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Abstract 

This paper discuss different classification methods toward reliability and quality 

improvement of software systems by predicting fault-prone module before testing. 

Classification capability of Data mining techniques and Object-oriented property based 

knowledge stored in Object-Oriented metrics are used to classify the software module as 

fault-prone in different error categories or not fault-prone. Three versions of Eclipse, the 

java-based Open source Integrated Development environment as dataset for training and 

testing all the classification based data mining techniques are used. First of all, Threshold 

base feature ranking (i.e. Area under the ROC curve) is used for selecting effective OO-

metrics in building prediction model. After that using those subsets of selected attributes, 

classification models are built with 41 different classifiers for multinomial classification 

in fault detection systems. Finally, the performance of a classifier is evaluated with 

respect to the PRC performance metric. Based on the performance results appropriate 

classifiers (Random Committee, Random Tree, Randomizable Filtered classifier and IBK) 

which depict a higher performance and accuracy compared to the others are selected. 

Our results indicate that Random Tree, Random Committee and Randomizable Filtered 

Classifier have same performance. IBK classifier also has same performance but little bit 

less and Kstar has less performance compared to previous four selected classifiers.  
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1. Introduction 

Assuring high quality software is perceived as a key factor to succeed in the software 

industry. However, deliveries of products of poor quality are still common due to time 

constraints and limited resources. One way to address this problem is to try to make the 

software testing process more efficient, and hence find more faults in less time or with 

fewer resources. For example, fault proneness prediction models can be built on the basis 

of historic data about changes and faults combined with measures of the structural 

properties of the software. Assuming that a sufficiently accurate model can be built on the 

basis of the available data, the model can be applied on a forthcoming release of the 

software system – giving predictions that identify those software modules that are likely 

to contain different fault category. Having identified the modules fault category, the 

testing activities handled by software engineer depending upon their debugging skill 

capability can focus on those modules category to improve testing efficiency. A 

significant research effort has been dedicated to defining specific quality measures and 

building quality models based on those measures. Such models can then be used to help 

decision-making during development of software systems. Fault-proneness or the 

numbers of defects detected in a software component (usually a module, class, or file) are 

the most frequently investigated dependent variables [1]. In this case, we want to predict 

the fault-proneness of classes in order to potentially finding more defects for the same 

amount of effort. For example, assuming a class is predicted as “high” to be faulty, 

Software engineer having high rank in debugging skill would take corrective action by 
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investing additional effort to inspect and test this class [3]. Given that software 

development companies might spend between 50 to 80 percent of their software 

development effort on testing [2], research on fault-proneness prediction models can be 

motivated by its high cost-saving potential. 

 To build fault-proneness prediction models there are a large number of modeling 

techniques to choose from, including standard statistical techniques and data mining 

techniques [4]. The data mining techniques are especially useful since we have little 

theory to work with and we want to explore many potential factors (and their interactions) 

and compare many alternative models so as to optimize effort, cost   and time 

effectiveness. 

The remainder of this paper is organized as follows: Section 2 provides a 

comprehensive overview of related works, whereas Section 3 presents our study design. 

In Section 4 we report our results, comparing several modeling techniques and sets of 

measures using a number of different evaluation criteria. Section 5 discusses what we 

consider the most important threats to validity, whereas Section 6 concludes and outlines 

directions for future research. 

 

2. Related Work 

Data mining is a process to convert raw data into useful information. It is a process 

designed to explore and analyze large amounts of data to find consistent patterns, trends 

or relationships among variables and then to validate the findings by applying the 

observed patterns to new set of data. Data Mining can be divided into two tasks: 

Predictive tasks and descriptive tasks. The ultimate aim of data mining is prediction and 

predictive data mining is the most common type of data mining and has the most direct 

applications to business [28]. Predictive Data mining relies on formulas that compare pass 

successes and failures, and then uses those formulas to predict future outcomes. 

