
International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016), pp.183-198

http://dx.doi.org/10.14257/ijmue.2016.11.5.17

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2016 SERSC

Finding Best Mining Scheme for Development of Multinomial

Software Fault Prediction Model

Dipti Kumari and Kumar Rajnish

Birla Institute of Technology, Mesra Ranchi, Jharkhand-835215(INDIA)

Kumari_dipti0511@yahoo.co.in,krajnish@bitmesra.ac.in

Abstract

This paper discuss different classification methods toward reliability and quality

improvement of software systems by predicting fault-prone module before testing.

Classification capability of Data mining techniques and Object-oriented property based

knowledge stored in Object-Oriented metrics are used to classify the software module as

fault-prone in different error categories or not fault-prone. Three versions of Eclipse, the

java-based Open source Integrated Development environment as dataset for training and

testing all the classification based data mining techniques are used. First of all, Threshold

base feature ranking (i.e. Area under the ROC curve) is used for selecting effective OO-

metrics in building prediction model. After that using those subsets of selected attributes,

classification models are built with 41 different classifiers for multinomial classification

in fault detection systems. Finally, the performance of a classifier is evaluated with

respect to the PRC performance metric. Based on the performance results appropriate

classifiers (Random Committee, Random Tree, Randomizable Filtered classifier and IBK)

which depict a higher performance and accuracy compared to the others are selected.

Our results indicate that Random Tree, Random Committee and Randomizable Filtered

Classifier have same performance. IBK classifier also has same performance but little bit

less and Kstar has less performance compared to previous four selected classifiers.

Keywords: OO-metric, classifier, Data mining, ROC, PRC, TBFR, Random Tree, MCC

1. Introduction

Assuring high quality software is perceived as a key factor to succeed in the software

industry. However, deliveries of products of poor quality are still common due to time

constraints and limited resources. One way to address this problem is to try to make the

software testing process more efficient, and hence find more faults in less time or with

fewer resources. For example, fault proneness prediction models can be built on the basis

of historic data about changes and faults combined with measures of the structural

properties of the software. Assuming that a sufficiently accurate model can be built on the

basis of the available data, the model can be applied on a forthcoming release of the

software system – giving predictions that identify those software modules that are likely

to contain different fault category. Having identified the modules fault category, the

testing activities handled by software engineer depending upon their debugging skill

capability can focus on those modules category to improve testing efficiency. A

significant research effort has been dedicated to defining specific quality measures and

building quality models based on those measures. Such models can then be used to help

decision-making during development of software systems. Fault-proneness or the

numbers of defects detected in a software component (usually a module, class, or file) are

the most frequently investigated dependent variables [1]. In this case, we want to predict

the fault-proneness of classes in order to potentially finding more defects for the same

amount of effort. For example, assuming a class is predicted as “high” to be faulty,

Software engineer having high rank in debugging skill would take corrective action by

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

184 Copyright ⓒ 2016 SERSC

investing additional effort to inspect and test this class [3]. Given that software

development companies might spend between 50 to 80 percent of their software

development effort on testing [2], research on fault-proneness prediction models can be

motivated by its high cost-saving potential.

 To build fault-proneness prediction models there are a large number of modeling

techniques to choose from, including standard statistical techniques and data mining

techniques [4]. The data mining techniques are especially useful since we have little

theory to work with and we want to explore many potential factors (and their interactions)

and compare many alternative models so as to optimize effort, cost and time

effectiveness.

The remainder of this paper is organized as follows: Section 2 provides a

comprehensive overview of related works, whereas Section 3 presents our study design.

In Section 4 we report our results, comparing several modeling techniques and sets of

measures using a number of different evaluation criteria. Section 5 discusses what we

consider the most important threats to validity, whereas Section 6 concludes and outlines

directions for future research.

2. Related Work

Data mining is a process to convert raw data into useful information. It is a process

designed to explore and analyze large amounts of data to find consistent patterns, trends

or relationships among variables and then to validate the findings by applying the

observed patterns to new set of data. Data Mining can be divided into two tasks:

Predictive tasks and descriptive tasks. The ultimate aim of data mining is prediction and

predictive data mining is the most common type of data mining and has the most direct

applications to business [28]. Predictive Data mining relies on formulas that compare pass

successes and failures, and then uses those formulas to predict future outcomes.

