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Abstract 

A novel approach to feature selection is proposed for data space defined over 

continuous features. This approach can obtain a subset of features, such that the subset 

features can discriminate class labels of objects and the discriminant ability is prior or 

equivalent to that of the original features, so to effectively improve the learning 

performance and intelligibility of the classification model. According to the spatial 

distribution of objects and their classification labels, a data space is partitioned into 

subspaces, each with a clear edge and a single classification label. Then these labelled 

subspaces are projected to each continuous feature. The measurement of each feature is 

estimated for a subspace against all other subspace-projected features by means of 

statistical significance. Through the construction of a matrix of the measurements of the 

subspaces by all features, the subspace-projected features are ranked in a descending 

order based on the discriminant ability of each feature in the matrix. After evaluating a 

gain function of the discriminant ability defined by the best-so-far feature subset, the 

resulting feature subset can be incrementally determined. Our comprehensive 

experiments on the UCI Repository data sets have demonstrated that the approach of the 

subspace-based feature ranking and feature selection has greatly improved the 

effectiveness and efficiency of classifications on continuous features. 
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1. Introduction 

Feature selection is one of the methods used in dimensionality reduction [1] to find a 

subset of original features. Feature selection has wide applications, such as pre-processing 

of knowledge modeling processes, automatic parameter optimization, etc.  

Feature selection can be regarded as a process of searching through the subset feature 

space. However, the exhaustive search in order to obtain a global optimal feature subset is 

a NP-Hard problem [2]. So a heuristic approach should always be considered. The 

solutions of heuristic searches are divided into two categories [3]: Wrapper and Filter.  

Feature selection with Wrapper [4] is tightly bound to a given classifier. A feature 

subset by a Wrapper approach is only suitable for the given classifier, not common for 

any other classifiers. In order to maintain classification accuracies, this method has to 

learn and classify repeatedly with different feature subsets, resulting in the inefficiency of 

feature selection. For this reason, Wrapper has higher computational cost. 

Feature selection with Filter [3] is independent from a classifier. This approach directly 

filters out irrelevant features by user-defined criterion for obtaining a feature subset. Since 

it is independent from induction learning methods, the feature selection with Filter usually 
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has excellent performance for getting a feature subset, which is independent from any 

classifiers. The good behaviours of Filter lead to being widely used in feature selections. 

Relief-series are the classic methods of feature selection with Filter. Relief series 

includes Relief, ReliefF, RReliefF and their ameliorations. ReliefF extends Relief from 

binary classification to multi-classification, and applies KNN (K Nearest Neighbours) 

method to measure features for the robustness of feature selection. Stanczyk U. [5] used 

Relief algorithm to rank conditional attributes, and generate decision rules on examples 

within Dominance-Based Rough Set Approach. In order to effectively use the rich 

features of the image objects, Jia J. [6] et al. also used Relief algorithms to improve in 

terms of aspects of randomly drawing samples, the influence of sample quantity variance, 

and iteration times to evaluate the features. Wang P. [7]
 
et al. combined DDNA and 

SOEKS with feature selection learning algorithm RELIEF-F to improve the quality of 

predictions. 

Above algorithms use Euclidian distance function for the projection of objects on each 

feature to measure the discriminant ability of features in classifications. We identify their 

drawbacks as that: 

(1) Those methods only considered the objects and their local spatial distributions in 

the data space (e.g. Nearest Neighbour), ignoring the overall spatial distributions of 

objects. In this case, the overall ability of discriminating objects of a feature cannot be 

expressed; 

(2) Those computations only used distance functions amongst objects as a 

measurement to calibrate the feature discriminant ability. However, distances from 

different feature domains, whether long or short, should have the equal ability in 

classification as long as they discriminate objects for their corresponding class labels; 

In order to overcome the drawbacks identified above, we propose a novel method 

namely, Feature Selection for Continuous Features based on the Distribution of Objects 

(FSFSF). 

This paper is organized as follows. Section 2 introduces the basic concepts. Section 3 

presents the ideas and the algorithms of our work. Section 4 describes the experiments 

and their significant results. Section 5 gives the conclusions. 

 

2. Basic Concepts 
 

2.1. Information Model and Feature Selection 

An information model K is an abstract presentation of a data set[8], denoted as K=(U, 

A, V), where U={u1, u2, …, u|U|} is a set of object identifiers (|U| is the cardinality of 

objects in U); A={ai|i=1, 2, …, k} is a set of features of objects. V={Vai|i=1, 2, …, k}, Vai 

is a value domain set for feature ai, denoting object uU as the projection of ai, namely ai

：UVai, ai(u)Vai. If feature ai assumes real numbers, it is called a continuous feature 

and the value domain set Vai has a continuous range. If A=C∪D, and C≠Φ, D≠Φ, C∩D 

=Φ, where C is a condition-feature set, and D is a decision-feature set, then a decision 

table (DT) can be defined over K.  

