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Abstract 

We establish a new model of privacy-preserving one-class support vector machine 

(SVM) based on vertically partitioned data. Every participant holds all the data with a 

part of attributes. They apply different random matrices to establish their own kernel 

matrix. By sharing these partial kernel matrices, we construct a global kernel matrix and 

establish linear and nonlinear privacy-preserving models. Experimental results on 

benchmark data sets verify the validity of the proposed models. 
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1. Introduction 

Data mining, as a powerful technique, has received significant attention. It can extract 

the valuable information from a large amount of data. Usually, the data contains a great 

deal of sensitive information, and it should not be revealed. Therefore, the privacy 

preservation technique is very important in the data mining. 

Support Vector Machine (SVM) [1], based on the statistical learning theory, earns 

success in many aspects ranging from machine learning, data mining, and knowledge 

discovery and so on. It can effectively solve the traditional difficult problems, such as 

over-fitting and dimensional disaster problems. With the rapid developments, many 

branches of the SVM algorithms have been studied, which include the one-class SVM [2-

3]. Schölkopf et al. [2] presented a method to adapt the SVM algorithm for one class 

classification problem. It only uses one class for training, instead of multiple classes. The 

core idea of one-class SVM is to find the maximum margin hyperplane between the 

training points and the origin. Recently, there have been more and more researches on 

one-class SVM [4-7]. One-class SVM has been applied in various fields, such as 

ecological modeling [8], text clustering [9] and so on. On the other hand, the studies of 

privacy-preserving SVM (PPSVM) [10-12] have attracted a growing attention. Hwanjo yu 

et.al applied secure multi-party computation to develop privacy-preserving model [10]. 

Based on reduced SVM (RSVM) [13-14] and random matrix, Mangasarian et al. have 

established PPSVM models [11-12].  

In this paper, we propose a privacy-preserving one-class SVM based on the vertically 

partitioned data. We introduce the random matrix [15] to make the privacy-preserving 

model. Every participant holds all the data with a part of attributes. They apply different 

random matrices to establish their own kernel matrix. By sharing these partial kernel 

matrices, we construct a global kernel matrix and establish linear and nonlinear privacy-

preserving models. Experimental results on benchmark datasets confirm the validity of 

the proposed algorithms.  

The paper is organized as follows. Section 2 introduces one-class SVM. In Section 3, 

we establish the linear and nonlinear privacy-preserving one-class SVM models. Section 

4 presents the experimental results on benchmark datasets. Finally, section 5 gives the 

conclusions. 
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2. One-Class SVM 

Consider the training set  1 2, ,..., lx x x X , where X  is the input space. One can 

formulate one-class SVM as follows. 
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Where ( )   is a nonlinear map from the input space to the feature space,  (0,1]   is a 

parameter which can control the fraction of outliers and the fraction of support vectors. In 

practice, the above optimization problem can be solved by its dual: 
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Where ( , )K    is a kernel function. The optimal normal vector is given 

by
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Where 
i  is the solution of the dual problem and training samples 

ix with non-zero 

i are support vectors. Select *

j from the components of   in the interval  0,1/ l , 
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3. Privacy-Preserving One-Class SVM 

In this section, we present linear privacy-preserving one-class SVM (VLPPOCSVM) 

and nonlinear privacy-preserving one-class SVM (VNPPOCSVM) based on vertically 

partitioned data. Denote A  a real l n matrix, which is shown in Figure 1. There are 

N data sets
1 2, ,..., NA A A , where 

iA  is an 
il n  matrix, which is the i -th column or i -th 

block of columns of A . 
iA  is the data that is held by the i -th participant, and it contains 

only a part of attributes.  
1 ... Nn n n   . Then

1 2( , ,..., )NA A A A . Denote 

1 2( , ,..., )NB B B B    an n k  random real matrix, where 
iB  is an 

in k random matrix 

with rank k . According to [16], we know that such 
iB exists. When , nx y R , ( , )K x y  is a 

real number, ( , )K x B  is a row vector in 
kR , and ( , )K A B  is an l k  matrix. 
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Figure 1. Vertically Partitioned Data 

 

3.1 Linear Privacy-Preserving One-Class SVM 

First we propose a linear privacy-preserving one-class SVM. Suppose w Bu . We 

formulate the privacy-preserving model for one-class SVM as follows. 
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The optimal normal vector is given by 

                        
1
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where 
*  is the optimal solution of (11). Select * (0,1/ )

j
l  from the components 

of
* . According to (7), we get the corresponding 0j  . Thus by (9) and (10), we have 

1 1 2 2( ... ) 0N N jA B A B A B u      . Hence, we get 

* *

1 1 2 2( ... )N N jA B A B A B u                                  (13) 

The decision function is                                                               

                * * * *

1 1 2 2( ) sgn( ) sgn ... N Nf x x Bu x B x B x B u                        (14) 

Where  1 2, ,..., , , 1,2,...,jn

N jx x x x x R j N      . 

Linear algorithm 

(1) All N  participants generate their own random matrix in k

iB R


 with rank k , 

1,2,...,i N . 