In literature, we found that many research has been done for predicting fault in the

Software component. Most of the research for this problem done through statistical

techniques, Machine Learning and data mining [5-10]. All the prediction is done on

binary classification. But, we have tried to do classification in multinomial aspects. The

reason behind this idea is that if we will able to know the module error category before

testing then we can allocate for debugging modules to software engineers according to

their debugging skill. Debugging skill depends on two terms i.e. experience and

familiarity with product family [4].

In [6], researchers present a methodology for predicting software faults based on

random forest, which is an extension of decision tree learning. Random forest technique

was applied in five case studies based on NASA data set. The predictive accuracy of this

technique was found to generally higher than that of achieved logistic regression,

discriminant analysis and the algorithms in two machine learning software Packages

WEKA. Authors in [7] have compared the performance of prediction models by using

static attributes of embedded software. Three machine learning algorithms i.e. J48, OneR

and Naive Bayes have been used for prediction purpose of two datasets. It was found that

J48 and OneR performed better than Naïve Bayes learner.

Authors in [5] have applied Support Vector Machines for predicting fault prone

software modules and its prediction performance is compared against eight statistical and

machine learning methods in the context of four NASA datasets. The results indicate that

prediction performance of SVM is generally better than the compared models

In [8], defect prediction is performed using method level metrics and class level

metrics and concludes that SVM Method outperforms other classifiers for class level

metrics and Random forest shows better performance for method level metrics

In [9], researchers proved that classifier ensembles can effectively improve

classification performance than single classifier.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

Copyright ⓒ 2016 SERSC 185

A detailed analysis of some of the existing machine learning techniques for defect

prediction has been carried out and that the selection of best learning techniques depends

on data insight at that point in time [10].

3. Research Background

In this section, we present the Dataset description (Section 3.1), summary of metrics

studied in this article (Section 3.2), collection of error data and categorization (Section

3.3), and empirical data collection (Section 3.4).

3.1. Dataset Description

We have used 3 version of Eclipse (i.e. Eclipse2.0, Eclipse2.1 and Eclipse3.0) [13].

The dataset description is given in Table 1.

Table 1. Dataset Description

Version NFP Nominal Low Mid High Total no

.of fault

prone

classes

Total no.

of classes

Eclipse2.0 4086 2405 24 121 12 2562 6648

Eclipse2.1 5695 1942 126 6 28 2102 7797

Eclipse3.0 7626 2761 19 89 09 2878 10504

3.2. Software Metrics Studied

The selection of software metrics was a difficult task because there are many available

metrics. We used two criteria in our selection process:

 The set of metrics cover all aspects of OO design.

 We have to be able to collect the metrics by using automated tool.

Finally, we selected 24 metrics which are discussed in this section. These metrics are

characterized into coupling, cohesion, inheritance, class complexity and class-size

metrics. We used JHAWK [11-12] automated tool metric to collect these metrics from the

Eclipse source code [13]. JHAWK compiled the source code and give output as each

module name and their set of OO metrics.

Table 2. Metrics Description

Sino. Metrics Description

1 NOM Number of Methods

2 LCOM Lack of Cohesion of Methods

3 AVCC Average Cyclomatic Complexity

4 NOS Total number of java statement

5 UWCS Unweighted Class size

6 INST No. of instance variables declared

7 PACK No. of Packages imported

8 RFC Total Response For class

9 CBO Coupling between Objects

10 NLOC Total lines of code in the class

11 FIN Fan In(Afferent Coupling)

12 DIT Depth of Inheritance tree

13 COH Cohesion

14 LMC No. of local Methods called

15 LCOM2 Lack of cohesion of Methods2

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

186 Copyright ⓒ 2016 SERSC

16 MAXCC Maximum Cyclomatic Complexity

17 FOUT Fan Out(Efferent coupling)

18 EXT No. of External Methods called

19 NSUP Total no. of super classes

20 TCC Total Cyclomatic Complexity

21 NSUB Total no. of sub classes

22 MPC Message Passing Coupling Value

23 INTR No. of interfaces implemented

24 CC Class Complexity

3.3. Collection of Error Data

In the next section, we describe how we collected the error data. From [14] where

Eclipse bug data set are freely available, we collected the error data from three official

releases of the Eclipse project (versions 2.0, 2.1, and 3.0). Pre release bug data are used

for study and multinomial categorization has been done on the pre release error data. In

this we divide the error category into 5 classes [15].

 No Error: class containing zero error.

