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Abstract 

This work proposes a novel biologically motivated visual selective attention model for 

efficient visual searching, which is implemented by integrating three attention 

mechanisms: bottom-up attention, top-down attention, and spatial attention. Bottom-up 

attention generates salient locations by reflecting top-down biases as well as three 

primitive visual features: intensity, edge and color. Prototype-based object perception is 

proposed for top-down attention, in which a 3-D color histogram is applied to generate a 

prototype of the target object. And experience based spatial attention can determine 

acceleration to localize a target object, which is modeled by using memorized spatial 

location information updated by object-localization experience. In order to verify the 

performance of the proposed visual selective attention model, we apply the proposed 

model to a real application in pedestrian traffic signal detection, to be utilized as part of a 

blind guide system. The proposed selective attention model shows plausible performance 

in terms of accuracy and computation time while efficiently localizing pedestrian traffic 

signals. 

 

Keywords: Visual selective attention, Saliency map, Bottom-up attention, Top-down 
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1. Introduction 

The human vision system efficiently conducts searches of complex visual scenes, in 

which visual selective attention plays an important role, without fully searching the 

current visual field [1-7]. Spatial cues predicting the probable location of a target are 

commonly used as an operational manipulation of covert visual attention [2]. Human’s 

visual selective attention is a very complex process where many factors, such as visual 

saliency, goals, intentions, affection, experience, etc., are involved directly and/or 

indirectly [8-18]. However, it is obvious that the human brain utilizes not only visual 

features of an input scene but also memorized spatial information obtained from previous 

experience with efficient visual search. A strong relationship between visual working 

memory and selective attention has been revealed, in which attention is biased by what is 

currently on our mind [8]. 

Many visual selective attention models have been introduced for efficient processing of 

complex visual scenes [9-17]. A big challenge is the degree to which a visual attention 

model agrees with biological findings [1]. In the context of attention, biologically inspired 

models have resulted in higher accuracies in some cases [1]. In Desimone and Duncan's 

model, the biased competition view of a visual search proposes two general sources for 

the control of attention, in which bottom-up sources arise from sensory stimuli present in 

a scene, and top-down sources arise from current behavioral goals [9]. Itti et al. proposed 

a brain-like model to generate a saliency map (SM) [10], which has been considered a 

representative engineering model of biologically motivated visual selective attention. 
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Navalpakkam and Itti proposed a top-down attention model that has a biasing mechanism 

for a salient map based on the signal-to-noise ratio of color and orientation feature 

generated by a bottom-up process [11]. Park et al. introduced a bottom-up saliency map 

model considering mutual information minimization mechanism [12]. Walther and Koch 

also proposed a top-down attention model having a bias based on features generated from 

a bottom-up process [13]. Ban et al. proposed top-down attention reflecting a human 

affective factor based on a psychological distance mechanism [14]. Carmi and Itti 

proposed an attention model that considered seven dynamic features in MTV-style video 

clips [15]. Kim et al.'s top-down attention model reflected independent feature-based 

object perception and incremental knowledge generation [16]. All these proposed 

attention models have not considered spatial cue information for generating selective 

attention. Torralba et al. proposed a top-down attention model using spatial information 

[17], which may show poor performance for objects located in an unusual place even 

though it considered spatial information and it does not consider bottom-up attention. 

Most of the previous visual attention modeling research has been focused on the 

bottom-up component of visual attention [1]. However the field of visual attention still 

lacks computational principles for task-driven attention [1]. Thus, this work proposes a 

novel integrated visual selective attention model that can efficiently localize a target 

object by considering experience based spatial attention as well as top-down biased 

bottom-up attention and object perception based top-down attention altogether. 

The proposed visual selective attention model is developed by understanding and 

mimicking of the human brain's mechanism for visual selective attention. The proposed 

model consists of four parts. Bottom-up attention generates a saliency map by integrating 

primitive visual features, such as edge, intensity and color opponency, which are affected 

by top-down bias generated from target object perception. Thus, this bottom-up attention 

efficiently generates candidate areas for a target object. Top-down attention localizes 

target- object areas using a prototype-based pattern matching process. For target object 

perception, a 3-D color histogram is applied to represent a target object and Euclidean 

distance is utilized to measure similarity when deciding on the target object area [18]. 

