
International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.7 (2016), pp.159-168

http://dx.doi.org/10.14257/ijmue.2016.11.7.17

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2016 SERSC

Near Duplicate Document Detection using Document Image

1
Gaudence Uwamahoro,

1
Zhang Zuping*,

1
Ambele Robert Mtafya,

2
Weiqi Li,

1

and Long Jun

1
School of Information Science and Engineering, Central South University

Changsha, 410083, China
2
School of Electronic and Information Engineering, Xi’an Jiaotong University

Xian, 710049, China

gauwa2002@yahoo.fr, * zpzhang@csu.edu.cn, kakaambe@gmail.com,
liweiqi@stu.xjtu.edu.cn, jlong@csu.edu.cn

Abstract

With development, access of Internet has allowed storage of huge documents

containing information. Identifying near duplicate documents among those documents is a

major problem in information retrieval due to their dimensionality which leads to high

cost time. We propose an algorithm based on tf-idf method with importance and

discriminative power of a term within a single document to speed up search process for

detecting how documents are similar in collection. Using only 26.6% of original

document size, our method performs well on efficiency and memory usage as we have

reduced compare to the original one and that leads to a decreased time in searching

process for similar documents in a collection.

Keywords: near duplicate document, tf-idf, document image, document relevance,

keywords extraction

1. Introduction

As the number of digital documents continues to grow, the need for an efficient method

for getting the useful information needed has become apparently evident. Intervention of

information retrieval techniques and text mining has played a big importance to the

similar and near duplicate documents detection. The use of features from each document

can be used as documents content representation but the extraction of those features must

be taken in consideration to get the strong and useful features. There are a lot of words in

a document that don’t serve much in the comparison task and they consume memory

space during searching process. The existence and the weight of terms are the most

factors to consider during features selection. Identifying features will help to get a fast

way to find similar documents and related ones. There is a proliferation of similar and

almost similar text documents containing useful information because digital documents

are dynamic and continually changing. It is a challenge to get information needed by the

user because of the big volume of data, the search system must retrieve that information

efficiently and effectively to satisfy the user request as in [1]. Lack of speed in searching

for a query and relevance ranking is an obstacle. Practically the user needs the relevant

documents to his query but he/she is interested most on high relevant documents i.e.

documents returned first. Probably those documents are documents which contain terms

of query that have high frequency. Extracting keywords from a text is closely related to

ranking terms in the text by their relevance. In keywords extraction, there are different

approached for keyword extraction: simple statistic approaches, machine learning

approaches, linguistic approaches and combination of different methods. In this paper we

proposed tf.idf approach in statistic approach where the tf.idf weight evaluates the

importance of a term to a document in collection.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.7 (2016)

160 Copyright ⓒ 2016 SERSC

2. Related Works

The existence of near duplicate documents has the source from some changes

made on original document such as delete, insert and substitution as in [2]. There

are several approaches to detect those documents like edit distance, fingerprinting,

shingling, checksumming and bag of word, WPBADS algorithm and similarity

measures also are used as in [3-4]. Being efficient only for small size document is

the major drawback for those approaches. The shingling algorithm was proposed by

Broder et al. [5]. More shingles share two documents more documents are similar.

The problem with shingles is that the size of shingles is greater than the size of

document itself. That drawback of increasing the space required to store the index

leads to slow the time for serving result. To improve shingling method, Fetterly et

al. in [6] used five-grams as a shingle and sample 84 shingles for each document

then 84 shingles are built into six super shingles. Documents having two super

shingles in common are considered as near duplicates. Those issues in shingling

method incited researchers on the way to deal with the high dimensionality of

shingles.