 Nominal: class containing error in the range Min<=error<25Q

 Low :class containing error in the range 25Q<=error<50Q

 Medium: class containing error in the range 50Q<=error<75Q

 High: class containing error in the range 75Q<=error<Max

Table 3. Descriptive Statistics of Error Data

3.4. Empirical Data Collection

We have taken 3 version of Eclipse (Eclipse2.0, Eclipse2.1 and Eclipse3.0) as a data

source. Steps followed for Eclipse2.0, the first dataset preparation are as follows:

Step1: Download the source code of Open Source Software Eclipse2.0.

Step2: Extract from code the entire file having .java extension as a single class.

Step3: Make a table having name Eclipse2.0 having one column 'class name'(which

contain the full path of the .java class).

Step4: Extraction of features (i.e.-metrics) using jHAWK tool

 For (classno=1; classno<=maxclassno; classno++)

 {

 Extract 24 features

 }

Step5: Add all the features in the table Eclipse2.0 and give the column name according

to the feature name.

Step6: From the bug dataset (promise2.0 (a)) of Eclipse2.0 extract pre-release bug and

add one more column in the table Eclipse2.0 as pre and insert the value in the column

corresponding to the class name.

Step7: Categorization of bug according to value of pre column of Eclipse2.0.

Step8: Find descriptive statistics of pre column, from that we are able to know the min,

different number of occurrences of error (nonzero) and max value of error data

Version Min 25Q 50Q 75Q Max

Eclipse2.0 1 9 18 29 69

Eclipse2.1 1 6 12 18 24

Eclipse3.0 1 9 18 26 43

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

Copyright ⓒ 2016 SERSC 187

Step9: Again find the descriptive statistics of (Min, 25Q, 50Q, 75Q and Max) the

different occurrences of number of errors (from min (nonzero) to max).

Step10: Multinomial Categorization

 If ((pre>1) && (pre<=25Q))

 Category="nominal";

 Else if ((pre>25Q) && (pre<=50Q))

 Category="low";

 Else if ((pre>50Q) && (pre<=75Q))

 Category="mid";

 Else if ((pre>75Q) && (pre<=max))

 Category="high";

 Else

 Category="fault prone";

Step11: Add one more column Multinomial insert value in the respective value

according to the categorization criteria.

Step12: Do the step1 to step12 for Eclipse2.1 and Eclipse3.0.

This will produce 3 datasets (D) for Eclipse2.0, Eclipse2.1 and Eclipse3.0 respectively

as well as complete the dataset preparation process.

4. Research Method

In this section a brief description of Threshold based feature ranking (TBFR) is

presented. Moreover, the process of Random Committee and Random Tree classification,

which are proved to be the most efficient classifiers amongst the set of classifiers in our

research, are enlightened.

4.1. Threshold Based Feature Ranking (TBFR)

In a given set of software metrics, it is likely that some of them are superfluous in

characterizing the project’s knowledge. Some of them provide redundant knowledge, or

provide no new information, or in some cases, have an adverse effect on the defect

prediction model. For example, recent studies demonstrate performance improvement of

defect prediction models when irrelevant and redundant features are re-moved before

modeling [16-18].Feature selection is the process of choosing a subset of features. It is

broadly classified as feature ranking and feature subset selection, where feature ranking

sorts the attributes according to their individual predictive power, and feature subset

selection finds subsets of attributes that collectively have good predictive power. Filters

are feature selection algorithms in which a feature subset is selected without involving

any learning algorithm. In the context of software defect prediction, we use Threshold-

Based Feature Selection technique. It belongs to the filter based feature ranking

techniques category. Area under the ROC (Receiver Operating Characteristic) Curve

(AUC) TBFR feature ranker is considered in this study [15].

Step1: Dataset D with OO-metrics Oj, j=1, 2... 24

Step2: Each class x belongs to D is assigned to one of 5 classes C(x) belongs to {nfp,

nominal, low, mid, high};

Step3: The value of OO-metric Oj for instance x is denoted as Oj(x);

Step4: For j=1… 24 do

Step5: Calculate AUC using attribute Oj and class category at various decision

thresholds in the distribution of Oj. The optimal AUC is used.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

188 Copyright ⓒ 2016 SERSC

Step6: Feature ranking is done using optimal average AUC for sorting the OO-metrics

according to their individual predictive power.

Step 7: After that, we select the subset of OO-metrics that have good predictive power.