If the condition-feature subset FsC exists, and the ability of Fs classification is not 

inferior to that of C classification, then Fs is called a solution of feature selection. 

This paper presents the feature selection FSFSF for continuous condition-feature set 

and discretized decision-feature set. All the features below imply the continuous condition 

features if not mentioned especially. 

 

2.2. Distribution Center and Radius 

Given a subset A' A and any subset S U, the center and radius of S with respect to A' 

are defined as follows: 
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Where dist is distance function (such as Euclidean distance etc). 
 

3. Feature Selection on Continuous Features 
 

3.1. Covers and Its Optimization 

Given a decision table DT=(U, CD, V), the  process of clustering with 

condition-feature set C by Nearest Neighbour (NN) algorithm generates a set of clusters, 

denoted as  Clus(U, C), which satisfies: (1)  |Si|≥2, u,vSi, D(u)=D(v) for 

SiClus(U, C), and (2) if wU, Radius(Si{w},C) Radius(Si,C), then at least 

x,yU, D(x)≠D(y). The hypersphere with radius Radius(Si,C), including Si, is called a 

Cover of DT. 

Decision table DT corresponds to a set of Covers, denoted as CoverSet(DT), defined 

over continuous feature space. For any DT, CoverSet(DT) is relatively steady. Obviously, 

|CoverSet(DT)|≤|U|, and this inequation is helpful to select feature subset. If |Si|=1, then 

Si may be regarded as an outlier or a noisy set, and deleted further. 

 

3.2. Matrix of Feature Discriminant Ability 

The discriminant ability of a feature is denoted as DAF. Firstly, the range of any 

feature cC is determined by the projections of all Covers on this feature, 

CoCoverSet(DT), expressed as follows: 
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Where μ(Co, a) is mean, σ(Co, c) is standard variance, Z/2 is double-sided values of Normal 

Distribution Standard under probability , namely:  
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And Z/2[0,3.09], [0,1]. 

For Co1, Co2 CoverSet(DT), and D(Co1)≠D(Co2), the discriminant ability of feature c 

between Co1 and Co2 is defined as: 
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As we can see from Formula 5, DPc(Co1,Co2, )[0,1], implies that if the objects in 

each Cover are large in number and much centralized, and the distance  between two 

Covers is much long on feature c, then the discriminant ability of feature c is much strong. 

DPc(Co1,Co2, )=1, denoting Co1 and  Co2 with different labels is able to be 

discriminated by c under probability  . Certainly a Cover defines an equivalent class 

satisfying equivalent relationship (viz. (Co,c)=0). 

On the basis of Formula 5, a Feature-Importance Matrix (FIM), which presents all the 

discriminant abilities of all the features by all the Covers of DT, is defined below: 
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Formula 7 is the discriminant ability of feature c which distinguishes Cover Co from 

all the other Covers with the labels different from that of Co. Obviously, dp(Co,c)[0,1]. So 

one can see that every row in FIM corresponds to a Cover, and every column in FIM 

corresponds to a feature. 

 

3.3. Feature Ranking 

 

Figure 1. The Ranking Algorithm for Subspace-Projected Features 

In order to measure the discriminant abilities of all features through the Covers, and 

then rank all features in descending order by the discriminant abilities, a column namely, 

Selected is added to FIM, called Extended FIM (EFIM), which is helpful to design the 

Feature Ranking algorithm (Figure 1). The Selected value is either true or false, 

designating whether the raw is used or not in current feature ranking. The algorithm of 

Feature Ranking based on EFIM is described in detail in Figure 1. 

From Algorithm 1 (Figure 1), it can be seen that a feature that has the most powerful 

discriminant ability of a certain Cover in EFIM is selected first. Furthermore, if the 

discriminant abilities of the feature for all other Covers are the most powerful too, those 

Covers do not participate in feature ranking process, because those Covers would not be 

able to make any difference in assessing the discriminant ability of a feature. Through a 

recursive process, the descending order of all features is finally obtained on the basis of 

the discriminant abilities of all the features that possess global superiority. 