Also, memory-based spatial attention plays a role by utilizing spatial cue relevant to target 

object location obtained from object localization experience. Memorized spatial attention 

can enhance the computation time for a visual search. Thus, the proposed model can 

enhance the performance of the visual search process and speed up processing time. 

These three attention components interactively work to generate the final selective 

attention, which is done by an integration and control aspect of attention. The proposed 

visual selective attention model shows plausible selective attention with high efficiency in 

terms of accuracy and computation time for target localization. 

This paper is organized as follows. Section 2 describes the proposed visual selective 

attention model, integrating bottom-up saliency, top-down object perception and spatial 

attention for an efficient visual search. The experimental results and conclusions follow in 

Section 3 and Section 4, respectively. 

 

2. Proposed Visual Selective Attention Model 

Figure 1 shows the brain areas and their functions related to visual selective attention 

as considered in the proposed model. The retina cells can extract edge and intensity 

information as well as color opponency as primitive visual features. The relativity of these 

extracted primitive visual features is extracted by on-center and off-surround mechanism 

of the lateral geniculate nucleus (LGN). These processed features go to the visual cortex 

(V1, V2, V4, IT) for further complex processing [4-9]. In general, the secondary visual 

areas play a role in form and color perception of an object, plus 3-D position and motion 

perception. The infero-temporal (IT) area located in a secondary visual area contains 

complex shape coding information, and generates corresponding activity according to 
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object form information [4-9]. The neurons in area V4 respond best to specific colors of 

objects, irrespective of lighting conditions [4-9]. Therefore, it is natural to assume that the 

IT and V4 areas play an important role in the detection and recognition of objects based 

on the pre-processed visual information in the primary visual cortex. It is well known that 

the hippocampus mainly works on memory formation about perceived objects. As well, 

the hippocampus is part of a network that develops associations between representations 

in different areas [8]. Many parietal areas, including the lateral intra-parietal (LIP), medial 

temporal (MT), intra-parietal superior (IPS), as well as temporal parietal junction (TPJ) 

contribute to integration and control of attention factors generated in many different areas, 

which are also very closely related to motor area for action generation [8]. 

 

 

Figure 1. Visual Selective Attention Control Process of the Human Brain 

Based on understanding biological mechanisms of the human brain, we propose a 

novel visual selective attention model, shown in Figure 2, that mimics the role of each 

area of the brain related to visual selective attention, as shown in Figure 1. In Figure 2, 

bottom-up processing mimics the roles of the retina, LGN and V1 areas in Figure 1. 

Saliency information based on relative primitive visual features plays a role in bottom-up 

attention generation. And the object perception region mimics the roles of the V4/IT area. 

Object perception results are utilized for top-down attention generation by reorienting the 

attention area. The process for memorizing spatial target location mimics the roles of the 

hippocampus and prefrontal cortex, which memorize characteristics and locations of 

objects. As well, the attention integration and control process mimics the roles of the MT, 

LIP, IPS areas and TPJ, which integrate every feature related to attention generation 

interacting with other attention factors to generate the final attention in a sequence. In 

Figure 2, R, G and B represent three color components of red, green and blue. And r, g, b 

and y denotes four real color components calculated using R, G and B preferred in [11, 

13]. As well, directed lines in Figure 2 show feed-forward paths for visual information 

processing in order to generate visual selective attention. Instead, directed dotted lines in 

Figure 2 present feedback paths for top-down biasing while generating visual selective 

attention. 
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Figure 2. Proposed Biologically Motivated Visual Selective Attention Model  

 

2.1. Bottom-Up Attention with Top-Down Bias 

In order to implement a human-like visual attention function, we consider the 

modification of a simplified bottom-up SM model [10, 12]. In our approach, we use the 

SM model that reflects the functions of the retina cells, the LGN and the visual cortex. 

Since the retina cells can extract edge and intensity information as well as color 

opponency, we use these factors as the basic features of the SM model [10, 12]. 

