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Abstract 

The multi-sensor information fusion predictive control algorithm for discrete-time 

linear time-invariant stochastic control system is presented in this paper. This algorithm 

combines the fusion steady-state Kalman filter with the predictive control. It avoids the 

complex Diophantine equation and it can obviously reduce the computational burden. 

The algorithm can deal with the multi-sensor discrete-time linear time-invariant 

stochastic controllable system based on the linear minimum variance optimal information 

fusion criterion. The fusion method includes the centralized fusion, matrices weighted and 

the covariance intersection fusion. Under the linear minimum variance optimal 

information fusion criterion, the calculation formula of optimal weighting coefficients 

have be given in order to realize matrices weighted. To avoid the calculation of cross-

covariance matrices, another distributed fusion filter is also presented by using the 

covariance intersection fusion algorithm, which can reduce the computational burden. 

And the relationship between the accuracy and the computation complexities among the 

three fusion algorithm are analyzed. Compared with the single sensor case, the accuracy 

of the fused filter is greatly improved. A simulation example of the target tracking 

controllable system with two sensors shows its effectiveness and correctness. 

 

Keywords: Predictive Control, Information Fusion, Centralized fusion, Matrices 

weighted, Covariance intersection fusion 

 

1. Introduction 

In this paper, steady-state Kalman filter is adopted. Kalman filter is a time varying 

recursive filter. The optimal Kalman filter is required to compute the gain matrix at every 

moment, which brings a large computational burden. From the viewpoint of engineering 

application, the advantage of using steady-state Kalman filter is to avoid computing the 

gain on-line. The steady-state gain can be calculated in a single time off-line, which 

simplifies the calculation of the Kalman filter, and reduces the burden of on-line 

calculation [1-3]. 

Predictive control is a new type of computer control algorithm that has been 

successfully developed in recent years. Because of its control strategy, such as prediction 

model, rolling optimization, and feedback correction, the control effect is good. It is 

suitable for the control of industrial production process, which is not easy to establish a 

precise digital model and more complex. At the same time, its theory has received great 

attention in the industrial field and academia, and has been widely used in the control 
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system including the petroleum, chemical, metallurgy, machinery and other industrial 

department, and it is a promising new class of computer control algorithms [4-12]. 

The predictive control algorithm based on steady-state Kalman filter in this paper also 

has the three essential characteristics. Because steady-state Kalman filter algorithm is 

used, the complex Diophantine functions and the gain are avoided and it can solve the 

problem of predictive control for time-varying and time-invariant system [11]. For the 

predictive control algorithm, the accuracy and stability depend on the predictive accuracy 

of output [13]. For the single sensor system, it can only obtain the partial information. If 

the sensor has the disturber, the accuracy will get very bad, and even makes the system 

paralysis. Therefore many advanced and complicated systems require using multisensor to 

make up the disadvantages of single sensor. 

Multisensor information fusion is also known as the multisensor data fusion, and it has 

become a prevalent field since 1970s, and it has been applied to many fields, such as 

guidance, robotics, GPS positioning and signal processing [14]. The multisensor 

measurement fusion based on Kalman filter has two measurement fusion methods. One is 

State fusion method. The state fusion method is also divided into centralized Kalman 

filtering and distributed Kalman filtering. Although the centralized Kalman filter can 

obtain the global optimal fusion state estimation in theory, it has the disadvantage of large 

computation burden and poor fault tolerance, and the distributed Kalman filtering 

information fusion can overcome these drawbacks. The other is weighted measurement 

fusion or distributed measurement fusion, applying weighted method fusing each 

measurement equation into a measurement equation that its dimension is not too large 

[15]. 

In this paper, the multisensor information fusion predictive control algorithm is 

presented. This algorithm avoids the complex Diophantine equation, but the state 

predictor is obtained by using steady-state Kalman filter, so it can obviously reduce the 

computational burden. And the relationship between the accuracy and the computation 

complexities among the three fusion algorithm are analyzed. Moreover, compared to the 

single sensor case, using the information fusion algorithm improves the accuracy of the 

predictive control and the stability of the system. Simulation results verify its 

effectiveness and correctness. 