(2) Each participant i makes its linear kernel
i iA B  and 

i iB B public, and does not reveal 

iA and iB . 

(3) Given parameter  , solve the quadratic programming (11) and get the optimal 

solution * . 

(4) Calculate (12) and (13) to get *u and * . 

(5) Each participant provides 
i ix B for a new sample, compute (14) to assign a new 

sample. 

 

3.2 Privacy-Preserving Nonlinear One-Class SVM 

In order to extend the linear model to the nonlinear case, we express w  in terms of the 

mapped 
1 2,...,( , ), 1,...,i i i ikB z z z i N   as follows. 
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Where , 1,...,irA r l is the r -th row of 
iA .The Lagrangian function of (16) is 
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solved by its dual: 
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Then we get 

  * 1 *( , ) ( , )u K B B K A B 
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Where *  is the optimal solution of (27). Select (0,1/ )j l  from the components 
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Hence, we get 
* *( ( , )) jK A B u                                                               (29) 

The decision function is 

  

* *

* *

1 1 2 2

( ) sgn( ( , ) )

sgn ( , ) ( , ) ... ( , )N N

f x K x B u

K x B K x B K x B u







  

 

    
                                   (30) 

Where          1( , ) ,...,i i i i i ikK x B x z x z        
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Nonlinear algorithm 

(1) All N participants generate their own random matrix in k

iB R


 with rank k . 

(2) Each participant i makes public its nonlinear kernel ( , )i iK A B and ( , )i iK B B , and 

does not reveal 
iA and 

iB .  

(3) Calculate ( , )K B B  according to (17), and compute ( , )K A B  by (19).  

(4) Given the parameter , solve the optimization problem (27) and get the optimal 
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solution * . 

(5) Calculate (28) and (29) to get *u and * , respectively. 

(6) Each participant provides ( , )i iK x B  for a new sample n

ix R , compute (30) to 

assign a new sample. 

 

4. Experiments 

In order to test the validity of the proposed algorithms, we compared vertically linear 

privacy-preserving one-class SVM (VLPPOCSVM) and vertically nonlinear privacy-

preserving one-class SVM (VNPPOCSVM) with linear and nonlinear OCSVMs by 

experiments on a collection of six benchmark data sets from UCI Machine Learning 

Repository,  which are Heart, Ionosphere, Bupa, WDBC, Pima and German. Table 1 gives 

the description of these data sets. For each data set, the positive class was chosen as the 

target class and the negative class as outliers. 

Table 1. Description of Benchmark Data Sets 

Data set DataNum Attribute Positive instances Negative instances 

Heart 270 13 150 120 

Ionosphere 351 34 225 126 

Bupa 345 6 200 145 

WDBC 569 30 357 212 

Pima 768 8 500 268 

German 1000 24 700 300 

 

First, we divided the data into several parts according to the attribute. For example, in 

the first column of Table 2, the number “5” indicates that we divided the Heart data into 5 

parts
1 5,...,A A , where 270 2

1 4,...,A A R  , 270 5

5A R  . This simulates that there are 5 

participants and they own the part data sets
1 5,...,A A , respectively. For each data set, two 

kinds of grouping were given, shown in Table 2.  

Table 2. Data Grouping 

 Heart Ionosphere Bupa WDBC Pima German 

Data grouping 5 5 5 5 5 5 

 4 11 2 10 2 8 

 

We selected positive samples of each data set as the training set and used the ten-fold 

cross validation method for parameter optimization. All the positive samples were 

randomly divided into 10 disjoint subsets
1 2 10, ,...,s s s , with each subset of roughly equal 

size, and then 10 iterations were operated. 
1 2 1 1 10, ,..., , ,...,i is s s s s 

were the training sets for 

the i -th iteration process;  
is  and all negative samples were used as the test samples. At 

i -th iteration, we got the misclassification point number  
im  and calculated the iterative 

error ratio im
miR  , where m  is  the  number of the test samples. At last, we got 

1 2 10, ,...,R R R and their average ratio after 10 iterations: 

                                                                            
10

1 10

i

i

R
r



 ,                                                         (31) 

Where r  is an evaluation index of model. In addition, we adopted G-means as another 

evaluation index.  

G-means= acc acc                                           (32) 
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TP FN

 


 

TN
acc

TN FP

 


                                                       (33) 

Where TP  is the number of positive samples which are predicted as positive samples; 

FN  is the number of positive samples which are predicted as negative samples; TN  is 

the number of negative samples which are predicted as negative samples; FP is the 

number of negative samples which are predicted as positive samples. The higher G-means 

is, the higher acc and acc . The parameter   was chosen from {0.1,0.2,...,1}  in the 

models.  In nonlinear model, the Gauss kernel function 2( , ) exp( 2 )K x x x x      was 

employed. The optimal parameters * *( , )  were chosen 

from 6 5 6{0.1,0.2,...,1} {2 ,2 ,...,2 }  . 