The function of the LGN and ganglion cell is implemented by the on-center and off-

surround operation via Gaussian pyramid images with different scales from 0 to the n-th 

level, whereby each level is made by the sub-sampling of 2
n
. Thus the operation is able to 

construct four basic features, such as intensity (I), edge (E), and color (RG and BY) [10, 

12]. This reflects the non-uniform distribution of the retina-topic structure. Then, the 

center-surround mechanism is implemented in the model as a difference operation 

between the fine and coarse scales of the Gaussian pyramid images [10, 12]. 

Consequently, three feature maps, such as intensity feature map ( I ), edge feature map 

( E ) and color feature map ( C ), can be obtained by the center-surround difference 

algorithm [10, 12]. For a detailed description on obtaining the three feature maps from an 

input image, refer to Itti et al. [10] and Par et al. [12]. 

Even in a bottom-up process, we can consider top-down bias since it has been revealed 

that modulation effects in the sensory pathway occur at all cortical levels and even in the 

thalamus [8]. Top-down attention derived by object detection can be utilized as top-down 

modulation information in order to make more relevant features of the localized object be 

considered more dominant than others. Top-down bias serves to enhance primitive feature 

based bottom-up attention by reflecting coincidence of top-down attention and features of 

the corresponding attention area. Therefore, if some primitive features at the location of 

attention coincidentally dominate when attention occurs at the location, then those 

features can be considered as important in forming attention. This mechanism can be 

modeled by increasing bias for the corresponding dominant feature, which might be 

implemented by a Hebbian learning mechanism. A top-down bias is calculated by Eq. (1) 

based on a Hebbian learning rule, where each bias for a corresponding feature map has a 

larger value if the corresponding feature map has larger values when target object 
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detection occurs. In Eq. (1) ix
and jx

are target object detection occurrence and 

dominant contributive feature activity, respectively, where ix
is 0 or 1, jx

is the average 

amplitude of a j-feature map at a target-object area and  is the learning rate. Therefore a 

more dominant contributive feature can have larger bias in order to obtain more plausible 

feature-based bottom-up attention. In the proposed model, the weight value of each 

feature map is updated by Eq. (2), where is a scaling factor. Accordingly, the weight 

cannot change if 
)(tbias j is zero, which means that there is no co-occurrence of target 

object localization. And a bottom-up SM is generated by the summation of these three 

feature maps multiplied by corresponding weights via Eq. (3). Each weight combination 

),,( CEI www
for the corresponding three feature maps plays a role in bias reflecting the 

characteristics of a target object. 
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2.2. Prototype-Based Object Perception for Top-Down Attention 

In the proposed model, we applied a 3-D color histogram prototype method to 

represent a target object, and Euclidean distance to measure similarity when deciding on a 

target-object area. An object perception model can vary according to the target application 

for more efficient target object dependent localization. The target application of the 

proposed model is pedestrian traffic light signals and sign board detection for pedestrians 

who are visually impaired, in which spatially distributive color features are dominant for 

object localization. This target application implicitly affected selection of the object 

perception model in this work. In order to generate a 3-D color histogram as a prototype 

of an object, the 3-D RGB space is divided into 3-D small voxels and a histogram is 

generated by concatenating the number of pixels in each voxel [18]. Each dimension is 

divided into five levels at the value range of each dimension, and then 125 (5x5x5) voxels 

are generated and a histogram of the object is generated by concatenating the number of 

pixels obtained from each voxel. Accordingly, a 3-D color histogram can plausibly 

represent color characteristics of an object. As well, the proposed model introduces a 

modified histogram method in order to reflect spatial characteristics of the color features 

of a target object. The object area can be divided into sub-areas, and each histogram can 

be obtained from each sub-area. Then, with Eq. (4), each histogram is concatenated to 

generate an extended 3-D histogram for the object, which is then normalized for scale-

invariant representation. By considering the extended 3-D histogram approach, we can 

overcome a weak point in histogram-based approaches that cannot reflect spatial 

distribution of features. Moreover, a prototype representation, prototypehist
, for an object is 

also generated by Eq. (4) and trained by updating its histogram reflecting the 

characteristics of a newly detected object, as shown in Eq. (5), where  is the training rate. 
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2.3. Spatial Attention  