4.2. Classification

Classification is learning a function that maps data items into one of several predefined

classes. Examples of classification methods used as part of knowledge discovery

applications include classifying trends in financial markets and automated identification

of objects of interest in large images databases[20].In fault detection systems, classifiers

are used to predict whether each module contains fault in different category and no fault.

Several works has been carried out in the field of classification with WEKA tool. We

have used this tool for performance analysis of different classification techniques [19].

4.2.1. Random Committee

Random Committee [20] builds an ensemble of weak classifiers and averages their

predictions. Random Committee distinguishes itself by making each classifier be based on

the same data but using a different random number seed. This only makes sense if the

base classifier is randomized; otherwise the classifiers would all be the same.

4.2.2. Random Tree

The Random Trees classifier takes the input feature vector, classifies it with every tree

in the forest, and outputs the class label that received the majority of “votes”. This results

in the classification rules and generates the Misclassification Rate, Precision and Recall

performance measures [20-21].

4.2.3 Randomizable Filtered Classifier (RFC)

Used for running an arbitrary classifier on data that has been passed through an

arbitrary filter. Like the classifier, the structure of the filter is based exclusively on the

training data and test instances will be processed by the filter without changing their

structure [24].

4.2.4 IBk

It uses the instances themselves from the training set to represent what are learned, and

be kept. When an unseen instance is provided the memory is searched for the training

instance.

4.2.4 K*

It is an instance-based learning algorithm that stores all training instances and does not

build a model until a new instance need to be classified and they use some domain

specific distance function to retrieve single most similar instance from the training set.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

Copyright ⓒ 2016 SERSC 189

Figure 1. Comparison of Classification Algorithms in Proposed Data Mining
Framework

4.3. Performance Measures

Different performance attributes are discussed in this section. These attributes are

very helpful to analyze the results of experiments. For defect prediction WEKA tool

is used to classify the datasets. The prediction of classification is matched with the

actual class of that data. We have done multinomial classification which is depicted

in Figure 2.

Figure 2. Confusion Matrix for Multinomial Classification

Where TN=T0, TPi =T1, T2, T3 and T4

Where TN=T0, TPi =T1,T2 ,T3 and T4

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

190 Copyright ⓒ 2016 SERSC

 (1)

Where T0, T1, T2, T3 and T4 are the number of correct predictions that an instance is

negative, positive in nominal category, low category, mid category and high category.

Where F01 are the number of incorrect predictions that an instance is actually in negative

but predicted in nominal category. In Fij first subscript showing the actual instance and

second one is showing the predicted result.

The precision indicates that how many defect prone modules are correctly predicted.

The precision is measured as in equation 3.

(3)

The Recall is equivalent to sensitivity (i.e. TPR, hit rate)

(4)

F-measure combines precision and recall in the form of harmonic mean of precision

and recall:

(5)

The MCC can be calculated directly from the confusion matrix using the formula:

(6)

Precision-Recall Curve (PRC) presents an alternate approach to the visual comparison

of classifiers [24]. PR curve can reveal the difference between algorithms which is not

apparent from an ROC curve. In a PR curve, x-axis represents recall and y-axis is

precision. PR curves favor classifiers which offer high recall and high Precision, i.e., the

ideal performance goal lies in the right-hand upper corner. We are not saying that PR

curves are better than ROC curves. We only recommend that when ROC curves fail to

reveal differences in the performance of different classification algorithms, PR curves

may provide adequate distinction. In multinomial categorization and unbalanced data it is

also more useful than ROC [25].

5. Experimental Analysis

5.1. TBFR Method for Feature Selection

After ranking the 24 features among those 17 features are selected for developing the

model. Subsequently, we used the Sensitivity and Specificity values (they indicate

efficiency in classifying faulty Classes) to order the metric values in Table4. We noticed

that the size metrics (NOS and UWCS) came before the (CC and RFC) metrics. This

information tells that the size metrics are better indicators of faulty classes. These results

showed that the threshold values differed from one release to another [15]. With the

highest Sensitivity value as the selection standard, we choose the final threshold values

for the NOS, UWCS, CC, RFC, NLOC, EXT, MPC, LMC, TCC, PACK, NOM, LCOM2,

INST, CBO, MAXCC, FOUT and AVCC metrics and result is summarized in Table 4.

