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Abstract 

A fuzzy energy management strategy was designed for the single-axle parallel hybrid 

electric vehicles, and then the quantitative factor of the fuzzy logic controller was 

optimized by the quantum PSO algorithm under the Matlab platform based on the 

equivalent fuel economy. Then a comparison test about the energy management before 

and after the optimization was carried out based on the secondary development of 

Advisor which proves that the energy management strategy optimized by the quantum 

PSO algorithm can improve the SOC of the battery pack by 18% when the VAIL2NREL 

cycle finished while the power of the vehicles nearly remain the same. What’s more, the 

optimized strategy can make the engine and the motor works in the high efficient area for 

most of the time which can improve the recycling rate of the energy and reduce the 

equivalent fuel consumption effectively. 

 

Keywords: single-axle parallel hybrid, fuzzy energy management, Quantum PSO 

algorithm 

 

1. Introduction 

As is known to all, Parallel hybrid vehicles generally use two separated driving 

systems, and it has the advantages of flexible control and high overall efficiency, which 

can reduce the operating costs of vehicle effectively. Energy management strategy is one 

of the key directions of hybrid technology. Its main function is to allot the required torque 

of the vehicle to the engine and the driving motor rationally based on the characteristics of 

vehicle’s driving system and the real-time operating conditions, as well as to get the goal 

of low emissions and smooth drivability [1-2].  

However, the operation mode of the parallel hybrid vehicle is so complicated that the 

development of control strategy, in general, is not mature enough. Currently, the logic 

threshold control strategy is used more in the engineering practice, but its parameters’ 

adjustment is mainly rely on the experience or the "trial and error" method. This method 

can’t guarantee the best match of the power system and the maximum fuel economy 

though it can be realized easily. Literature [6-7] proposed a global optimal energy 

management strategy based on the classical variational method and the dynamic 

programming method, but this method requires to know the driving conditions ahead. As 

a result, it is difficult to apply to the on-line control [6-7]. SALMAN et al. proposed an 

instantaneous optimized energy management strategy based on model predictive control, 

which using GPS to predict the vehicle’s driving conditions in the coming period, and 

using optimal control theory to obtain the optimal control law which can get the minimum 

fuel consumption in the next period. But the simplify of the system’s mathematical model 

and the control algorithm of this method are too complicated, as a result of which it’s 

difficult to achieve too [8]. 

The fuzzy energy management strategy which is based on the fuzzy logic control 

(FLC), has the advantages of strong robustness, less overshoot and good real-time, and it 
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doesn’t need the accurate mathematical models. As a result, it has now become used in 

hybrid electric vehicle’s energy management strategy more and more. In this paper, a 

fuzzy logic controller was designed for a certain type of hybrid tractor, and then the 

quantitative factor of the controller is optimized based on quantum particle swarm 

optimization (PSO) algorithm. After that, we embedded the optimized fuzzy logic 

controller into the ADVISOR environment by the secondary development so as to carry 

out the simulation experiments. The results of the experiments prove the effectiveness of 

the controller. 

 

2. The Transmission Structure and Work Mode Analysis of the Parallel 

Hybrid Tractor 

Figure 1 shows the assembly structure of the parallel hybrid tractor, mainly includes: 

the engine, the disc GM motor, ISG motor, clutch, batteries, inverter, variable 

displacement hydraulic pump and two hydraulic motors. The engine and GM motor is 

coaxial, and between them is the electromagnetic clutch. The hybrid tractor has three 

different driving modes, driven by motor alone, driven by the engine alone and driven by 

both the engine and the motor. The driving mode will be changed if the clutch turned 

from combination to separation or from separation to combination.  

The engine can drive the ISG motor and the disc GM motor to recharge the battery 

pack when the starting battery and drive batteries’ SOC value is too low. What’s more, 

the GM motor will be worked in the generator mode so as to recovery the braking energy 

of the tractor when braking. 
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Figure 1. Parallel Hybrid Tractor’s Assembly Structure 

 

3. The Fuzzy Logic Energy Management Strategy 

As already noted, the parallel hybrid tractor has two sets of drive system, and the 

engine and the GM motor have their own high efficient workspace. In order to improve 

the tractor's fuel economy and reduce the harmful emissions, the energy management 

strategy must allot the demand torque of the tractor to the engine and the driving motor 

rationally, what’s more, it also neet to optimize the operation point of the engine, motor 

and the battery pack. Because the hybrid system is a complex nonlinear time-varying 

system, it is difficult to establish an precise mathematical model. As a result, adopting 

traditional control method is hard to achieve satisfactory control effection [1-4]. As the 

fuzzy logic control strategy doesn’t depend on the precise mathematical model and has 

good robustness, it’s especially suitable for the optimal control of the hybrid systems [1-5]. 