Broder in [7] proposed to reduce the complexity of Shingling for processing large

collections, by the use of super shingles with meta-sketches. Charikar in [8]

proposed a method based on random projection of words in documents to detect

near duplicate documents and improved overall precision and recall . Henzinger

combined two algorithms; one proposed by Broder in [7] and algorithm proposed by

Charikar in [8] as in [9]. Henzinger improved on precision compared to using the

constituent algorithms individually. Most of the methods used have the same

shortcoming of being efficient only for small size. Fingerprinting method has been

proposed to overcome that drawback. Heintze and Manku invented the

fingerprinting technique where every shingle is fingerprinted as in [10] and

documents are near duplicates if one of the fingerprints matches. To convert

shingles in fingerprints it is used a method proposed by Robin in 1981. Xiao, W., L.

and J. in [11] proposed a new filtering technique by exploiting the ordering

information in prefix filtering. Lakkaraju, P.Gauch, S., Speretta and M., proposed a

method based on conceptual tree where they presented each document as a tree [12].

Near duplicate documents detection methods have main aim of evaluation of

similarity score to satisfy the user request. The user wants the system to return first

results he/she is interested in i.e. documents that contain almost similar to what is

looking for.

The most popular technique for ranking used is tf-idf and it has been used for

retrieving documents in [13]. The tf-idf measure combines two aspects of a word:

the importance of a word for a document and its discriminative power and it uses the

number of documents in which a word is used. The smaller the number, the more

distinguishing the word is. Sadakane in [14] proposed a method to compute tf-idf

scores of each retrieved document. However, what is lacking in his method is the

notion of top-k documents with the highest tf-idf scores. Extracting keywords from a

text is closely related to ranking words in the text by their relevance for the text.

Keywords extraction is based on the tf-idf measure. In [15], tf-idf was used for

discriminating non-keyphrases and highlights key-phrases which are particularly in

given document. The tf-idf score of a phrase is considered as a standard metric that

measures how specific a phrase is to a given document. Hannaneh and his group

used tf-idf for detecting email campaigns and conducted an experiment to test the

performance degradation when removing some unigrams of the vectors based on

their importance, judged by the weighting score as in [16]. In our method we use tf-

idf to measure the most important terms in each document which help to know how

documents in collection are similar to each other.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.7 (2016)

Copyright ⓒ 2016 SERSC 161

3. Proposed Method

The dimensionality of data containing the needed information is an obstacle in

information retrieval especially for detecting near duplicate documents from that huge

data. Several methods have been proposed to speed up search process by reducing their

size using different features selection like shingles. The words of document have different

importance, some are more important than others and can help to get want we need from

documents like knowing how documents are similar to each other and we call them

keywords in this paper. Extracting keywords from each document is a good strategy to

improve efficiency in near duplicate documents detection. The importance of a word in

document is obtained by tf-idf method to weight each word. This method is used in vector

space model where each document is represented as a vector of words weight; if a word

occurs in a document, its value in vector is non zero. We choose to use this method

because of its simplicity based on linear algebra, giving word weights besides the

commonly used binary values (0 or 1) thus enabling ranking document according to their

possible relevance. The aim of our proposed method is to increase efficiency by reducing

memory usage.

There are four main stages in our method: the first one is preprocessing where each

document is preprocessed by stopwords and punctuations removal, lowering each

character and stemming using Porter stemmer. The second is constructing image of each

document made of highest important words, and documents comparison and ranking

using Jaccard similarity as described in Figure 1.

Figure 1. Weighted Terms Filtering Method for Image of Document

3.1. Document Image

We proposed a method based on words(terms) with high weight in each document that

will consider the fixed number of the top words with high weight calculated by tf-idf

method to represent each document instead of using all words in document vector

representation and maintain the relationship with other documents we are comparing. The

ranking order of a document used as query against other document is remaining the same

as the one obtained when a document is compared to other documents using all words of

document. The document image (DI) allows the reduction the of document vector size

which leads to increase of efficiency.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.7 (2016)

162 Copyright ⓒ 2016 SERSC

3.2. Algorithm Description

The proposed method takes advantage of the importance of words in document to

speed up similarity calculation between pair of documents using Jaccard. We call

important words keywords terms in this paper and those keywords terms from a document

are combined to make an image of document (DI) used in documents similarity

calculation. The importance of a word (term) is measured using tf-idf technique that

calculates the weight of each term in document where tft,d (term frequency) of term t in

document d is defined as the number of times that t occurs in d and the weight of t is: wt,d