 Where i≠ j (2)

4

1

0
j

jFFN

4

0

4

1i j
iji FFP

ii

i
i

FPTP

TP
PRECISION

FNTP

TP
RECALL

i

i
i

ii

ii
i

RECALLPRECISION

RECALLPRECISION
measureF

.
.2

))()()((FNTNFPTNFNTPFPTP

FNFPTNTP
MCC

iiii

ii
i

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

Copyright ⓒ 2016 SERSC 191

These values can be used by developers as a guideline for designing classes, if the metrics

exceed the threshold value then; there are chances of error prone classes.

Table 4. Selected Metrics for Building Model with Rank

5.2 Results and Discussion

Due to the variety of classifiers the WEKA supports and also its efficient environment

for experimental data analysis, we used the WEKA software. Lessman et al. [26] and

Haghighi et al. [4] already had conducted research in this field. According to Lessman

opinion classifiers do not differ much from each other. Haghighi extended their research

by studying more classifiers in determining an appropriate classifier in fault detection

system (i.e. detection of class either as a error prone or as a error-free).And finally their

results indicated that Bagging classifier has the highest performance in fault-detection

.We will extend their research by studying more classifier for our Software fault

Prediction problem in Multinomial categorization (i.e. prediction of classes in different

error categories).Therefore, the values of Precision, Recall, F-measure, MCC, PRC Area,

Correctly classified classes and Incorrectly classified classes are calculated for several

(i.e.41) classifier and eventually according to these values, the best classifier is selected.

The Precision, Recall, F-measure, MCC and PRC Area are recommended as the primary

accuracy indicators for comparative studies in software fault prediction with imbalanced

data in multinomial categorization [25]. Table 5 shows the results of evaluating 41

classifiers on Eclipse2.0 dataset. In order to compare the performance of the mentioned

classifiers, MCC, PRC Area, Correctly classified and incorrectly classified criteria are

chosen. In the table, the rows of those classifiers which are containing the highest all

those value are highlighted with red font color. As it is illustrated in Table 5, Random

Committee, Random Tree and Randomizable filtered Classifier usually depict a high

MCC, PRC and high correctly classified classes and low incorrectly classified classes’

dataset.

Second best classifier is IBk and at the third position KStar is showing best

performance. Hence we have chosen Random Committee, Random Tree and

Randomizable filtered Classifiers as the appropriate classification algorithm for

fault prediction system.

5.3 Random Committee, Random Tree, Randomizable Filtered Classifier, IBk and

K-star Performance Evaluation

In this section, Random Committee, Random Tree and Randomizable Filtered

Classifier, which were chosen according to our experiments, are compared against the IBk

and KStar classifiers that managed to illustrate acceptable results in the Eclipse2.0

dataset. We determined the best approach by evaluating classifiers on Eclipse2.0 which is

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

192 Copyright ⓒ 2016 SERSC

the first version of Eclipse. In order to evaluate Random Committee, Random Tree and

Randomizable Filtered Classifier as well as their performance on other datasets, we

conduct our experiments on other two successive versions of Eclipse2.0 (i.e. Eclipse2.1

and Eclipse3.0) datasets. Table 6 and Table 7 illustrate the outcome of comparison. By

testing Random Committee, Random tree, Randomizable filtered classifier, IBk and KStar

on Eclipse2.1 and Eclipse3.0, Precision, Recall, F-measure, MCC and PRC area were

determined. As it is depicted in Table 6 and Table 7. Random Committee, Random tree

and Randomizable Filtered Classifier manage to outperform the other two rival

approaches, IBk and KStar, in other two successive versions of Eclipse datasets. IBK also

shows almost same performance with selected three classifiers.

Mean Absolute Error (M.A.E), Root Mean Square Error (R.M.S.E), Relative Absolute

Error (R.A.E) and Root Relative Squared Error (R.R.S.R) are other error related metric

value for finding the performance of selected classifiers. The mean absolute error (MAE)

is defined as the quantity used to measure how close predictions or forecasts are to the

eventual outcomes. The root mean square error (RMSE) is defined as frequently used

measure of the differences between values predicted by a model or an estimator and the

values actually observed. It is a good measure of accuracy, to compare the forecasting

errors within a dataset as it is scale-dependent. Relative error is a measure of the

uncertainty of measurement compared to the size of the measurement. The root relative

squared error is defined as a relative to what it would have been if a simple predictor had

been used. More specifically, this predictor is just the average of the actual values.