Humans can utilize spatial location information, when trying to understand a visual 

scene, in order to efficiently process a complex visual scene. In a specific case, spatial 

location of an object is not so varied, but almost static, in the visual field. In such a case, 

spatial location information is very important for efficient visual target localization. That 

spatial location information can be obtained from repeatable attention experiences during 

localization of an object. By considering already experienced location information of an 

object, humans can generate a kind of virtual map to represent spatial information. Such a 

spatial map might be generated by accumulating the frequency of an object's appearance 

in each area of a visual field. An area more frequently localized can have higher 

attractiveness than less frequent ones. Thus a spatial map can be defined by a function of 

target object occurrence and previously trained spatial information for target object 

localization as shown in Eq. (6). A spatial map value for each location is calculated with 

Eqs. (7) to (9), where spatial map values of neighborhood locations centered at the target 

location are only increased. In Eq. (8),  is determined by the size of the neighborhood of 

a target location. This experience-based memorized spatial location information enhances 

object search time by reducing the candidate areas for localized target objects. 
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2.4. Integrated Selective Attention for Efficient Target Object Localization  

The human visual processing system can plausibly utilize three different mechanisms 

to efficiently localize a target object: primitive feature-based bottom-up attention, top-

down object related biasing, and spatial attention. In the proposed model, these three 

different functions are properly integrated in order to provide more efficient target object 

localization. Candidates for object detection are obtained by both bottom-up saliency and 

spatial attention. Spatial attention increasingly plays an important role in efficient target 

localization. Finally, target object localization is achieved by applying an object 

perception process in the localized candidate areas. Therefore candidate-area localization 

can be expressed by a function, )(g , of a bottom-up saliency map and a spatial attention 

map, as expressed in Eq. (10).  A location having a high value in both an SM and a spatial 

map will become the highest priority candidate for target object localization. As well, the 

final attention can be described by a function, )(h , of localized candidate areas and an 

object perception process as expressed in Eq. (11). If a target object is localized at a 

 nsubareasubareaobject histhisthist _1_ ;; 
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selected candidate location by the object perception process, the selected candidate 

location of the attention map has a high value. The result of )(h  generates an attention 

map, which is utilized for deciding the final selective attention. 

)),(_,),((),( ttt yxmapspatialyxSMgyxcandidates 
 

(10) 

)),(_,),((),(_ ttt yxperceptionobjectyxcandidateshyxmapattention 
 

(11) 

  

 

3. Experimental Results 

To verify the proposed visual selective attention model, we applied the proposed model 

to localization of pedestrian traffic signals since that is very important to the visually 

impaired. The proposed model is supposed to be utilized as a part of a blind guide system, 

as well. In order to set up the simulation, we obtained a road image database (DB) 

including pedestrian traffic signals captured during the day from 1 p.m. to 4 p.m., which 

is the target time of the guide system. In that DB, 55 images show red traffic signals and 

44 images show green traffic signals. Figure 3 and Figure 4 shows experimental results of 

the bottom-up SM generation part. Figures 3 (a) to (c) are three features maps ( I , E ,C ) 

obtained from an input image. Figures 4 (a) and (b), relatively, show an SM obtained by 

integration of non top-down biased feature maps and an SM from integration of top-down 

biased feature maps. As shown in Figure 4 (b), the top-down biased SM shows better 

performance in generating candidates of the target object, since the traffic signal area 

becomes more salient. But a non-traffic signal area becomes less salient, compared with 

those areas of non top-down biased SM shown in Figure 4 (a). Each area in a selective 

candidate area is represented by an extended 3-D color histogram. In this experiment, 

each area was divided into two sub-areas to reflect spatial characteristics of traffic signals, 

since the upper part and the lower part of a traffic signal typically have different features. 

Therefore, each area is represented by a 250-dimension histogram vector, with 125 

dimensions from the upper part and another 125 dimensions from the lower part of each 

area, since each dimension of a three dimensional RGB space is divided into five levels. 

Thus each histogram is generated by concatenation of the number of pixels in each of the 

125 voxels.  