= 1+log10 tft,d, if tft,d > 0 and 0 otherwise. The idf (inverse document frequency) of t idft is

the number of documents that contain t and it is given by idft = log10 N/dft. Then the tf-idf

weight of a term t is the product of its tf weight and its idf weight. The weight of term t is:

wt,d = (1+logtft,d) ×log N/dft). As the documents in collection have different lengths i.e. the

number of terms in each document, that has impact on weights of the words (terms). In

our method we give chance to a term to be weighted in documents of equal size. We

consider a document to be a set of multi small documents of equal size called sentences

i.e. document di = {s1, s2, s3, …, sn} where s1, s2, s3,…, sn are the sentences with equal size,

n is the number of sentences in document di.

The proposed method is described as follows: the collection A is a set of m documents,

therefore A= {d1, d2, d3, …, dm}. Each document di is split into equal n sentences S with a

fixed minimum threshold t length where t is the number of terms in every sentence, hence

1

n

i id t . After getting sentences in every document, then we calculate tf-idf for each

term in S. Top-k terms with high tf-idf score from each sentence are picked to represent

the sentence in di where k is the number of terms with high tf-idf. Therefore
' '

1

n

i id t

where
'

it is the length/size of top-k in Si and
'

it ∈ it and we call
'

id
document image (DI) and

is used to represent di during the comparison between documents in order to know the

relationship between documents in collection. Representing a document by its image

helps to get a reduced document in size with important terms and that leads to a reduced

memory used by document during comparison and leads also to the low cost of times for

comparison. The proposed method has 3 parts: to determine the threshold for document

image representatives using Empirical-Determining Threshold Algorithm (EDTA),

identifying terms for image of document using KIA algorithm, and getting similarity

between documents.

To make image of each document in collection when we are looking how documents

are similar to the given document using Jaccard similarity, the minimum size of document

that can represent that document instead of using whole size of document is needed so

that the order of ranked document remains the same as the one using whole size of

document called original document. Our method aims also to captures the maximum

number shared terms between pairs of documents in comparison. Choosing the threshold

size for document image (top-n), we need to know the similarity between documents and

the ranking order of similarity scores based on the size of original documents and choose

reduced size of original document based on selection of high weight of terms that can

represent document as image. We found the threshold empirically using the following

steps:

Step 1: Get ranked similarity list from the original documents in collection (documents

with all terms without terms weighting using tf-idf).

Step 2: get ranked similarity list from representative images of documents. We

consider the minimum size (in terms) of image made by the union of 5 terms with high

weight calculated using tf-idf method from each sentence in document where document D

= {sentence1, …, sentence2, …, sentencen}, and the gape of 5 is used; i.e. first five terms

with high weight are used as images, then ten, twenty, thirty, up to the fixed maximum

terms.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.7 (2016)

Copyright ⓒ 2016 SERSC 163

Step 3: Compare the order of each representative image to the original order.

Step 4: If the order of similarity is similar the order of similarity of original documents,

then take that threshold as image. Here the threshold is the number of top terms (first

terms) with high weight from each sentence in each document and those terms can

represent that document as image

The algorithm for that method is describes as follow:

Empirical Determining-Threshold Algorithm (EDTA)
Input: collection of document D = {d1, d2, …, dn}

Output: threshold

1. Get list(ranked list)

Lo←sort (sim (Q, Di)) //where Q is document to compare with other documents,

Lo is the list of similarity scores using original documents and i = document1, 2,

3 …:

2. for x = [5, 10, …, max]

3. Get(Qx, Dx) // where x is the union of terms with high weight from each

sentence in each document.