From the graph Figure1 and Figure2 plotted using Table 8, it is observed that KStar

attains highest error rate i.e. Kstar has not as much good classification capability as

compared to other four. These four classification algorithm are showing same value for all

column. It means all four having same classification capability and contains least error

rate.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

Copyright ⓒ 2016 SERSC 193

Table 5. Investigating the Performance of Classifiers on Eclipse2.0

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

194 Copyright ⓒ 2016 SERSC

Table 6. Performance Measure of Selected Metrics in Eclipse 2.1

Table 7. Performance Measure of Selected Classifiers for Eclipse 3.0

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

Copyright ⓒ 2016 SERSC 195

Table 8. Error Rate of Selected Classifiers in Eclipse2.1 and Eclipse3.0

Figure 1. Error Rate of Selected Classifiers

Figure 2. Error Rate of Selected Classifiers

6. Conclusion

TBFR method ranked all metrics based on their discrimination ability using ROC curve

and we found that 17 metrics are best predictors among 24 metrics. Data mining help us

in the extraction of useful knowledge from large data repositories. In this paper, we have

done comparison of 41 classification algorithms over Eclipse first version Eclipse2.0

dataset. By comparing all 41 classification algorithms we figured that Random tree,

Random committee, Randomizable Filtered Classifier show same result.IBK also has

same performance result compared to selected three random natured classifiers. These

four classifiers also show a better performance than the rest of classifiers for fault

prediction system. KStar classifier is also showing performance somewhat less than those

four classifiers but better than rest. So, we can choose any classifier among those four

classifiers as appropriate classifiers. For verification of selected classifiers, they were

compared on two successive versions of Eclipse. The results illustrated that all classifies

which are random in nature have highest performance on fault prediction. Therefore by

employing those four classifiers, the prediction system is more accurate

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

196 Copyright ⓒ 2016 SERSC

As future work, we can focus on these four random nature algorithm and through its

optimization for fault detection systems, increase the detecting performance.

References

[1] Taylor, “Applications of data mining in Software Engineering”, International Journal of Data Analysis

Techniques and Strategies, vol. 2, no. 3, (2010), pp. 243-257.

[2] A. V. K. Prasad and Dr. S. R. Krishn1, “Data Mining for Secure Software Engineering-Source Code

Management Tool Case Study”, International Journal of Engineering Science and Technology, vol. 2,

no. 7, (2010), pp. 2667-2677.

[3] K. Dipti and R. Kumar, “Investigating the Effect of Object-oriented Metrics on Fault Proneness Using

Empirical Analysis”, International Journal of Software Engineering and Its Applications, vol. 9, no. 2,

(2015), pp. 171-188.

[4] A. A. Shahrjooj and M. A. Haghighi, “Appling Mining Schemes to Software Fault Prediction: A

Proposed Approach Aimed at Test Cost Reduction”, Proceedings of the World Congress on

Engineering, (2012).

[5] K. O. Elish and M. O. ELish, “Predicting defect prone software modules using Support Vector

Machines”, Journal of Systems and Software, vol. 81, no. 5, (2008), pp. 649-660.

[6] L. Guo, Y. Ma, B. Cukic and H. Singh, “Robust Prediction of fault proneness by Random Forest”,

Software Reliability Engineering, , ISSRE, (2004).

[7] P. Singh, “Comparing the effectiveness of machine learning algorithms for defect prediction”,

International Journal of Information Technology and Knowledge management, vol. 2, no. 2, (2009), pp.

481-483.

[8] A. Shanthini and R. M. Chandrasekaran, “Applying machine learning for fault Prediction using

Software Metrics”, International Journal of Advanced Research in Computer Science and Software

Engineering, vol. 2, no. 6, (2012).

[9] T. Wang, W. Li, H. Shi and Z, Liu, “Software Defect Prediction on Classifier Ensemble”, Journal of

Information & Computational Sciences, vol. 8, no. 16, (2011), pp. 4241-4254.

[10] V. U. B. Challagulla, F. B. Bastani, I. L. Yen and R. A. Paul, “Empirical Assessment of Machine

Learning based Software defect Prediction Techniques”, Proceedings of the 10th IEEE International

Workshop on Object Oreinted Real time Dependable Systems, (2005).

[11] JHAWK metrics reference http://www.virtualmachinery.com/jhawkreferences.html, (2013).

[12] JHAWK metrics reference http://www.aivosto.com/project/help/pm-oomisc.html, (2013).

[13] Eclipse source code (for archived releases): http://archive.eclipse.org/eclipse/downloads/, (2012).

[14] Eclipse bug data (for archived releases): http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse, (2012).