In literature, we found that many research has been done for predicting fault in the 

Software component. Most of the research for this problem done through statistical 

techniques, Machine Learning and data mining [5-10]. All the prediction is done on 

binary classification. But, we have tried to do classification in multinomial aspects. The 

reason behind this idea is that if we will able to know the module error category before 

testing then we can allocate for debugging modules to software engineers according to 

their debugging skill. Debugging skill depends on two terms i.e. experience and 

familiarity with product family [4]. 

In [6], researchers present a methodology for predicting software faults based on 

random forest, which is an extension of decision tree learning. Random forest technique 

was applied in five case studies based on NASA data set. The predictive accuracy of this 

technique was found to generally higher than that of achieved logistic regression, 

discriminant analysis and the algorithms in two machine learning software Packages 

WEKA. Authors in [7] have compared the performance of prediction models by using 

static attributes of embedded software. Three machine learning algorithms i.e. J48, OneR 

and Naive Bayes have been used for prediction purpose of two datasets. It was found that 

J48 and OneR performed better than Naïve Bayes learner. 

Authors in [5] have applied Support Vector Machines for predicting fault prone 

software modules and its prediction performance is compared against eight statistical and 

machine learning methods in the context of four NASA datasets. The results indicate that 

prediction performance of SVM is generally better than the compared models 

In [8], defect prediction is performed using method level metrics and class level 

metrics and concludes that SVM Method outperforms other classifiers for class level 

metrics and Random forest shows better performance for method level metrics 

In [9], researchers proved that classifier ensembles can effectively improve 

classification performance than single classifier. 
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A detailed analysis of some of the existing machine learning techniques for defect 

prediction has been carried out and that the selection of best learning techniques depends 

on data insight at that point in time [10]. 

 

3. Research Background 

In this section, we present the Dataset description (Section 3.1), summary of metrics 

studied in this article (Section 3.2), collection of error data and categorization (Section 

3.3), and empirical data collection (Section 3.4).  

 

3.1. Dataset Description 

We have used 3 version of Eclipse (i.e. Eclipse2.0, Eclipse2.1 and Eclipse3.0) [13]. 

The dataset description is given in Table 1. 

Table 1. Dataset Description 

Version NFP Nominal Low Mid High Total no 

.of fault 

prone 

classes 

Total no. 

of classes 

Eclipse2.0 4086 2405 24 121 12 2562 6648 

Eclipse2.1 5695 1942 126 6 28 2102 7797 

Eclipse3.0 7626 2761 19 89 09 2878 10504 

 

3.2. Software Metrics Studied 

The selection of software metrics was a difficult task because there are many available 

metrics. We used two criteria in our selection process:  

 The set of metrics cover all aspects of OO design.  

 We have to be able to collect the metrics by using automated tool.  

Finally, we selected 24 metrics which are discussed in this section. These metrics are 

characterized into coupling, cohesion, inheritance, class complexity and class-size 

metrics. We used JHAWK [11-12] automated tool metric to collect these metrics from the 

Eclipse source code [13]. JHAWK compiled the source code and give output as each 

module name and their set of OO metrics. 

Table 2. Metrics Description 

Sino. Metrics Description 

1 NOM Number of Methods 

2 LCOM Lack of Cohesion of Methods 

3 AVCC Average Cyclomatic Complexity 

4 NOS Total number of java statement 

5 UWCS Unweighted Class size 

6 INST No. of instance variables declared 

7 PACK No. of Packages imported 

8 RFC Total Response For class 

9 CBO Coupling between Objects 

10 NLOC Total lines of code in the class 

11 FIN Fan In(Afferent Coupling) 

12 DIT Depth of Inheritance tree 

13 COH Cohesion 

14 LMC No. of local Methods called 

15 LCOM2 Lack of cohesion of Methods2 
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16 MAXCC Maximum Cyclomatic Complexity 

17 FOUT Fan Out(Efferent coupling) 

18 EXT No. of External Methods called 

19 NSUP Total no. of super classes 

20 TCC Total Cyclomatic Complexity 

21 NSUB Total no. of sub classes 

22 MPC Message Passing Coupling Value 

23 INTR No. of interfaces implemented 

24 CC Class Complexity 

 

3.3. Collection of Error Data 

In the next section, we describe how we collected the error data. From [14] where 

Eclipse bug data set are freely available, we collected the error data from three official 

releases of the Eclipse project (versions 2.0, 2.1, and 3.0). Pre release bug data are used 

for study and multinomial categorization has been done on the pre release error data. In 

this we divide the error category into 5 classes [15]. 