 

3.4. Gains of Discriminant Ability of Feature Subset 

For Co1, Co2CoverSet(DT), and D(Co1)≠D(Co2), namely different labels between 

Co1 and Co2, the discriminant ability of feature subset C'C is defined as below: 
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ALGORITHM 1  FeatureRanking (EFIM(DT, ), C);  

(* Input:  EFIM, Probability, and condition-feature set *) 

(* Output: Features in descending order *) 

If C ≠ Φ Then  (*the most powerful column (feature) *) 
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; 

For r[1..|CoverSet(DT)|]  (* a row(viz. Cover)*) 

Begin 

For cC-RankedFeatureSet  (* all columns(viz. all features) *) 

If c(r) ≤ cmax(r) Then Selected(r)=True; (* update tag *) 

If r[1..|CoverSet(DT)|] And Selected(r)=True Then  (* all rows (viz. all Covers) *) 

Selected(r)=False;  (* if all rows is tagged, then clear all tags *) 

End; 

RankedFeatureSet={cmax}  FeatureRanking (FIM(DT,), C-{cmax});  

(* append a feature recursively *) 

Else 

Return RankedFeatureSet; 

EndIf; 
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Where AeraC' (Co, ) is a bounded hyper-geometrical body in C' space with the 

statistical significance under the probability , and simplified a bounded sphere with 

Center(Co, C') as center and radius. 
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Generally, suppose RadiusC' (Co2, )≥RadiusC' (Co1, ) and the connected line between 

two centers as a projection axis, then Formula 8 is simplified as: 
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Where d is a distance function with feature set C' between Co1 and Co2. Obviously 

DPC' (Co1,Co2, )[0,1], denoting the discriminant ability of  C' to distinguish Co1 and 

Co2 with different labels with the statistical significance under probability . If DPC' 

(Co1,Co2,)=1, then two Covers can be discriminated clearly. If DPC' (Co1,Co2,)=0, then 

two Covers cannot be discriminated clearly. 

Aiming at all the Covers, the discriminant ability of feature set C' is defined: 
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Obviously DPC' (CoverSet(DT), )[0,1]. When the feature set changes with features 

in it, the discriminant ability of feature set maybe change too. Thereby the gain 

DPG(CoverSet(DT),C1C2, ) of discriminant ability of feature set is defined below: 
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Where C1,C2C, denoting the change of discriminant ability of feature set with the 

extension from C1 to  C1C2 with the statistical significance under probability . For 

given  (≥0), if DPG(CoverSet(DT), C1∪C2, β)>ε, then it shows the ascent of the 

discriminant ability of feature set by C2. Otherwise if DPG(CoverSet(DT), C1∪C2, β)≤0, it 

shows the descent of the discriminant ability of feature set by C2. So that C2 with powerful 

discriminant ability can be determined according to the gain DPG(CoverSet(DT), C1∪C2, 

β). 

 

3.5. FSFSF Algorithm 

 

Figure 2. The Main Algorithm of the Proposed Approach 

ALGORITHM 2   FSFSF (DT,,, ); 

(* Input: Decision table, Probability, Threshold *) 

(* Output: Selected feature subset *) 

CoverSet(DT) ;        (* form Cover and optimization *) 

FIM(DT, α);         (* form Feature Importance Matrix*) 

RankedFeatureSet=FeatureRanking(FIM(DT,),C);  (*obtain ranked features by discriminant ability *) 

FeatureSubSet=RankedFeatureSet(0);   (*select feature by the gain of discriminant ability *) 

For i=1 to |C|-1 

If DPG(CoverSet(DT), FeatureSubSet  {RankedFeatureSet(i)}, ) >  Then  

FeatureSubSet = FeatureSubSet  {RankedFeatureSet(i)}; 

Return FeatureSubSet; 
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Upon the introduction of above basic concepts, the algorithm of Feature Selection for 

Continuous Features Based on the Distribution of Objects (FSFSF) is described in detail 

in Figure 2. 

It can be seen from Algorithm 2 that the selected feature subset consists of features 

added in one-by-one from ranked features, sorted in descending order by the discriminant 

abilities. If a feature from ranked features improves the gain DGP and the ranking is 

greater than other selected features, the feature is appended to the selected feature subset. 

Otherwise this feature is dropped. 

 

4. Experiments 

Our experiments are conducted on a laptop Lenovo E255 computer with Windows XP 

platform. FSFSF algorithm and CoverSet(DT) are implemented in Visual Basic 6.0 and 

MS Access 2007. 

 

4.1. Using CoverSet as Classifier  

Procedure CoverSet(DT) defines a classifier. This subsection demonstrates that 

CoverSet(DT) as a classifier can perform as good as those well-known classifiers such as 

C4.5, SVM, and CLIP3. 