[15] K. Dipti and R. Kumar, “Finding error-prone classes at design time using class based Object-Oriented

metrics threshold through statistical method”, INFOCOMP, Journal of Computer science, vol. 12, no. 1,

(2013), pp. 49-63.

[16] K. Gao, T. M. Khoshgoftaar and H. Wang, “An empirical investigation of filter attribute selection

techniques for software quality classification”, In Proceedings of the 10th IEEE International

Conference on Information Reuse and Integration, (2009), pp. 272–277.

[17] H. Wang, T. M. Khoshgoftaar and J. V. Hulse, “A comparative study of threshold-based feature

selection techniques”, In IEEE International Conference on Granular Computing, (2010), pp. 499-504.

[18] H. Wang, T. M. Khoshoftaar and N. Seliya, “How Many Software Metrics Should be Selected for

Defect Prediction”, In Proceedings of the Twenty-Fourth International Florida Artificial Intelligence

Research Society Conference, (2011), pp. 69-74.

[19] K. Yugal and G. Sahoo, “Analysis of Parametric & Non Parametric Classifiers for Classification

Technique using WEKA”, International Journal of Information Technology and Computer Science

(IJITCS), vol. 4, no. 7, (2012), pp. 43.

[20] T. B. Hu, “Introduction to Knowledge Discovery and Data Mining”, Institute of Information

Technology, National Center for Natural Science and Technology.

[21] I. H. Witten and E. Frank, “Data Mining: Practical Machine Learning Tools and Techniques”, Morgan

Kaufmann Series in Data Management Systems. Morgan Kaufmann, second edition, (2005).

[22] K. Dipti and R. Kumar, “Comparing efficiency of software Fault Prediction Models developed through

binary and Multinomial Logistic Regression Techniques”, Second International conference on

Information System Design and Intelligent Applications(INDIA-2015), Proceeding published in the

Springer’s series on Advances in Intelligent Systems and Computing, vol. 340, (2015), pp. 187-197.

[23] S. G. Jacob and Dr. R. G. Ramani, “Discovery of Knowledge Patterns in Clinical Data through Data

Mining Algorithms: Multi-classCategorization of Breast Tissue Data”, International Journal of

Computer Applications (IJCA), October DOI: 10.5120/3920-5521. Published by Foundation of

Computer Science, New York, vol. 32, no. 7, (2011), pp. 46-53.

[24] J. Davis and M. Goadrich, “The relationship between precision-recall and roc curves”, In ICML ’06:

Proceedings of the 23rd international conference on Machine learning, New York, NY, USA, ACM,

(2006), pp. 233-240.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

Copyright ⓒ 2016 SERSC 197

[25] T. Saito and M. Rehmsmeier, “The Precision-Recall Plot Is More Informative than the ROC Plot When

Evaluating Binary Classifiers on Imbalanced Datasets”, PLoS One, e0118432, vol. 10, no. 3, (2015).

[26] S. Lessmann, B. Baesens, C. Mues and S. Pietsch, “Benchmarking Classification Models for Software

Defect Prediction: A Proposed Framework and Novel Findings”, IEEE Trans. on Software Engineering,

vol. 34, no. 4, (2008), pp. 485-496.

Authors

Dipti Kumari, Completed M. Tech. (CSE) from Birla Institute

of Technology, Mesra, Ranchi, Jharkhand, India in the year

2010. Currently, she is pursuing PhD on Software Fault

Prediction. Her Research area is Object-Oriented Metrics,

Software Engineering, Software Fault Prediction, Programming

Languages, Database Management System and Object-Oriented

Software fault prediction.

Kumar Rajnish, is an Assistant Professor in the Department of

Information Technology at Birla Institute of Technology, Mesra,

Ranchi, Jharkahnd, India. He received his PhD in Engineering from

BIT Mesra, Ranchi, Jharkhand, India in the year of 2009. He received

his MCA Degree from MMM Engineering College, Gorakhpur, State

of Uttar Pradesh, India. He received his B.Sc Mathematics (Honours)

from Ranchi College Ranchi, India in the year 1998. He has 23

Research Publications. His Research area is Object-Oriented Metrics,

Object-Oriented Software Engineering, Software Quality Metrics,

Programming Languages, and Database System.

http://www.ncbi.nlm.nih.gov/pubmed/?term=Rehmsmeier%20M%5Bauth%5D

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.5 (2016)

198 Copyright ⓒ 2016 SERSC