 No Error: class containing zero error. 

 Nominal: class containing error in the range  Min<=error<25Q 

 Low :class containing error in the range 25Q<=error<50Q 

 Medium: class containing error in the range 50Q<=error<75Q 

 High: class containing error in the range 75Q<=error<Max 

Table 3. Descriptive Statistics of Error Data 

 

 

 

 
 

3.4. Empirical Data Collection 

We have taken 3 version of Eclipse (Eclipse2.0, Eclipse2.1 and Eclipse3.0) as a data 

source. Steps followed for Eclipse2.0, the first dataset preparation are as follows: 

Step1: Download the source code of Open Source Software Eclipse2.0. 

Step2: Extract from code the entire file having .java extension as a single class. 

Step3: Make a table having name Eclipse2.0 having one column 'class name'(which 

contain the full path of the .java class). 

Step4: Extraction of features (i.e.-metrics) using jHAWK tool 

             For (classno=1; classno<=maxclassno; classno++) 

               {  

                  Extract 24 features 

                 }  

Step5: Add all the features in the table Eclipse2.0 and give the column name according 

to the feature name. 

Step6: From the bug dataset (promise2.0 (a)) of Eclipse2.0 extract pre-release bug and 

add one more column in the table Eclipse2.0 as pre and insert the value in the column 

corresponding to the class name. 

Step7: Categorization of bug according to value of pre column of Eclipse2.0. 

Step8: Find descriptive statistics of pre column, from that we are able to know the min, 

different number of occurrences of error (nonzero) and max value of error data 

Version Min 25Q 50Q 75Q Max 

Eclipse2.0 1 9 18 29 69 

Eclipse2.1 1 6 12 18 24 

Eclipse3.0 1 9 18 26 43 
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Step9: Again find the descriptive statistics of (Min, 25Q, 50Q, 75Q and Max) the 

different occurrences of number of errors (from min (nonzero) to max). 

Step10: Multinomial Categorization 

                 If ((pre>1) && (pre<=25Q)) 

                     Category="nominal"; 

                  Else if ((pre>25Q) && (pre<=50Q)) 

                     Category="low"; 

                  Else if ((pre>50Q) && (pre<=75Q)) 

                      Category="mid"; 

                  Else if ((pre>75Q) && (pre<=max)) 

                      Category="high"; 

                  Else 

                      Category="fault prone"; 

Step11: Add one more column Multinomial insert value in the respective value 

according to the categorization criteria. 

Step12: Do the step1 to step12 for Eclipse2.1 and Eclipse3.0. 

This will produce 3 datasets (D) for Eclipse2.0, Eclipse2.1 and Eclipse3.0 respectively 

as well as complete the dataset preparation process. 

 

4. Research Method 

In this section a brief description of Threshold based feature ranking (TBFR) is 

presented. Moreover, the process of Random Committee and Random Tree classification, 

which are proved to be the most efficient classifiers amongst the set of classifiers in our 

research, are enlightened. 