According to the specific condition of the hybrid tractor, we established a fuzzy logic 

controller with two inputs and single output. The estimation of the battery’s SOC and the 

hybrid system’s require torque Tr were treated as the inputs. The output torque of the 
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engine Te was treated as the output. When working, the controller fuzzy up the two input 

signals for first, and then the fuzzy reasoning was carried out based on fuzzy control rules. 

Finally, the output torque was got by defuzzification. The output torque of the disc GM 

motor Tm is equal to the difference between the Tr and Te. When the Tm is positive, drive 

battery output power. On the contrary, when the Tm is negative, the disc GM motor 

charges the driving batteries. 

The membership function of the battery’s SOC, system’s required torque Tr and the 

output torque of engine Te were shown in Figure 2. The battery’s SOC is in range {0, 1}, 

and the system’s required torque and output torque of the engine were in range {-1, 1}, 

however, the "0" in the fuzzy domain of the battery’s SOC is on behalf of “0.4” in reality 

and "1" represents “0.9” in reality. The "-1" in the fuzzy domain of Te is on behalf of “0” 

in reality and "1" represents the maximum output torque in reality, while “0” refers to the 

optimal torque value which is determined by the optimum torque curve and the engine’s 

speed. As shown in Figure 2, seven fuzzy subsets were defined for all the variables and 

the Gaussian membership function were adopted. All fuzzy sets are decomposed into 

seven fuzzy partitions: negative large (NL), negative medium (NM), negative small (NS), 

zero (O), positive small (PS), positive medium (PM) and positive large (PL). 
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(a) Membership Functions of Battery SOC (b) Membership Functions of Demand Torque 
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(c) Membership Functions of Engine Output Torque Te 

Figure 2. Membership Functions of Fuzzy Controller’s Inputs and Outputs  

The Mamdami type fuzzy reasoning method was used in the FLC. Gravity method is 

adopted in defuzzification process. Other properties of the FLC design are: and method: 

min, or method: max, implication: min, aggregation: max. The fuzzy rules represented in 

the following form, 

RULE i：if x1 is 1

iA  and x2 is 2

iA , 

                                                             Then u is 
iB   i=1,2,3… 

In which, RULE i refers to the rule number i, x1, x2 refers to input variables, u refers to 

output variables.  Figure 3 gives an overview of the generated FLC control surface. The 

surface is a graphical representation of the implemented fuzzy control law. 



International Journal of Multimedia and Ubiquitous Engineering  

Vol.11, No.5 (2016) 

 

 

150   Copyright ⓒ 2016 SERSC 

60

80

100

SOC
Tr

Te

0
0.2

0.4
0.6

0.8
1.0

-1.0

-0.6

-0.2

0.2

0.6

-1.0
1.0

1.0

-0.5

0

0.5

 

Figure 3. Generated FLC Control Surface 

The I/O quantitative factors of the FLC can actual enlarge or reduce the measurement 

signal and output control, and it can affect the control effect of the system directly. In 

order to make the energy management strategy of FLC gain better effect, in this paper, we 

introduce the quantum particle swarm optimization (PSO) algorithm for the setting of 

FLC’s I/O quantitative factor. 

 

4. A Quantum Particle Swarm Optimization Algorithm 

 
4.1 Particle Swarm Optimization Algorithm 

Particle swarm optimization algorithm (PSO) is a new optimization algorithm by the 

simulation of the flock’s foraging behavior [9]. It can reach the optimal location by the 

cooperation of the whole group. Its basic algorithm can be expressed as: in a D 

dimensions space, equipped with m particles, ,1 ,2 ,( , , , )i i i i DX x x x , ( 1,2i m ), in 

which, iX refers to the D dimensions position vector of the particle i . 