This paper is organized as follows: Section 2 presents Problem formulation. The 

local steady-state Kalman filter of the ith time-invariant subsystem are presented in 

Section 3. Section 4 presents the information fusion Kalman filter. Predictive 

control algorithm base on steady-state Kalman filter is presented in Section 5. A 

simulation example is given in Section 6. The conclusions are presented in Section 

7. 

 

2. Problem Formulation 

Consider the multi-sensor linear discrete-time time-invariant stochastic controllable 

system 

( 1) ( ) ( ) ( )t t t t   x Φx Bu Γw                                                   (1) 

( ) ( ) ( ) 1, ,i i it t t i L  y Η x v ，                                                    (2) 

where t is the discrete time, the subscript i denotes the ith sensor, L denotes the number of 

sensor, ( ) nt x R  is the state of the system, ( )u t  is the input, ( ) mi

i t y R  is the 

measurement of the ith sensor subsystem, ( ) mi

i t v R  is the measurement noise of the ith 

sensor subsystem, ( ) rt w R  is the input noise, 
i

Φ B Γ Η， ， ，  is the suitable dimensional 

matrix respectively. 

Assumption 1 ( ) rt w R  and ( ) , 1, ,mi

i t i L v R  are independence white noises with 

zero mean and covariance are wQ  and viQ  individually 
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 
( ) 0

E ( ) ( )
( ) 0

i tk

i vi

t
k k

t


     
    

     

w Q
w v

v Q
                                        (3) 

Where E is the mathematical expectation, the superscript T denotes the transpose, and 

tk  is the Kronecker delta function, )(0,1 kttktt   . 

Assumption 2 The initial state value (0)x  is uncorrelated with ( )tw  and ( )i tv , and 

0(0) x x , 
0cov (0) x P . 

Assumption 3 ( )tu  is the known time sequence, or linear function (feedback control) of 

( ( ) ( 1) )t t y y， ， . 

Assumption 4 ( , )iΦ Η  is completely observable pair, and ( , )Φ Γ  is completely 

controllable pair. 

Assumption 5 The initial time 0t . 

Our aims are as follows. 

1) Based on the measurement ( ( ) ( 1) (0))t t y y y， ，， , using information fusion steady-

state Kalman estimation to get the N-step-ahead optimal predictive control algorithm. 

2) The fusion method includes the centralized fusion, matrices weighted and the 

covariance intersection fusion. And the accuracy and computational burden among 

the three fusion algorithm are analyzed. 

 

3. Local Steady-State Kalman Filter 

Lemma 1 [16] for system (1) and (2) with the assumption 1-5, the ith sensor subsystem 

has the local optimal steady-state Kalman filter equations:  

ˆ ˆ( 1| 1) ( | ) ( 1) ( 1)i fi i fi it t t t t t      x Ψ x Bu K y                                   (4) 

[ ]fi n fi i Ψ I K H Φ                                                        (5) 

T 1

fi i i i

K Σ H Q                                                            (6) 

T

i i i i vi  Q H Σ H Q                                                        (7) 

[ ]i n fi i i P I K H Σ                                                         (8) 

And with the arbitrary initial values are ˆ (0 | 0)ix , further i  satisfies the Riccati 

equation 

Τ Τ 1 Τ Τ[ ( ) ]i i i i i i i vi i i

   Σ Φ Σ Σ H H Σ H Q H Σ Φ ΓQΓ                              (9) 

Where iP  is steady local filter error covariance matrix. 

Lemma 2 [17] The multisensor linear discrete-time time-invariant stochastic 

controllable system (1) and (2) under the assumption 1-5, the cross covariance 

lim ( | )( )ij ij t t t P P  between any two local filter satisfies Lyapunov equation: 

T T T[ ] [ ]ij fi ij fj n fi i n fj j   P Ψ PΨ I K H ΓQΓ I K H                                (10) 

 

 

4. Fusion Kalman Filter 

The system (1) and (2) can be written as 
(0) (0) (0)( ) ( ) ( )t t t y Η x v                                                       (11) 

(0)

1( ) ( ) ( )Lt t t


    y y y                                                    (12) 

(0)

1( ) Lt


    H H H                                                      (13) 
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(0)

1( ) ( ) ( )Lt t t


    v v v                                                     (14) 