4. Limg ←sort(sim (Qx, Dx)) // where Limg is the list of similarity scores using

images of documents

5. if True

6. OrderCompare (Lo, Limg)

7. x= threshold

8. end if

9. end for

Keyterms Identification Algorithm (KIA)

Input: D: document, n: number of words in each sentence

Output: list of keywords extracted DI

1. DI← empty list

2. Split D in s [] sentences of n equal size

3. for each sentences in si

4. L [] = calculate tf-idf for each word in sentences in di

5. Sort (L) ← take top n tf-idf

6. DI← DI ∪ L

7. end for

8. Return DI

Images Similarity Algorithm

Input: di, dj: documents in collection D where D is a set of documents images (DI)

Output: similarity score between two documents

1. for all (di, dj) ∈ D

2. sim = jaccard(di, dj)

3. end for

4. Return sim

Image Query Algorithm

Input: D: set of documents

Output: k document in D

1. for each documents di in D

2. simk←sim (k, di)

3. end for

4. Return sort (simk)

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.7 (2016)

164 Copyright ⓒ 2016 SERSC

3.3. Time Complexity

The operations considered most are the one for identifying document image and

documents comparison. The time spent for building image of document depends on the

input size of sentences in document. For each iteration, the algorithm calculates tf-idf of

terms in sentences and that operation time complexity is O(s) where s is the number

sentences in a document. Operation of calculating similarity between two documents is

O(t) where t is number of terms of documents to compare.

4. Experiment and Analysis

We are based on collection of 22 documents with different sizes, to get the similarity

between documents in the same group, by choosing one document as query against

documents in the group. Table 1 show the different documents used with their size.

Table 1. Documents Size

Did Tot.size D.image (% in

size)

No.sent Did Tot.size D.image (% in

size)

No.sent

d1 733w 211w(28.78%) 7 d12 316w 90w(28.48%) 3

d2 805w 230w(28.57%) 8 d13 441w 121w(27.43%) 4

d3 558w 149w(26.78%) 5 d14 472w 120w(25.42%) 4

d4 533w 150w(28.74%) 5 d15 866w 242w(27.94%) 8

d5 651w 180w(27.64%) 6 d16 820w 244w(29.75%) 8

d6 349w 90w(25.78%) 3 d17 546w 151w(27.65%) 5

d7 662w 181w(27.34%) 6 d18 931w 274w(29.43%) 9

d8 642w 180w(28.03%) 6 d19 768w 215w(31.71%) 7

d9 287w 61w(21.26%) 2 d20 874w 242w(27.68%) 8

d10 300w 30w(10%) 3 d21 631w 181w(28.68%) 6

d11 671w 61w(9.09%) 6 d22 736w 216w(29.34%) 7

We have five groups of groups where documents with different sizes are included in

documents ranking to know how documents are similar to the query. In Table 1,

abbreviations Did, Tot.size, D.image and No.sent represent respectively document

identification, total size (in terms) of original document after being preprocessed, total

size of document after being preprocessed and represented by top- terms selected based

on the tf-idf score, number of sentences in each document. Collection L is made of five

groups where L = {A, B, C, D, E} and each group with different documents, A = {d15, d22,

d8, d7, d3, d1, d14, d4, d9}, B = {d4, d6, d8; d3, d20, d7,d9}, C = {d5, d6, d22, d8, d21, d3, d4, d14,

d16, d13, d10, d12}, D = {d7, d5, d8,d15, d14, d2, d3, d4, d11}, E = {d8, d15, d7, d5, d4, d3, d2, d9,

d11, d12}. From the collection L with the size in terms of 13592, each document is split in

equal sentences of one hundred terms as minimum threshold and first 30 terms with high

weight calculated using tf-idf method in each sentence are joined to make image of that

document. By using images of documents the size of new collection used in our method is

only 3619 terms as 73.4% of the original of collection size has reduced. We found that

considering top-30 terms with high weight from each sentence in document as image of

document is a suitable minimum threshold of image document that can maintain the same

ranking order as original documents during comparison. As we take one document image

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.7 (2016)

Copyright ⓒ 2016 SERSC 165

as the query against the collection to know how documents are similar to each other and

know the highest similar to the query, our method show almost the same result in ranking

order as the result used when comparing original documents where the similarity is based

on Jaccard similarity measure. The documents similarity scores are seen in Table 2.