 

   

(a) Intensity Feature Map (b) Edge Feature Map (c) Color Feature Map 

Figure 3. Three Bottom-Up Feature Maps 
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(a) Non Top-Down Biased SM (b) Top-Down Biased SM 

Figure 4. Comparison between Non Top-down Biased Saliency Map and 
Top-down Biased Saliency Map 

Figure 5 shows example experimental results from localizing red pedestrian traffic 

signals and green ones, in which yellow boxes are the candidate areas of the traffic signals 

localized by using a spatial attention map and a bottom-up saliency map. An extended 3-

D color histogram obtained from each candidate is compared with the prototype extended 

3-D color histogram obtained from the training target objects. If the similarity between 

two compared histograms is high, the selected candidate is classified as a target object 

area. As well, red and green boxes in Figure 5 are the finally localized pedestrian traffic 

signal areas via the proposed selective attention model. The proposed model shows 

successful localization of pedestrian traffic signals, even though there are many distracters 

having characteristics similar to traffic signals in the visual scenes.  

 

   

   

Figure 5. Examples of Pedestrian Traffic Signal Detection 

Table 1 shows that the proposed visual selective attention model generates better 

performance for both accurate recognition of pedestrian traffic signals and computation 

time. We compared the performance of the proposed model against a model without a 

bottom-up SM process, and against a model with only a bottom-up SM process without a 

spatial attention process. 
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Table 1. Performance of Three Visual Selective Attention Models for 
Pedestrian Traffic Signal Detection 

Correct target localization performance (# of images) 

Using the same top-down object 
perception method for each model 

Model without  
bottom-up  
attention 

Model with 
top-down biased 

bottom-up attention  
without spatial attention 

(Proposed model) 
Model with both 
top-down biased 

bottom-up attention 
& spatial attention 

 True  
Positive  

Red Signals 98.18 % (54)  100 % (55)  100 % (55)  

Green Signals 100 % (44)  100 % (44)  100 % (44)  

True  
Negative  

Red Signals 1.82 % (1)  0 % (0)  0 % (0)  

Green Signals 0 % (0)  0 % (0)  0 % (0)  

False 
 Positive  

Red Signals 0 % (0)  0 % (0)  0 % (0)  

Green Signals 0 % (0)  0 % (0)  0 % (0)  

Average  
computa-
tion time  

SM generation time -  t ~ 0.02sec t ~ 0.02 sec 

Object perception 
time 

0.273960 sec 0.147582 sec 0.086263 sec  

Post-processing time 0.003808 sec 0.003932 sec 0.004978 sec 

Total target  
localization time  

  0.277768 sec  0.151513 + t sec  0.091141 + t sec  

 

Three different models utilized the same prototype-based object perception model. The 

proposed model shows 100% accurate localization of pedestrian traffic signals and greater 

enhancement of computation time by 0.06 seconds per image. In Table 1, the saliency 

generation time t is about 0.02 seconds. In order to compare computation time under the 

same conditions, saliency generation time t is denoted separately. In the proposed model, 

the computation time can be reduced by considering a weighting mechanism for 

generating an SM, since the candidate areas were decided using SM. As shown in Figure 

4 (b), the SM weighted by top-down bias can inhibit non-target areas, which not only 

reduced candidate areas but also enhanced accurate localization of target objects by 

removing distracters by much more. Although the three different models use the same 

prototype based top-down object perception method, they show different computation 

times for object perception (0.274 sec, 0.148 sec, and 0.086 sec), since computation time 

for object perception depends on the amount of the candidate area to be perceived for 

target localization. This result suggests that the proposed model reduces candidate areas 

more than the other two models. Post-processing includes a decision on the final attention 

area based on comparison of the degree of similarity for each candidate area. As well, by 

considering a spatial attention process, the proposed model also enhances computation 

time much better as shown by the total target localization time in Table1, which means 

that the spatial attention process properly contributes to reducing the candidate areas.  
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Moreover, we applied the proposed model for traffic light signal detection to a video 

taken with a smart phone camera when a pedestrian crossed a road during the day from 1 

p.m. to 4 p.m. The proposed model successfully localized the traffic light signals under 

various situations with complex backgrounds when many people were crossing the road 

and when many cars were on the road. The proposed model successfully localized the 

traffic light signals with good localized performance, except for occluded situations. Even 

though the proposed model failed to localize a traffic signal owing to occlusion by other 

pedestrians, the proposed model showed plausible performance for guiding a pedestrian. 

