ,
11

,. qj
wq

reduceijr snfF


 
 (10)

In which,  and  indicate weighting factor, mapif , is the number of the free Map task

slot on the Slave resource node the nearest to the subtask Map, reduceif , is the number of

the free Reduce task slot on the Slave resource node the nearest to the subtask

Reduce, qis ,1
 is the distance between the i-th subtask Map and the q-th Slaves resource

node, qjs ,2
 is the distance between the j-th subtask Reduce and the q-th Slaves resource

node.

2.4.2. Designing the Distance-Calculating Formula

As the location information of the subtask iterative updates in the space range, the

location information at some moment may be not the same as the location information of

the Slaves resource node. Therefore, in this paper, we estimate the merit of current

location of the subtask according to the distance information from the location to the

nearest Slaves resource node recorded in the table. The distance can be obtained with the

location information of the i-th subtask Map and the q-th Slaves resource node,

calculating with the following formula (11):





D

d

dqdtmqi locScs
i

1

2

,,,)(1

 (11)

Similarly, calculating the distance with the location information of the j-th subtask

Reduce and the q-th Slaves resource node, we can get formula (12):





D

d

dqdtrqi locScs
ji

1

2

,,,)(2

 (12)

3. Experiment and Analysis

In order to test the effectiveness of the cloud task particle swarm scheduling algorithm

based on “fission” mechanism proposed in this paper, we carried out the following

researches. The platform is PC, with Intel Celer 2.50Hz Dual-core CPU, 4G RAM,

Windows 7 OS, the cloud computing simulation environment is the CloudSim Platform.

In experiment, we build a cloud with 10 resource nodes, the resource allocations are

shown in Table 1.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

Copyright ⓒ 2016 SERSC 149

Table 1. Resource Allocations of the Cloud Nodes in Experiment

 CPU Memory Bandwidth

Node 1 Dual-core 2.0GHz 2.0GB 100M/s

Node 2 Dual-core 2.0GHz 1.0GB 100M/s

Node 3 Dual-core 1.0GHz 2.0GB 100M/s

Node 4 Dual-core 1.0GHz 1.0GB 100M/s

Node 5 Single-core 2.0GHz 2.0GB 100M/s

Node 6 Single-core 2.0GHz 1.0GB 100M/s

Node 7 Single-core 1.0GHz 2.0GB 100M/s

Node 8 Single-core 1.0GHz 2.0GB 100M/s

Node 9 Single-core 1.0GHz 1.0GB 100M/s

Node 10 Single-core 1.0GHz 1.0GB 100M/s

In experiment, we set up 4 scheduling task, the resource requirements are shown in

Table 2.

Table 2. Task Resource Requirements in Experiment

 CPU Memory Bandwidth

Task 1 2.0GHz 0.4GB 20M/s

Task 2 2.0GHz 0.2GB 20M/s

Task 3 1.0GHz 0.2GB 20M/s

Task 4 1.0GHz 0.1GB 20M/s

In experiment, we choose the FIFO and traditional PSO as the comparison algorithm of

the algorithm in this paper. The major parameter configuration of the improved PSO in

this paper is set up as follows:

8.0 , 1.11  , 1.12  , 6.01 D , 6.02 D , 25.0 , 75.0 .

Firstly, comparing the difference of scheduling time between the algorithm in this

paper and FIFO and traditional PSO, according to the tasks in Table 2, respectively

execute scheduling task 1, simultaneously schedule task 1, task 2, simultaneously

schedule task 1, task 2, task 3, simultaneously schedule task 1, task 2, task 3, task 4, the

difference between the three algorithms is shown in Figure 1.

Figure 1. Comparison of Scheduling Time in Three Algorithms

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

150 Copyright ⓒ 2016 SERSC

In Figure 1, it can be seen that as the number of the scheduling tasks increases, the

algorithm in this paper (Improved PSO) shows its advantage gradually, it costs less and

less time than the other two algorithm.

Next, we need to focus on testing after the improvement in this paper, whether the

IPSO avoids the premature problem in PSO or not. If premature appears, the iteration of

the scheduling algorithm will terminate untimely. The changing of fitness value with the

iteration times in IPSO and PSO is shown in Figure 2.

Figure 2. Comparison of Premature in PSO and IPSO

In Figure 2, Y-axis indicates the specific value of fitness function, X-axis indicates the

iteration times. It can be seen in Figure 2, PSO terminates in 12 times, which means

premature appearing. IPSO improved by the “fission” in this paper iterates 20 times,

avoiding the premature problem successfully.

4. Conclusion

Particle swarm optimization is widely used in the cloud computing task scheduling, but

the iteration is easy to be premature convergence. Pointing at this problem, we introduce

“fission” in this paper. In traditional PSO framework, we “fission” the particle in

appropriate place, promoting the swarm diversity, so to avoid the premature in iterative

algorithm effectively. As the experimental result shows that, the optimization in this paper

not only avoids the premature problem successfully, but has certain advantages in

scheduling time as well.

References

[1] K. A. Saranu and J. Suresh, “Intensified scheduling algorithm for virtual machine tasks in cloud

computing”, Advances in Intelligent Systems and Computing, vol. 3, no. 25, (2015), pp. 283-290.

[2] B. Saurabh, S. Santwana and D. Madhabananda, “A multi-objective cat swarm optimization algorithm

for workflow scheduling in cloud computing environment”, Advances in Intelligent Systems and

Computing, vol. 1, no. 3, (2015), pp. 73-84.

[3] A. C. Bartlett, A. A. Andales, M. Arabi and T. A. Bauder, “A smartphone app to extend use of a cloud-

based irrigation scheduling tool”, Computers and Electronics in Agriculture, vol. 111, no. 3, (2015), pp.

127-130.

[4] C. Divya and K. Bijendra, “An analysis of the load scheduling algorithms in the cloud computing

environment: A survey”, 2014 9th International Conference on Industrial and Information Systems

(ICIIS), Gwalior, India, (2014), pp. 15-17.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

Copyright ⓒ 2016 SERSC 151

[5] G. Sudhir, B. Seerna and S. Bhupinder, “Experimental comparison of three scheduling algorithms for

energy efficiency in cloud computing”, 2014 IEEE International Conference on Cloud Computing in

Emerging Markets, Bangalore,, India, (2014), pp. 15-17

[6] G. Jakub and S. Franciszek, “A decentralized multi-agent approach to job scheduling in cloud

environment”, Advances in Intelligent Systems and Computing, vol. 32, no. 2, (2015), pp. 403-414.

[7] G. Punit and G. S. Prakash, “Load and fault aware Honey Bee scheduling algorithm for cloud

infrastructure”, Advances in Intelligent Systems and Computing, vol. 328, no. 8, (2015), pp. 135-143.

[8] B. K. Reddy and F. Paul, “Load scheduling in a cloud based massive video-storage environment”, 2014

16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC), Timisoara, Lomânia, (2014), pp. 22-25

Author

Youwei Shao, Associate Professor, Chongqing College of

Electronic Engineering. Born in 1979, Mr. Shao graduated and got

master degree from Chongqing University, and his main research

interests are computational intelligence and Cloud Computing.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.8 (2016)

152 Copyright ⓒ 2016 SERSC

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