 
4.1. Threshold Based Feature Ranking (TBFR)  

In a given set of software metrics, it is likely that some of them are superfluous in 

characterizing the project’s knowledge. Some of them provide redundant knowledge, or 

provide no new information, or in some cases, have an adverse effect on the defect 

prediction model. For example, recent studies demonstrate performance improvement of 

defect prediction models when irrelevant and redundant features are re-moved before 

modeling [16-18].Feature selection is the process of choosing a subset of features. It is 

broadly classified as feature ranking and feature subset selection, where feature ranking 

sorts the attributes according to their individual predictive power, and feature subset 

selection finds subsets of attributes that collectively have good predictive power. Filters 

are feature selection algorithms in which a feature subset is selected without involving 

any learning algorithm. In the context of software defect prediction, we use Threshold-

Based Feature Selection technique. It belongs to the filter based feature ranking 

techniques category. Area under the ROC (Receiver Operating Characteristic) Curve 

(AUC) TBFR feature ranker is considered in this study [15]. 

Step1: Dataset D with OO-metrics Oj, j=1, 2... 24  

Step2: Each class x belongs to D is assigned to one of 5 classes C(x) belongs to {nfp, 

nominal, low, mid, high}; 

Step3: The value of OO-metric Oj for instance x is denoted as Oj(x); 

Step4: For j=1… 24 do 

Step5: Calculate AUC using attribute Oj and class category at various decision 

thresholds in the distribution of Oj. The optimal AUC is used. 
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Step6: Feature ranking is done using optimal average AUC for sorting the OO-metrics 

according to their individual predictive power. 

Step 7: After that, we select the subset of OO-metrics that have good predictive power. 

 

4.2. Classification 

Classification is learning a function that maps data items into one of several predefined 

classes. Examples of classification methods used as part of knowledge discovery 

applications include classifying trends in financial markets and automated identification 

of objects of interest in large images databases[20].In fault detection systems, classifiers 

are used to predict whether each module contains fault in different category and no fault. 

Several works has been carried out in the field of classification with WEKA tool. We 

have used this tool for performance analysis of different classification techniques [19].  

 

4.2.1. Random Committee 

Random Committee [20] builds an ensemble of weak classifiers and averages their 

predictions. Random Committee distinguishes itself by making each classifier be based on 

the same data but using a different random number seed. This only makes sense if the 

base classifier is randomized; otherwise the classifiers would all be the same. 

 

4.2.2. Random Tree 

The Random Trees classifier takes the input feature vector, classifies it with every tree 

in the forest, and outputs the class label that received the majority of “votes”. This results 

in the classification rules and generates the Misclassification Rate, Precision and Recall 

performance measures [20-21]. 

 

4.2.3 Randomizable Filtered Classifier (RFC) 

Used for running an arbitrary classifier on data that has been passed through an 

arbitrary filter. Like the classifier, the structure of the filter is based exclusively on the 

training data and test instances will be processed by the filter without changing their 

structure [24]. 

 

4.2.4 IBk 

It uses the instances themselves from the training set to represent what are learned, and 

be kept. When an unseen instance is provided the memory is searched for the training 

instance. 

 

4.2.4 K* 

It is an instance-based learning algorithm that stores all training instances and does not 

build a model until a new instance need to be classified and they use some domain 

specific distance function to retrieve single most similar instance from the training set. 
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Figure 1. Comparison of Classification Algorithms in Proposed Data Mining 
Framework 

 
4.3. Performance Measures 

Different performance attributes are discussed in this section. These attributes are 

very helpful to analyze the results of experiments. For defect prediction WEKA tool 

is used to classify the datasets. The prediction of classification is matched with the 

actual class of that data. We have done multinomial classification which is depicted 

in Figure 2.  

 

 

Figure 2. Confusion Matrix for Multinomial Classification 

Where TN=T0, TPi =T1, T2, T3 and T4 

Where TN=T0, TPi =T1,T2 ,T3 and T4 



International Journal of Multimedia and Ubiquitous Engineering  

Vol.11, No.5 (2016) 

 

 

190   Copyright ⓒ 2016 SERSC 

 
 (1) 

Where T0, T1, T2, T3 and T4 are the number of correct predictions that an instance is 

negative, positive in nominal category, low category, mid category and high category. 

Where F01 are the number of incorrect predictions that an instance is actually in negative 

but predicted in nominal category. In Fij first subscript showing the actual instance and 

second one is showing the predicted result. 