Table 2. Documents Ranking and Comparison

Q1 SQ d15 d22 d8 d7 d3 d15 d4 d9

d1 1

1

0.13

0.06

0.13

0.06

0.12

0.05

0.12

0.04

0.12

0.03

0.11

0.03

0.10

0.02

0.09

0.01

Q2 d6 d8 d3 d21 d7 d9

d4 1

1

0.19

0.09

0.13

0.06

0.10

0.05

0.10

0.05

0.107

0.029

0.075

0.024

Q3 d6 d7 d22 d8 d21 d3 d4 d14 d16 d13 d10 d12

d5 1
1

0.23
0.08

0.16
0.07

0.15
0.06

0.13
0.06

0.127
0.053

0.115
0.053

0.11
0.05

0.113
0.043

0.10
0.04

0.10
0.03

0.07
0.03

0.06
0.023

Q4 d6 d5 d8 d15 d14 d2 d3 d4 d11

d7 1

1

0.27

0.07

0.16

0.07

0.14

0.06

0.13

0.06

0.116

0.058

0.115

0.038

0.11

0.03

0.107

0.029`

0.098

0.030

Q5 d16 d7 d21 d5 d4 d3 d2 d9 d11 d12

d8 1

1

0.169

0.078

0.14

0.06

0.14

0.06

0.13

0.06

0.130

0.062

0.114

0.052

0.10

0.04

0.092

0.034

0.088

0.030

0.08

0.02

The following abbreviations are used in Table 2. Q1, Q2, Q3, Q4, Q5 represents the

queries which are different documents respectively d1, d4, d5, d7, d8. The values 1 in

second column SQ are the score of each query itself, d15, d22, ..., etc. in bold are

documents identifications. The similarity scores are from columns 3 where there are two

lines in each column. The first line represents the similarity score between query and

original document in bold in same column and the second line is the score between query

and document image of the original document. To detect near duplicate documents with

our method is faster than the method that uses original document dues to the use of small

size of each document during the comparison. Both methods calculate similarity by

considering intersection of common terms share by both documents on the total terms of

both documents using Jaccard. According to the queries in table 2, our method give

almost the same ranking order but there are some swaps on queries 2 and 4 where d9

comes before d7 with respectively scores 0.0247 and 0.0291 for the query 1. The second

swapping was on query 4, where d11 with 0.0309 comes before d4 with score 0.0291. As

is seen on Figure 2 there is a small difference between two methods on similarity score of

two documents due to the swap of documents in Q1 and Q4.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.7 (2016)

166 Copyright ⓒ 2016 SERSC

Figure 2. Similarity Comparison Order Using Original and DI Documents

Running time of proposed method is low which imply efficiency as is shown on Figure

3.

Figure 3. Time Comparison Between Using Original and DI Documents

5. Conclusion

Existence and weight of term plays a great role in feature selection and terms

have different importance in a document. In this paper, we proposed an efficient

method for near duplicate document detection by considering the importance of term

based on its weight in documents. With this method we shown that extracting

important terms in document plays a great role in document comparison by allowing

the use of small size of document in order to know how they are similar each other.

In our experiments we show that our method gives the same order of relevance

based on same similarity as the order obtained using the method that considers all

terms of document. The tf-idf method has been used to identify most important

terms from document based on their weight; only terms with high score that f it the

fixed threshold are selected to be candidate to be feature. By representing each

document by extracted terms with high weight as an image of document facilitates

getting similarity efficiently than using traditional method that considers all terms i n

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.7 (2016)

Copyright ⓒ 2016 SERSC 167

a document to appear during comparison process. We realized that it is possible to

get the suitable minimum threshold size of document i.e. image of a document also

called documents representation. That can be used during comparison and maintain

the same ranking order as original documents during comparison. In our

experiments, our method gives the same order of relevance based on same similarity

as the order obtained using the traditional method. The results show the high

efficiency by reducing document size and leads to the decreased space and

computation time.