Table 3 reports the experimental results of two linear models VLPPOCSVM and linear 

OCSVM. Note that for each data set, our method VLPPOCSVM completed two sets of 

experiments. For example, the lines of VLPPOCSVM (5) and VLPPOCSVM (4) for 

Heart data set show the results of VLPPOCSVM when there are 5 and 4 participants, 

respectively. From Table 3, we can see that the error ratios of two linear models are 

similar except that the error ratios of linear OCSVM are lower on two data sets. G-means 

values of VLPPOCSVM and linear OCSVM are approximate. We note that unlike 

OCSVM, in VLPPOCSVM model, the data multiplied by random matrix instead of real 

data was used to do experiments. The VLPPOCSVM model has the effect of privacy 

preservation. 

Table 4 shows the results of the error ratios and G-means values of two nonlinear 

models VNPPOCSVM and nonlinear OCSVM. Comparing the two nonlinear models, we 

conclude that the error ratios of VNPPOCSVM and nonlinear OCSVM are almost nearly. 

The G-means values of VNPPOCSVM are slightly lower than those of nonlinear OCSVM. 

However, we notice that unlike nonlinear OCSVM, the kernel matrix generated by the 

original data was not used in VNPPOCSVM model to solve the one class classification 

problem. Instead, the whole kernel matrix employed by VNPPOCSVM is protected by the 

random matrices, which makes an influence on the classification accuracy.  But the gap 

between the two models is very small. The VNPPOCSVM model has the effect of privacy 

preservation. 

 

5. Conclusion 

We have presented two privacy-preserving models VLPPOCSVM and VNPPOCSVM 

to solve one class classification problems. The different random matrices are employed to 

calculate the participants' kernel matrices. For linear case, each participant makes public 

only the data multiplied by the random matrix instead of the real data. For nonlinear case, 

the participants generate the kernel matrices by their private random matrices. A global 

kernel matrix can be generated by the combination of these partial kernel matrices. Partial 

kernel matrix can protect the privacy of the participants, and the global kernel matrix can 

ensure the classification accuracy. Experimental results indicate that VLPPOCSVM and 

VNPPOCSVM not only have good classification accuracy, but also realize the data 

privacy preservation. 
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Table 3. Experimental Results of VLPPOCSVM and Linear OCSVM 

Data  sets Algorithm 
*  

r  G-means 

Heart OCSVM 1.0 0.1113 0.7235 

 VLPPOCSVM(5) 0.9 0.2237 0.7072 

 VLPPOCSVM(4) 1.0 0.2326 0.7091 

Ionosphere OCSVM 0.9 0.1480 0.7348 

 VLPPOCSVM(5) 1.0 0.1459 0.7150 

 VLPPOCSVM(11) 1.0 0.1480 0.7345 

Bupa OCSVM 1.0 0.0761 0.7271 

 VLPPOCSVM(5) 1.0 0.0872 0.7166 

 VLPPOCSVM(2) 1.0 0.1480 0.7345 

WDBC OCSVM 1.0 0.5661 0.4596 

 VLPPOCSVM(5) 1.0 0.5676 0.4331 

 VLPPOCSVM(10) 1.0 0.5576 0.4423 

Pima OCSVM 1.0 0.1601 0.7360 

 VLPPOCSVM(5) 1.0 0.1612 0.7290 

 VLPPOCSVM(2) 1.0 0.1601 0.7361 

German OCSVM 1.0 0.2021 0.7325 

 VLPPOCSVM(5) 1.0 0.1946 0.7345 

 VLPPOCSVM(8) 1.0 0.1962 0.7419 

Table 4. Experimental Results of VNPPOCSVM and Nonlinear OCSVM 

Data  sets Algorithm *  *  
r  G-means 

Heart OCSVM 0.2 42  0.1111 0.7320 

 VNPPOCSVM(5) 1.0 22  0.1267 0.7033 

 VNPPOCSVM(4) 0.5 42  0.1104 0.7275 

Ionosphere OCSVM 0.5 32  0.1480 0.6970 

 VNPPOCSVM(5) 1.0 32  0.1486 0.7349 

 VNPPOCSVM(11) 1.0 32  0.1507 0.7296 

Bupa OCSVM 0.2 32  0.0650 0.7190 

 VNPPOCSVM(5) 1.0 42  0.0701 0.6920 

 VNPPOCSVM(2) 1.0 32  0.0652 0.7031 

WDBC OCSVM 0.5 32  0.1417 0.7336 

 VNPPOCSVM(5) 1.0 22  0.2146 0.7235 

 VNPPOCSVM(10) 1.0 42  0.1413 0.7335 

Pima OCSVM 0.1 22  0.1572 0.7367 

 VNPPOCSVM(5) 0.8 52  0.1569 0.7310 

 VNPPOCSVM(2) 1.0 42  0.1555 0.7359 

German OCSVM 0.9 32  0.1892 0.7431 

 VNPPOCSVM(5) 0.1 52  0.1902 0.7230 

 VNPPOCSVM(8) 1.0 32  0.1878 0.7235 
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