The precision indicates that how many defect prone modules are correctly predicted. 

The precision is measured as in equation 3. 

 
(3) 

The Recall is equivalent to sensitivity (i.e. TPR, hit rate)  

 
(4) 

F-measure combines precision and recall in the form of harmonic mean of precision 

and recall: 

 
(5) 

The MCC can be calculated directly from the confusion matrix using the formula: 

 
(6) 

Precision-Recall Curve (PRC) presents an alternate approach to the visual comparison 

of classifiers [24]. PR curve can reveal the difference between algorithms which is not 

apparent from an ROC curve. In a PR curve, x-axis represents recall and y-axis is 

precision. PR curves favor classifiers which offer high recall and high Precision, i.e., the 

ideal performance goal lies in the right-hand upper corner. We are not saying that PR 

curves are better than ROC curves. We only recommend that when ROC curves fail to 

reveal differences in the performance of different classification algorithms, PR curves 

may provide adequate distinction. In multinomial categorization and unbalanced data it is 

also more useful than ROC [25].  

 

5. Experimental Analysis 
 

5.1. TBFR Method for Feature Selection 

After ranking the 24 features among those 17 features are selected for developing the 

model. Subsequently, we used the Sensitivity and Specificity values (they indicate 

efficiency in classifying faulty Classes) to order the metric values in Table4. We noticed 

that the size metrics (NOS and UWCS) came before the (CC and RFC) metrics. This 

information tells that the size metrics are better indicators of faulty classes. These results 

showed that the threshold values differed from one release to another [15]. With the 

highest Sensitivity value as the selection standard, we choose the final threshold values 

for the NOS, UWCS, CC, RFC, NLOC, EXT, MPC, LMC, TCC, PACK, NOM, LCOM2, 

INST, CBO, MAXCC, FOUT and AVCC metrics and result is summarized in Table 4. 

  Where i≠ j (2) 
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These values can be used by developers as a guideline for designing classes, if the metrics 

exceed the threshold value then; there are chances of error prone classes. 

Table 4. Selected Metrics for Building Model with Rank 

 
 

5.2 Results and Discussion 

Due to the variety of classifiers the WEKA supports and also its efficient environment 

for experimental data analysis, we used the WEKA software. Lessman et al. [26] and 

Haghighi et al. [4] already had conducted research in this field. According to Lessman 

opinion classifiers do not differ much from each other. Haghighi extended their research 

by studying more classifiers in determining an appropriate classifier in fault detection 

system (i.e. detection of class either as a error prone or as a error-free).And finally their 

results indicated that Bagging classifier has the highest performance in fault-detection 

.We will extend their research by studying more classifier for our Software fault 

Prediction problem in Multinomial categorization (i.e. prediction of classes in different 

error categories).Therefore, the values of Precision, Recall, F-measure, MCC, PRC Area, 

Correctly classified classes and Incorrectly classified classes are calculated for several 

(i.e.41) classifier and eventually according to these values, the best classifier is selected. 

The Precision, Recall, F-measure, MCC and PRC Area are recommended as the primary 

accuracy indicators for comparative studies in software fault prediction with imbalanced 

data in multinomial categorization [25]. Table 5 shows the results of evaluating 41 

classifiers on Eclipse2.0 dataset. In order to compare the performance of the mentioned 

classifiers, MCC, PRC Area, Correctly classified and incorrectly classified criteria are 

chosen. In the table, the rows of those classifiers which are containing the highest all 

those value are highlighted with red font color. As it is illustrated in Table 5, Random 

Committee, Random Tree and Randomizable filtered Classifier usually depict a high 

MCC, PRC and high correctly classified classes and low incorrectly classified classes’ 

dataset. 

Second best classifier is IBk and at the third position KStar is showing best 

performance. Hence we have chosen Random Committee, Random Tree and 

Randomizable filtered Classifiers as the appropriate classification algorithm for 

fault prediction system. 