,1 ,2 ,3 ,( , , , )i i i i i Dv v v v v  refers to the flying speed of particle i . In each iteration, the 

particles update themselves by tracking two optimal solutions, one is the optimal position 

of the particle itself bestp , namely the individual optimal solution, 

, ,1 ,2 ,( , ,i j i i i Dp p p p ), the other is the optimal position searched by whole group to 

date, namely the global optimal solution, , ,1 ,2 ,( , , )i j i i i Dg g g g . 

The basic PSO algorithm is updated by the following equations [9-11],  
1

1 1 2 2( ) ( )k k k k k k k k

ij ij r ij ij r gj ijv wv c f p x c f p x                                                  (1) 

1 1k k k

ij ij ijx x v                                                                                                (2) 

As shown above, type (1) was the velocity updating equation, and type (2) was the 

position updating equation. Where,  

w : The inertia weight. 
k

ijv : The velocity of k-th iteration in the j-th dimension of the search space. 

1c ， 2c : The coefficients, the balance factors between the effect of self-knowledge and 

social-knowledge in the test case movement towards the target position. 

1

k

rf ， 2

k

rf : Refers to the random numbers between 0 and 1, and different at each 

iteration. 

 
k

ijx : The position of the k-th iteration in the j-th dimension of the search space. 

k

ijp : The best position that particle i experienced in the j-th dimension of the search 

space.  
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k

gjp : The best position that gBest experienced in the j-th dimension of the search space. 

1k

ijx 
: The position of particle i in (k+1)-th iteration in the j-th dimension of the search 

space. 

However, PSO algorithm also has many disadvantages, for example, its global 

optimization ability is poor as well as it is easy to fall into local extremums. As a result, 

this paper introduces the quantum particle swarm optimization algorithm (QPSO). 

Quantum particle swarm optimization algorithm used the quantum-bit to encode the 

current position of the particles
k

ijx , and the update of the particles’ positions are achieved 

by quantum revolving door. Also the quantum not gate is used to realize the mutation of 

particles’ positions so as to avoid the premature problem of the PSO algorithm and 

improve the precision of the PSO algorithm. 

 

4.2 Quantum Particle Swarm Optimization 

Particles were thought to have quantum behavior in QPSO, when each particle moves 

in the search space, there is a Pbest centered DELTA potential well [10]. Due to the state 

of aggregation of the particles were completely different in quantum space, the particles 

have no certain trajectory, which can make the particles find the global optimal solution in 

the whole feasible solution space. As a result, QPSO algorithm’s global search ability is 

much better than the classical PSO algorithm. Using quantum bits coding can increase the 

universality and the ergodicity of the particles, and it can improve the accuracy of the 

optimization algorithm [12-13].  

QPSO algorithm treat the probability amplitude of quantum bit as the encoding of 

particle’s current location. The encoding strateg is as follows,  

1 2 3

1 2 3

cos cos cos cos

sin sin sin sin

i i i it

i

i i i it

P
   

   

 
  
 

                                        (3) 

Where, 2 * ()ij rand   and ()rand refers to a random number in range [0-1]. 

i refers to the size of the population, 1,2,3i r . j refers to the dimensions of the space, 

1,2,3j t . 

As shown in type (3), each particle of quantum particle swarm can traversal two 

position in the solution space at the same time, and the traversal scope is in range[-1,1]. In 

order to calculate the fitness of each particle, particle position which is represented by 

probability amplitude of quantum bit in quantum particle swarm needs to be transformed 

to the solution space [ , ]j jJ a b . If the j-th quantum bit of particle ip  is set 

to [ , ]T

ij ij ijp   , the variables of corresponding solution space expressed by ijp  are as 

follows.  

1
[ (1 ) (1 )]

2

1
[ (1 ) (1 )]

2

ijc i ij i ij

ijs i ij i ij

X a b

X a b

 

 


   


    


                                                (4) 

According to the coding strategy above, the quantum bit should be updated using 

quantum revolving door so as to realize the motion of the two position at the same time. 