After CoverSet(DT) is constructed, it may include some Covers with only one object, 

so that these Covers may be regarded as noise. Deleting these Covers often results in the 

combination of Covers or the readjustment of the boundaries of Covers till there is no 

Cover with a single object in the CoverSet(DT). This process is optimal, which forms the 

Covers with much more objects with same label and much less number of Covers in 

CoverSet(DT), to improve the robust and accuracy of classifier CoverSet(DT). For any 

object obj, the classification rules are following: 
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The experimental data sets are downloaded from UCI Repository[9]. The data sets are 

randomly divided into 10 groups according to 10-Fold Cross Validation. Every 

experiment is implemented 10 times (viz. 100-time solutions) and the classification 

results are regarded as accuracy averages with =78%, =100% (viz. Z/2=1, Z/2=3.09). 

In Formula 13 dist is a Euclidean distance function. The accuracies of other classifiers 

come from the relevant literatures as shown in Table 1. Accuracies of CoverSet for given 

data sets are better than those of other classifiers except for the accuracy of Iris. The 

results illuminate that CoverSet is a good classifier with high classification accuracy. 

Table 1. Comparison of Classification Accuracies with Different Classifiers 
 

Data Set Classifiers Accuracy 

Ionosphere 
CoverSet 89.4% 

SVM 61.9%[10] 

Sonar 
CoverSet 81.4% 

C4.5 60.77.2%[11] 

Iris 
CoverSet 94.4% 

C4.5 94.7%[12] 

Spectf 
CoverSet 79.7% 

CLIP3 77.0%[9] 
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4.2. Effectiveness of Feature Ranking 

All experiments below adopt our proposed CoverSet as classifier to validate the 

accuracies with different feature sets of every data set. 

Parkinson data set consists of 195 records with 23 features, including 22 continuous 

condition features and 1 decision feature, and is divided into 2 categories. The parameters 

are set as =78%, =100%, =0 (namely Z/2=1, Z/2=3.09). The given 22 condition 

features are ranked by Algorithm 1: FeatureRanking.  

In order to illustrate the efficiency of feature ranking, the experiments with Parkinson 

data set are implemented by 10 times of 10-Fold Cross Validation (viz. 100-time 

classifications). The performance is evaluated with the averages of time costs in learning 

and classification accuracies. 

Due to the limited paper length, only a part of total experiment results are shown in 

Figures 3-7. The axis of "Data File Number" in figures denotes for the ith (i=1..10) file of 

10-Fold data files, namely ith experiment. The experiment titled "First Feature Set" 

denotes the process that always selects the current best feature first and vice versa for the 

"Last Feature Set". The experiment titled "Random Feature Set" denotes a set of features 

randomly selected from ranked feature set. The experiment results are the averages of 

experiment results (viz. many feature sets with the same size). It is expected that the 

performance of "Random Feature Set" should be better than the "Last Feature Set" but 

worse than the "First Feature Set". 

Figures 3-6 show that (1) the experiment "First Feature Set" has the highest 

classification accuracy, while the experiment "Last Feature Set" has the lowest. The 

experiment "Random Feature Set" has the accuracy between the two formers. This 

confirms with our hypothesis that our feature selection algorithm does make sense by 

selecting best features first. (2) The experiment "First Feature Set" has the lowest time 

cost, while the experiment "Last Feature Set" has the highest time cost. The experiment 

"Random Feature Set" is between the two formers. (3) Along with the augmentation of 

features from 4 to 22 ranked features, the differences amongst "First Feature Set", "Last 

Feature Set" and "Random Feature Set" become smaller, because they include more and 

more the same features in their feature subsets. When all features are included, these three 

subsets eventually become the same. Then their classification accuracies are all the same 

by all the features (see Figure 6). But their time costs are slightly different mainly because 

the logic order of features is different from that of the physical order in database, bringing 

up the difference when data is accessed through a DBMS (MS Access 2007) database. 
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Figure 3. Experiment Results of 4 Features 
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Figure 4. Experiment Results of 10 Features 
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Figure 5. Experiment Results of 15 Features 
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Figure 6. Experiment Results of 22 Features 
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Figure 7. Average Values of 10 Experiments 

Figure 7 shows the averages of classification accuracies and time efficiency by the 

three-feature sets with different feature number. It can be seen from Figure 7 that the 

classification accuracies gradually improve in tendency along with the number of features 

increasing. There are some peak points of classification accuracies associated with 

different feature subsets, implying that the classification accuracies can be improved by 

finding the feature subsets with low time costs. 
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The conclusions from experiment results with other data sets from UCI Repository are 

similar to that with Parkinson data set. These conclusions illuminate that the feature 

ranking is very effective by the means of the discriminant abilities of condition features 

determined by Covers of decision table. 