Figure 6 shows example frames for green pedestrian traffic light detection during crossing 

of the road and for red traffic light detection while a person stands in a crosswalk waiting 

area. The proposed model considering spatial attention took about .12 seconds per frame 

on average, and the attention model without spatial attention took about 0.23seconds per 

frame on average. Thus, computation time was enhanced by about 50%, from which we 

can conclude that spatial attention plays an important role in reducing computation time. 

 

  

(a) Green Signal Detection               (b) Red Signal Detection 

Figure 6. Pedestrian Traffic Signal Detection during Crossing a Road 

We also applied the proposed model to localize two pedestrian sign boards on the 

pavement. By considering pedestrian sign board detection, the proposed model can guide 

the blind walking on the pavement until they arrive at the crosswalk. After successfully 

arriving at the crosswalk, the proposed traffic light localization model can guide people 

crossing the road. The proposed model shows plausible performance in pedestrian sign 

board detection, even though only two sign boards were considered. Figure 7 shows 

examples of pedestrian sign board detection. The proposed model enhanced computation 

time for localizing the pedestrian sign boards as shown in Table 2. Pedestrian sign board 

detection is important for assisting the visually impaired while walking on the pavement. 

In this work, even though we only considered two pedestrian sign boards, they are 

important sign boards. One indicates crossing caution, and the other is indicating crossing 

guidance. Fifty crossing caution sign boards and 50 crossing guide sign boards were 

utilized for this performance evaluation. The proposed model showed localizing time 

enhancement by 33%, on average, for computation time, with the same correct 

localization performance. Even though the object perception process of the proposed 

model was not optimized, the proposed model shows good performance for properly 

guiding the blind while walking on the pavement. 
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(a) Pedestrian Caution Sign Board         (b) Pedestrian Guide Sign Board 

Figure 7. Examples of Pedestrian Sign Board Detection 

Table 2. Performance of Proposed Visual Selective Attention Model for 
Pedestrian Sign Board Detection 

Correct target localization performance (# of images)  

Using the same top-down object 
perception method for each model 

Model with 
top-down biased 

bottom-up attention 
without spatial attention 

(Proposed model) 
Model with both 
top-down biased 

bottom-up attention & 
spatial attention 

 True  
Positive  

Caution sign boards  100 % (50) 100 % (50) 

Guide sign boards 100 % (50) 100 % (50) 

True  
Negative  

Caution sign boards 0 % (0) 0 % (0) 

Guide sign boards 0 % (0) 0 % (0) 

False 
 Positive  

Caution sign boards 0 % (0) 0 % (0) 

Guide sign boards 0 % (0) 0 % (0) 

Average  
computation 

time  

SM generation time 0.193458 sec 0.180287 sec 

Object perception time 1.736394 sec 1.113093 sec 

Post-processing time 0.001041 sec 0.000965 sec 

Total target  
localization time  

1.930893 sec 1.294345 sec 

 

4. Conclusion and Future Works 

A novel, biologically motivated, visual selective attention model for efficient visual 

searching is presented in this paper, which is aimed to be utilized as part of a blind guide 

system. The proposed visual selective attention model can efficiently localize a target 
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object by considering experience-based spatial attention as well as top-down biased 

bottom-up attention and object perception based top-down attention altogether. By 

considering experience-based spatial attention together with bottom-up saliency attention, 

the proposed model efficiently localizes candidate areas for target object localization, 

which provides performance enhancement. As well, the proposed model applied an 

extended 3-D color histogram as an object feature for object perception, which reflects 

both statistical property of color features and spatial distribution of color feature of the 

target object. Accordingly, the proposed model shows efficient target object localization 

performance in terms of both enhanced computation time and accuracy in target detection. 

For further work, additional experiments with various image DBs should be considered 

in order to make the proposed model a more general one to efficiently localize general 

target objects. As well, a more general object perception model with a deep learning 

approach based on a convolution neural network (CNN) is also considering for providing 

a more biologically plausible model. 
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