The updating equations are as follows,  
1

1 1 2 2

k k k k

ij ij r p r gc f c f                                                   (5) 

1 1

1 1

cos cos( )

sin sin( )

k k k

ij ij ij

k k k

ij ij ij

  

  

 

 

    
   

          

http://dict.cnki.net/dict_result.aspx?searchword=%e9%87%8f%e5%ad%90%e4%bd%8d&tjType=sentence&style=&t=quantum-bit
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1 1

1 1

cos sin cos

sin cos sin

k k k

ij ij ij

k k k

ij ij ij

  

  

 

 

      
    

                                                    (6) 

Where, 

2 ,

,

2 ,

pij ij pij ij

p pij ij pij ij

pij ij pij ij

     

      

     

     


      
                                                   (7) 

2 ,

,

2 ,

gj ij gj ij

g gj ij gj ij

gj ij gj ij

     

      

     

     


      
                                                   (8) 

Type (5) shows the updating equation of the rotation angle and type (6) shows the 

update equation of the probability amplitude. Type (7) and type (8) were the constraints of 

the updating equations. pij  refers to the historical optimal position of the j-th dimension 

of particle i. gj refers to the optimal phase of the j-th dimension of the whole group. ij  

refers to the current phase. 

Mutation operation was used to avoid the PSO algorithm falling into the local 

extremum by the quantum not gate. Firstly, each particle generate a variation factor in the 

range [0-1] randomly. Secondly, when the variation factor is smaller than the setting 

mutation probability, the mutate operation of the probability amplitude should be carried 

out according to type (9). 

1cos( )cos0 1 2

sin1 0 1sin( )
2

ijij

ij
ij

 

  

            
                                                   (9) 

 

4.3 Algorithm Flow 

The optimization flow of the fuzzy quantitative factor based on QPSO algorithm is as 

follows, 

1) Initialize the quantum particle swarm according to the type (3), and generate the 

initial population.  

2) Mapping the particle position which was expressed as probability amplitude of 

quantum bit to the solution space according to the type (4). And then calculate the 

equivalent fuel consumption of the corresponding particles in ADVISOR. If the particle’s 

current location is better than its historical optimal location, the historical optimal location 

should be replaced with the current position. If the current optimal location is superior to 

the historical global optimal position, the global optimal position should be replaced with 

the current optimal position. 

3) Update the status of the particles according to the type (5) and type (6).  

4) Carry out mutation operation to each particle according to probability based on the 

type (8). 

5) Return to step 2) and carry out circulation calculation until reach the maximum 

number of cycles or achieve the fitness value. The positions of the quantum particles at 

this time should be mapped to the solution space, and outputs the optimal value of 

, ,soc te trk k k . The Figure 4 shows the optimization flow chart of FLC’s quantitative factor. 
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Figure. 4 The Optimization Flow Chart 

 

5. Simulation Experiments and the Analysis 

In order to verify the effectiveness of the fuzzy energy management strategy optimized 

based on QPSO algorithm. A simulation model of parallel hybrid electric tractor was 

established based on ADVISOR platform, and the optimized fuzzy logic control strategy 

module was embedded in the simulation model by the secondary development. The 

simulation parameters of the main components of the tractor are shown in Table 1. 

Table 1. Part of the Main Parameters of the Hybrid Tractor 

Parameters Value 

The full weight of the vehicle 

Axial distance 

Windward area 

The wheel radius 

Rated capacity of battery 

Rated voltage of battery 

The initial SOC of battery 

3000 kg 

1300 mm 

1.6 m
2
 

280 mm 

80 AH 

288 V 

0.7 

 

Based on the practical working environment of the hybrid tractor, the VAIL2NREL 

cycle was chosen to carry out the simulation research, and a comparison test was carried 

out with the normal fuzzy energy management strategy and the electric assist control 

strategy.  

Figure 5 shows the changes of power battery’s SOC value of hybrid tractor under the 

condition of VAIL2NREL cycle. As can be seen from the diagram, the power battery’s 

SOC under these three kinds of control strategies all can maintain in a reasonable range. 
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Figure 5. The SOC Changes under VAIL2NREL Cycle 

The performance of fuzzy energy management strategy without optimization is slightly 

better than ADVISOR’s own electric assist control strategy. In the cycle, the minimum 

value of battery SOC is slightly higher than electric assist control strategy, but the slopes 

of SOC curve nearly the same. That means the braking energy recovery ability and battery 

energy use ability are basically the same between the fuzzy energy management strategy 

without optimization and the electric auxiliary energy management strategy. However, the 