 

4.3. Effectiveness of Feature Selection 

The experiments on Spectf data set are conducted on the training data set and testing 

data set downloaded from UCI Repository. The training data set is used for feature 

selection by FSFSF.  The testing data set is used for classification accuracy by CoverSet. 

Other original data sets from UCI Repository are adopted for feature  

selection by FSFSF, and then tested for the accuracies of classifier CoverSet by 10 

10-Fold Cross Validations (viz. 100 solutions) with the original and selected feature set 

respectively. The resulting accuracies and time costs are averaged for every data set for 

both original and selected feature sets. 

Table 2. Comparison of Classification Accuracies with Feature Subset to 
Original Features 

 

Table 2 shows for every data set that the former and latter rows are the results by 

original and selected feature set respectively. It can be seen that the accuracy of the 

selected feature set is consistently higher than that of the original feature set, whereas the 

time cost is lower significantly. Although the accuracy for Sonar data set with selected 

features is only slightly higher than that of the original features, the number of features 

and time cost are significantly reduced. Comparing the experiments on Iris data set 

between Tables 1 and 2, especially note that the accuracy for Iris data set with the 

selected features in Table 2 is greater than that of the original data set using classifier 

C4.5 shown in Table 1. 

Our experiment results illustrate that FSFSF is able to automatically select the feature 

subset from the original feature set. The discriminant ability of the selected subset 

features is superior to that of original feature set. 

 

5. Conclusions 

Continuous features are common in the data sets collected from sensor networks, land 

surveys, medical, astronomical and meteorological applications. In those applications, 

very large and high dimensional data sets are mostly the case. This paper has presented a 

novel feature selection approach that is based on the projection of subspaces on the 

features in terms of spatial distribution of data points. Then the features are ranked 

according to their statistical significance in discriminating class labels. Our experiments 

on the UCI Repository data sets have successfully shown that the proposed approach 

namely, FSFSF is effective and efficient. 

Data Set Number of Features Classification Accuracy Time Cost [Second] 

Parkinson 
22 90.9% 635.4 

19 92.2% 583.4 

Ionosphere 
33 89.4% 911.25 

26 90.7% 886 

Sonar 
60 81.4% 102 

30 81.6% 76 

Iris 
4 94.4% 102.7 

2 96.7% 85 

Spectf 
44 79.7% 15 

29 84.0% 9 
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The time cost of FSFSF mainly lies in the construction of CoverSet, which partitions a 

given feature space into continuous subspaces with clear class labels that possess 

statistical significance according to the spatial distribution of objects. The time 

complexity of the CoverSet partitioning process is the same as that of a fuzzy clustering 

approach. Although maybe there are intersections among subspaces, every subspace is 

associated to a single label. Therefore there is no object falling into the intersections. The 

subspaces with class labels can be separated by other subspaces with unknown class 

labels, by means of which the class labels are discriminated. 

To sum up, our proposed approach has following characteristics: 

(1) Features may have equal discriminant abilities if two subspaces with different 

labels are projected to the features such that the gap of two projections exists no matter 

how long in distance between the two subspaces. 

(2) FSFSF just considers the ability that can partition objects into subspaces with 

different class labels. There is no need for an exhaustive search for all possible subspaces 

of the given feature space. The algorithm emphasizes the discriminant abilities of features 

corresponding to those subspaces and therefore improves the performance of feature 

selection. 

(3) FSFSF ranks features mainly according to discriminant ability of features by using 

a discriminant ability matrix to make the features ranking being more righteous and 

objective, and different from those by the sum of the measurement of discriminant 

abilities of every feature for all Covers. 

(4) On the basis of feature ranking, FSFSF selects the features automatically on a 

best-so-far basis, which have powerful discriminant abilities to incrementally complete 

the feature selection. 

FSFSF integrates the features with strong discriminant abilities to obtain a much better 

feature subset in terms of "ranking the features by their discriminant abilities" and "the 

gain of discriminant ability of a feature set" as the heuristics. To this end, FSFSF is a local 

optimal algorithm for finding the best subset features. In our experiments, the 

combination of the features by choosing strong-with-strong discriminant abilities is 

effective. Our future research work will continue on those with strong-with-weak or 

weak-with-weak discriminant abilities of subset features, or the solution of a variety of 

feature subsets. 
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