 

5.3 Random Committee, Random Tree, Randomizable Filtered Classifier, IBk and 

K-star Performance Evaluation 

In this section, Random Committee, Random Tree and Randomizable Filtered 

Classifier, which were chosen according to our experiments, are compared against the IBk 

and KStar classifiers that managed to illustrate acceptable results in the Eclipse2.0 

dataset. We determined the best approach by evaluating classifiers on Eclipse2.0 which is 
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the first version of Eclipse. In order to evaluate Random Committee, Random Tree and 

Randomizable Filtered Classifier as well as their performance on other datasets, we 

conduct our experiments on other two successive versions of Eclipse2.0 (i.e. Eclipse2.1 

and Eclipse3.0) datasets. Table 6 and Table 7 illustrate the outcome of comparison. By 

testing Random Committee, Random tree, Randomizable filtered classifier, IBk and KStar 

on Eclipse2.1 and Eclipse3.0, Precision, Recall, F-measure, MCC and PRC area were 

determined. As it is depicted in Table 6 and Table 7. Random Committee, Random tree 

and Randomizable Filtered Classifier manage to outperform the other two rival 

approaches, IBk and KStar, in other two successive versions of Eclipse datasets. IBK also 

shows almost same performance with selected three classifiers. 

Mean Absolute Error (M.A.E), Root Mean Square Error (R.M.S.E), Relative Absolute 

Error (R.A.E) and Root Relative Squared Error (R.R.S.R) are other error related metric 

value for finding the performance of selected classifiers. The mean absolute error (MAE) 

is defined as the quantity used to measure how close predictions or forecasts are to the 

eventual outcomes. The root mean square error (RMSE) is defined as frequently used 

measure of the differences between values predicted by a model or an estimator and the 

values actually observed. It is a good measure of accuracy, to compare the forecasting 

errors within a dataset as it is scale-dependent. Relative error is a measure of the 

uncertainty of measurement compared to the size of the measurement. The root relative 

squared error is defined as a relative to what it would have been if a simple predictor had 

been used. More specifically, this predictor is just the average of the actual values. 

From the graph Figure1 and Figure2 plotted using Table 8, it is observed that KStar 

attains highest error rate i.e. Kstar has not as much good classification capability as 

compared to other four. These four classification algorithm are showing same value for all 

column. It means all four having same classification capability and contains least error 

rate.  
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Table 5. Investigating the Performance of Classifiers on Eclipse2.0 
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Table 6. Performance Measure of Selected Metrics in Eclipse 2.1 

 

Table 7. Performance Measure of Selected Classifiers for Eclipse 3.0 

 

 

 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.11, No.5 (2016) 

 

 

Copyright ⓒ 2016 SERSC      195 

Table 8. Error Rate of Selected Classifiers in Eclipse2.1 and Eclipse3.0 

  
 

 

Figure 1. Error Rate of Selected Classifiers 

 

Figure 2. Error Rate of Selected Classifiers 

 

6. Conclusion 

TBFR method ranked all metrics based on their discrimination ability using ROC curve 

and we found that 17 metrics are best predictors among 24 metrics. Data mining help us 

in the extraction of useful knowledge from large data repositories. In this paper, we have 

done comparison of 41 classification algorithms over Eclipse first version Eclipse2.0 

dataset. By comparing all 41 classification algorithms we figured that Random tree, 

Random committee, Randomizable Filtered Classifier show same result.IBK also has 

same performance result compared to selected three random natured classifiers. These 

four classifiers also show a better performance than the rest of classifiers for fault 

prediction system. KStar classifier is also showing performance somewhat less than those 

four classifiers but better than rest. So, we can choose any classifier among those four 

classifiers as appropriate classifiers. For verification of selected classifiers, they were 

compared on two successive versions of Eclipse. The results illustrated that all classifies 

which are random in nature have highest performance on fault prediction. Therefore by 

employing those four classifiers, the prediction system is more accurate 
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As future work, we can focus on these four random nature algorithm and through its 

optimization for fault detection systems, increase the detecting performance. 
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