1

(0) diag( , , )
Lv v vQ Q Q                                                        (15) 

Lemma 3 [16] for system (1)-(11) under Assumptions 1-5, the optimal centralized 

fusion steady-state Kalman filter ( )ˆ ( )c t tx  are calculated by 

( ) ( ) ( ) ( ) (0)ˆ ˆ( 1| 1) ( | ) ( 1)c c c c

f ft t t t t    x Ψ x K y                                         (16) 

( ) ( ) (0)[ ]c c

f n f Ψ I K H Φ                                                        (17) 

( ) ( ) (0)T ( ) 1c c c

f 

K Σ H Q                                                         (18) 

( ) (0) ( ) (0)T (0)c c

v  Q H Σ H Q                                                     (19) 

( ) ( ) (0) ( )[ ]c c c

n fi P I K H Σ                                                     (20) 

And with the arbitrary initial values are ˆ (0 | 0)ix , further 
i  satisfies the Riccati 

equation 

( ) ( ) ( ) (0)Τ (0) ( ) (0)Τ 1 (0) ( ) Τ Τ[ ( ) ]c c c c c

vi

   Σ Φ Σ Σ H H Σ H Q H Σ Φ ΓQΓ                       (21) 

Where ( )c
P  is fused steady-state filter error variance matrix. 

Lemma 4 [17] The system (1) and (2), under the assumption 1 to 5, the optimal fused 

steady-state Kalman filter 
0

ˆ ( | )t tx  weighted by matrices is given as [11]: 

0

1

ˆ ˆ( | ) ( | )
M

i i

i

t t t t


x M x                                                     (22) 

Under the linear minimum variance optimal information fusion criterion which 

minimize the performance index, the optimal weighting coefficients , 1,2, ,i i LM  are 

given as follows 

  Τ 1 1 1

1, , ( )l e e   Τ
M M P e P                                               (23) 

Where 

11 12 1

21 22 2

1 2

M

M

M M MM

 
 
 
 
 
 

P P P

P P P
P

P P P

, 

m

m

m

 
 
 
 
 
 

I

I
e

I

, 

( 1,2, , )ii i i M P P                                                     (24) 

Where ( )i tP  and ( )ij tP  are computed by Lemma 1 and 2.  

The optimal fused variance matrix is given as 

1 1

0 ( )e e  P P                                                        (25) 

And 

0tr tr 1,2, ,j j M P P，                                               (26) 

Lemma 5 [18, 19] For the system (1) and (2), under the same conditions, when 

the variance of P1 and P2 are known, but the cross covariance P12 is unknown, using 

the covariance intersection (CI) fusion method, this paper proposes a suboptimal 

fusion steady-state Kalman filter is as follows: 

1

ˆ ˆ( | ) ( ) ( | )
L

CI i i

i

t t t t t


x x                                                 (27) 
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Fusion weight is calculated as follows 

1 1 1

1

( ) ( )( ( ) ( | )) ( | )
L

i i i i i

i

t t t P t t P t t     



                                      (28) 

Where 

1

1

1

tr( ( | ))
( )

tr( ( | ))

i

i L

i

i

P t t
t

P t t











, 0 ( ) 1i t  , 

1

( ) 1
L

i

i

t


                            (29) 

It is proved in document [16] that the accuracy of above three kinds of weighted 

fusion estimator from high to low is the centralized fusion, matrices weighted and 

the covariance intersection fusion. But the computational burden is on the contrary, 

the centralized fusion estimator has a large computational burden. And covariance 

intersection fusion avoids solving cross-covariance matrices. So it has the minimal 

computational burden, and it is suitable for real-time applications. 

 

5. Predictive Control Algorithm Base on Steady-State Kalman Filter1 

For system (1) and (2) with the assumption 1-5, selecting the fused state 

0 ( )i t
e x (

1

[0 01 0 0]i

i m i



 

e ) as the controlled variable, selecting ( )rx t  as the reference 

track at the time t . For the every time t , the N-step ahead control increments 

( ) ( 1) ( 1)u t u t u t N     ， ， ，  need to be obtained to make the states in the future 

0
ˆ ( | ),i t j t e x  1, ,j N  as close as possible to the given reference track ( )rx t j . Where 

N  is the control time domain, N  is the optimum time domain. 