The future work will be concentrated to the more robust and accurate methods for

near duplicate documents detection. To increase the effectiveness and efficiency, the

methods for feature extraction will be improved and fingerprinting methods can be

also suggested for documents dimensionality reduction. For feature selection, the

combination of tf.idf method and other features selection method can be used to

maximize the number of features in a document. Not only simple statistic methods

can be used but also the methods based on machine learning approach, SVM. With

SVM, a set of feature functions that take a document as input and produce feature

value will be used for documents representation. Our method should consider the

fingerprinting of features extracted from documents for documents dimensionality

reduction. The future method must capture the maximum features from documents.

Acknowledgements

Project supported the National Natural Science Foundation of China (Grant No.

61379109, M1321007) and Research Fund for the Doctoral Program of Higher

Education of China (Grant No. 20120162110077).We would like to thank the

anonymous referees for their helpful comments and suggestions

References

[1] R. Gupta, “Query Based Duplicate Data Detection”, on WWW (IJCSE) International Journal on

Computer Science and Engineering vol. 2, no. 4, (2010), pp. 1395-1400.

[2] V. E. and P. Rosso, “Detection of near-duplicate user generated contents: the SMS spam collection”,

Proceedings of the 3rd international workshop on search and mining user-generated contents, (2011), pp.

27-34.

[3] Y. S. Lin, T.-Y. Liao and S.-J. Lee, “Detecting near-duplicate documents using sentence-level features

and supervised learning. Expert System”, Appl., 2013, vol. 40, no. 5, pp. 1467-1476.

[4] Z. Zuping and U. Gaudence, “Efficient Algorithm for Near Duplicate Documents Detection”,

International Journal of Computer Science Issues, vol. 10, no. 2, (2013), pp. 12-18.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse and G. Zweig, “Syntactic clustering of the Web, Computer

Networks”, vol. 29, no. 8, 13, (1997), pp. 1157-1166.

[6] F. D. Manasse and M. Najork, “On the evolution of clusters of near-duplicate web pages”, In

Proceedings of the first Latin American Web Congress (LAWeb), (2003), pp. 3745.

[7] A. Z. Broder, “Identifying and filtering near-duplicate documents”, In COM, (2000), pp. 1-10.

[8] M. S.Charikar, “Similarity estimation techniques from rounding algorithms”, In Proceedings of 34th

Annual ACM Symposium on Theory of Computing, (Montreal, Quebec, Canada, (2002), pp. 380-388.

[9] M. Henzinger, “Finding near-duplicate Web pages: large-scale evaluation of algorithms”, In SIGIR,

(2006), pp. 284-291.

[10] N. Heintze, “Scalable document fingerprinting”, Proceedings of the 2nd USENIX Workshop on

Electronic Commerce 216, (1996), pp. 191-200.

[11] C. Xiao, W. Wang, X. Lin and J. X. Yu, “Efficient Similarity Join for Near Duplicate Detection”,

Beijing, China, (2008), pp. 131-140.

[12] L. P. S. Gauch and M. Speretta, “Document similarity Based on Concept Tree Distance”, Proceedings of

Nineteeth ACM conference on Hypertext and Hypermedia, Pitteburgh, PA, USA, (2008), pp. 127-132.

[13] W. K. Hon, R. Shab and S. B. Wu, “Efficiency Index for Retrieving Top-k. Most frequent Documents”,

Journal on Discreet Algorithms, vol. 8, no. 4, (2010), pp. 402-417.

[14] K. Sadakane, “Succinct representations of lcp information and improvements in the compressed suffix

arrays”, in: Proceedings of Symposium on Discrete Algorithms, (2002), pp. 225-232.

[15] Y. H. Kerner, Z. Gross and A. Masa, “Automatic extraction and learning of keyphrases from scientific

articles”, in Computational Linguistics and Intelligent Text Processing, vol. 3406, (2005), pp. 657-669.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.7 (2016)

168 Copyright ⓒ 2016 SERSC

[16] H. Hajishirzi, Y. W. Tau and A. Kocz, “Adaptive Near-Duplicate Detection via Similarity Learning”,

Proceedings of SIGIR, vol. 10, (2010), pp. 10-17.