SOC value of the battery used FLC energy management strategy optimized by QPSO 

algorithm decline faster than the other two methods, which means that the power battery 

provides more energy on conditions that the SOC is in the reasonable range. As a result, it 

can reduce the equivalent fuel consumption of the vehicle in the driving stage. In the 

deceleration phase, battery SOC value also rise more rapidly, which shows that the 

vehicle recycling more braking energy when the tractor braking. At the end of the cycle, 

the power battery’s SOC value of the tractor used FLC energy management strategy 

optimized by QPSO algorithm is increased by 18% compared with that without 

optimization and is increased by 24% compared with electric assist control strategy. 
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Figure 6. The Dynamic Performance Comparison under VAIL2NREL Cycle 

Figure 6 shows the dynamic performance comparison among these three different 

control strategies under VAIL2NREL cycle. As can be seen from the diagram, under the 

electric assist control strategy, the actual speed of the vehicle fully meet the requirements 

of driving cycles. This is because the electric assist control strategy treats adequate 

performance as main target. The vehicle's dynamic performance under the FLC energy 

management strategy without optimization can meet the demand in most of the time, but 

in about 2800s, a short-term power shortfall occurred for road slope is bigger. But when 
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the FLC energy management strategy was optimized with QPSO algorithm, this situation 

was improved, which shows that the FLC energy management strategy optimized with 

QPSO algorithm can maximum the braking energy saving to reduce fuel consumption 

under the premise of meeting the power demand of vehicle.  

Figure 7 and Figure 8 show the working points of the disc GM motor under the control 

of the FLC energy management strategy before and after the optimization with the QPSO 

algorithm respectively. As can be seen from the diagram, after optimization with the 

QPSO algorithm, the FLC energy management strategy can make the machine’s working 

points more focused on efficient workspace. In addition, the working points in a state of 

power is increased which proves that its capability of energy recovery is enhanced 

effectively. 
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Figure 7. The Working Points Distribution without Optimization  
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Figure 8. The Working Points Distribution when Optimized with QPSO 

Figure 9 and Figure 10 show the engine’s working point distribution before and after 

optimization respectively. As can be seen, the engine’s working point after optimization is 

also more concentrated in high efficient area and the average working efficiency was 

promoted from 21.7% to 29.8% after the optimization. 
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Figure 9. The Engine’s Working Point Distribution without Optimization 
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Figure 10. The Engine’s Working Points Distribution after Optimization 

To verify the tractor’s ability to adapt to different road conditions under FLC energy 

management strategy optimized by QPSO algorithm, two more typical working 

conditions, UDDS and NEDC was co-opted to carry out simulation experiments. And 

Table 2 shows comparison of the fuel consumption of the FLC energy management 

strategy before and after the optimization under the three different cycles. We can find 

that the optimized management strategy not only has good energy-saving performance 

under VAIL2NREL conditions, but also has good adaptability for other different cycles. 

The average fuel efficiency of the fuzzy logic control strategy after optimization is 

improved by 6.9% compared with the strategy without optimization. 

Table 2. The Comparison of Equivalent Fuel Consumption under Several 
Different Working Cycles 

Working 

cycles 

Equivalent fuel consumption(L) 

FUZZY QPSO-FUZZY Bias (%) 

VAIL2NREL 8.21 7.60 7.4 

CYC_UDDS 0.62 0.58 6.4 

CYC_NEDC 0.58 0.54 6.8 
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6. Conclusions 

Energy management strategy is one of the core technologies of the development of 

hybrid electric vehicle. In this paper, a fuzzy energy management strategy based on fuzzy 

logic controller was established, and then it was optimized by the QPSO algorithm. After 

then, the simulation experiments were carried out to verify the effectiveness of the 

proposed fuzzy energy management strategy optimized by the QPSO algorithm based on 

the secondary development of ADVISOR under Matlab/simulink environment. 

Experimental results show that the strategy can effectively reduce the fluctuating 

range of the power battery’s SOC value in the process of circulation and it also can 

improve the braking energy’s recycling rate under the premise of keeping the 

vehicle’s dynamic performance nearly the same. In addition, the optimized control 

strategy can obviously improve the working point of engine and GM motor, which 

can make the two working more in high efficient area, as well as effectively reduce 

the equivalent fuel consumption and improve the fuel economy of the vehicle.  
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