Theorem1 For the system (1) and (2) under the Assumption 1 to 5, the t-step ahead 

optimal predictive control increments is obtained: 

1 ˆ( ) [( ) ( ) ) ( ) { [ ( | ) ( 1)]}N e N u N e r Nt t t t

           ΔU e Φ Q e Φ Λ e Φ Q x e Φ x Φ U              (30) 

Where j j


     e e e , and diag( )e  1 N

Q Q , ,Q  and 1diag( , , )u N
Λ Λ Λ  are 

unified called the weighted matrix. 

We define the controlled state as 

0 0 0 0
ˆ ˆ ˆ ˆ( 1| ) ( 2 | ) ( | )t t t t t N t


        X e x x x                          (31) 

And the reference tracking at the time t  is defined as 

( 1) ( 2) ( )r r r rx t x t x t N


     X                                   (32) 

2

( )

( )
( )

( )

x

N

t

t
t

t

 
 
 
 
 
 

Φ

Φ
Φ

Φ

,

( )

( 1)

( 1)

t

t

t N

 
 

 
 
 
 
    

U

U
ΔU

U

,

1

( )

( ( ) ) ( )
( )

( ( ) ( ) ) ( )N

t

t t
t

t t t





 
 


 
 
 

   

B

Φ I B
Φ

Φ Φ I B

, 

1 2

( )

( ( ) ) ( )
( )

( ( ) ( ) ) ( ) ( ( ) ( ) ) ( ) ( )

N

N N

t

t t
t

t t t t t t t 

 
 


 
 
 

      

0 0

0

B

Φ I C B
Φ

Φ Φ I B Φ Φ I B B

          (33) 

And the t-step ahead predictive control is computed as 

1( ) ( 1) ( )t t t   U U e U                                                   (34) 
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Where 
1 [10 0]e , and the filtering ˆ( | )t tx  can be obtained through (4)—(9). 

Proof: The expanse function equation is defining [20]: 

0 0
ˆ ˆ( ) ( )r e r uJ     A A Q A A ΔU Λ ΔU                                           (35) 

From (1), we have 

ˆ ˆ( 1| ) ( ) ( | ) ( ) ( )i it t t t t t t  x Φ x B u                                                (36) 

Substituting (36) into (16) or (22) or (27) yields 

0 0
ˆ ˆ( 1| ) ( ) ( | ) ( ) ( )t t t t t t t  x Φ x B u                                               (37) 

And  

1
1

0 0

0

ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( )
i

i i m

m

t i t t t t t t t m


 



   x Φ x Φ B u                                   (38) 

Defining 

( ) ( ) ( 1)t t t   U U U                                                           (39) 

We have 

( 1) ( 1) ( 2) ( )t i t i t i t           U U U U ( 1)t U                           (40) 

Putting (40) into (38) obtains 

1 1

0 0

ˆ ˆ( | ) ( ) ( | ) ( ) ( ) ( )
j j n

i m

n m

t i t t t t t t t n
  

 

 
     

 
 x Φ x Φ B u                                   (41) 

So that we have 

0 0
ˆ ˆ[ ( | ) ( 1)]x Nt t t

    X e Φ x Φ U Φ u                                              (42) 

Putting (42) into (35) yields 

ˆ ˆ{ [ ( ) ( | ) ( ) ( ) ( 1)] } { [ ( ) ( | ) ( )x N r e x NJ t t t t t t t t t t

           e Φ x Φ U Φ U X Q e Φ x Φ U  

( ) ( 1)] }r ut t

   Φ U X ΔU Λ ΔU (43) 

And letting 0
J


ΔU

, we have 

( ) { [ ( ) ( | ) ( ) ( 1)] } ( ) ( ) 0N e x r N e N ut t t t t t t t

        Φ eQ e Φ x Φ U A Φ eQ e Φ ΔU Λ ΔU          (44) 

We have the control increments can be computed via (30). From (30) and (39), 

(34) is obtained.  

This completes the proof. 

 

6. Simulation Example 

Consider 2-sensor discrete-time linear time-invariant stochastic controllable tracking 

system  (1) and (2), where 1

2

( )
( )

( )

x t
t

x t

 
  
 

x  is the state, ( )iy t  is the measurement of the ith 

subsystem, 
1

( )
0 1

T
t

 
  
 

Φ , 21
( )

2
t T T



 
  
 

B , 21
( )

2
t T T



 
  
 

Γ , 0.7T   is the sampled 

period,  1 1 0Η ,  2 0.8 0.5Η . 

And ( )tw  and ( )i tv  are assumed to be independent Gaussian white noises with zero 

mean and variances 0.1Q , 1 0.1v Q , 2 0.5v Q . 
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The estimation criterion of the controlled system is defined as the sum of mean square 

error function (SMSE) of the differences of the state reference track ( )rx t  and the 

controlled state fusion estimator 
0

ˆ ( | )i t t
e x  weighted by scalars [21, 22] 

( ) 2

0

0 1

1
ˆSMSE( ) [ ( | ) ( )]

k L
j

i r

t j

k t t x t
L



 

   e x                                         (45) 

Where ( )

0
ˆ ( | )j

i t t
e x  is the jth Monte Carlo simulation state estimates at time t. 

In Monte Carlo simulation for 30 times, 
1 ( )x t  is selected as controlled state. Setting the 

control time domain 3N   and the optimize time domain 3N  , and the reference track 

( )rx t  is the 20 units step signal that appears at the time 100t  , and the error weighted 

matrix diag(3, 2,1)y Q , and the controlled weighted matrix diag(3, 2,1) 0.1  R . 

The simulation results are shown in Figure1-Figure5. Controller output u(t) is shown in 

Figure 1. Figure 2-Figure 4 show the comparison curves of the state reference track ( )rx t  

and the fused steady-state Kalman filter. From Figure 2 and Figure 4, it shows that the 

fused steady-state Kalman filter can track the state reference track ( )rx t  closely, where 

the straight lines denote the state reference track, and the dashed curves denote the fused 

steady-state Kalman filter. It indicates that this algorithm has good convergence and 

attenuation, and the overshoot is small, and the controlled output is stable. The curves of 

the sum of mean square error (SMSE) for local and fusion steady-state Kalman filters are 

shown in Figure 5. We can see that that the accuracy of the fused steady-state Kalman 

filter is higher than single local Kalman filter. 
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Figure 1. Controller Output u(t) 
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Figure 2. State Reference Track ( )rx t  and the Centralized Fused State 

Estimates ˆ ( | )c t tx  
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Figure 3. State Reference Track ( )rx t  and the Fused State Estimates ˆ ( | )m t tx  

Weighted by Matrices 
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Figure 4. State Reference Track ( )rx t  and the Covariance Intersection Fused 

State Estimates ˆ ( | )ci t tx  

 

t/step  

Figure 5. The Monte Carlo Curves of the Sum of Mean Square Error (SMSE) 

7. Conclusions 

In this paper, multisensor information Fusion Predictive Control for time-invariant 

systems is presented. The algorithm for time-invariant system combines the fusion steady-

state Kalman filter with predictive control firstly. Compared with the classic generalized 

predictive control, the advantages are as follows: 
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1. This algorithm based on steady-state Kalman filter avoids the complex Diophantine 

equation [23] and computing the gain on-line, so it can obviously reduce the 

computational burden.  

2. Classic generalized predictive control only deals with time-invariant system, or the 

time-varying system that parameters varies slowly, this is called adaptive generalized 

predictive control [23]. However steady-state Kalman filter can deal with the time-

varying system, so the predictive control system based on steady-state Kalman filter can 

deal with the linear time-varying and time-invariant system. 

3. The stability of the fusion steady-state Kalman filter is making the stability of the 

system get better, and the ability of anti-jamming is enhanced. 

4. Using the information fusion algorithm compared to the single sensor case, the 

accuracy is improved. 

5. The accuracy of above three kinds of weighted fusion estimator from high to low is 

the centralized fusion, weighted by matrix, and covariance intersection fusion. But the 

computational burden is on the contrary, the centralized fusion estimator has a large 

computational burden. And covariance intersection fusion avoids solving cross-

covariance matrices and has the minimal computational burden.  
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