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Abstract 

To optimize the number of decomposition layers in wavelet threshold denoising for 

ultrasonic signals, we propose a self-adaptive algorithm of determining the number of 

decomposition layers based on singular spectrum analysis and wavelet entropy. First the 

noise-containing signals are decomposed by discrete wavelet transform. The slope of the 

singular value spectrum for each layer is estimated. Then the wavelet entropy over the 

signal subinterval is calculated for each layer. Finally the optimal number of 

decomposition layer is determined by combining the entropy ratio of detail coefficients to 

original signal and the slope of the singular value spectrum. The performance of the 

algorithm is evaluated using signal-to-noise ratio (SNR) and the relative error of the peak 

value (REPV). Experiment shows that the algorithm can self-adaptively determine the 

optimal number of decomposition layers and filter out the noise contained in the 

ultrasonic signals. It not only increases the SNR, but also preserves valuable components 

of the original signal. 

 

Keywords: Optimal decomposition layer; Wavelet entropy; Singular spectrum 
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1. Introduction 

Ultrasonic testing is one of the five major non-destructive testing techniques. The other 

four techniques are X-ray testing, liquid penetrant testing, magnetic particle testing, eddy 

current testing and ultrasonic testing. Ultrasonic testing has unique advantages in testing 

large-thickness objects and planar flaws with low cost, fastness, no toxicity to humans and 

high sensitivity. It has been widely applied in aeronautics and astronautics, mechanics, 

material science, marine exploration and diagnosis of diseases [1]. One key aspect that 

affects the quality of ultrasonic testing is the collection and analysis of ultrasonic echo 

signals. The echo signals containing the flaw information are not only related to the shape 

and size of flaw, but also to the performance and location of the ultrasonic transducer, the 

coupling of the ultrasonic transducer and the medium, and the excitation signals. It is 

almost impossible to directly extract the flaw information from the echo signals unless 

through the ultrasonic transducer. The ultrasonic waves are affected by electrical noise of 

equipments and scattering by the material grains. As a result, the flaw signals received 

may be submerged in noise, causing false/missed detection [2]. 

Besides time-domain and frequency-domain analysis, amplitude and phase analysis is 

also applied to the processing of ultrasonic signals. Self-adaptive filtering and 

split-spectrum technique are also powerful tools in feature extraction of ultrasonic echo 

signals. However, these techniques only aim at either the time domain or the frequency 

domain. In practice, we need to extract the frequency spectrum over a specific period, and 

time-domain or frequency-domain analysis alone cannot satisfy the requirements [3-4]. 

Considerable progress has been made in the past decade in non-linear signal processing, 
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especially wavelet transform. Wavelet threshold denoising is one of the representative 

techniques [5-7]. Since the wavelet coefficients of useful information and noise differ on 

the energy spectrum, the signals and the noise can be separated by using proper wavelet 

base function, optimal number of decomposition layers and threshold. It should be 

emphasized that the number of decomposition layers is also an important factor that 

determines the result of wavelet threshold denoising for ultrasonic signals [8-9]. The 

conventional method is to preset a specific number of decomposition layers. However, the 

optimal number of decomposition layers varies with SNR. If it is too large, some useful 

information will be lost; and if it is too small, the noise is not completely filtered out 

[10-12]. Übeyli proposed an algorithm for calculating the optimal number of 

decomposition layers based on de-correlation and verification of white noise [13]. 

Through wavelet transform, this technique decomposes the signals into detail signals and 

scale signals. With detail signals maintained constant after each decomposition, 

thresholding is performed for the scale signals. When the termination condition is met, the 

results of the last decomposition (the n -th decomposition) are discarded. Then the 

optimal number of decomposition layers is determined as 1n  . However, this involves 

the use of finite series composed of a finite number of observed values in the stochastic 

process which makes the definition of termination condition difficult. Galford et al. 

proposed a method based on autocorrelation function of the noise [14]. By using DWT, 

the noise-containing signals are decomposed into wavelet coefficients and scale 

coefficients. It is determined whether the scale coefficients pass the noise test and then the 

optimal number of decomposition layers is estimated. But this also requires the priori 

knowledge, i.e., the noise characteristic series, which can be hardly acquired in the real 

environment of ultrasonic testing. Dhamala et al. proposed an algorithm of estimating the 

optimal number of decomposition layers based on the correlation between wavelet 

entropy and scale by constructing a correlation function [15]. However, a rough 

estimation of the maximum number of decomposition layer is needed in advance, and the 

calculation is complex. 

Most techniques require some priori knowledge, or they are unmatched to the actual 

environment or fail to determine the termination conditions self-adaptively. The real 

ultrasonic signals usually contain rich information but have low SNR. The above 

techniques can hardly estimate the optimal number of decomposition layer rapidly and 

accurately. To this end, we propose the combination of wavelet entropy and singular 

spectrum analysis by referring to literature [16]. We have made two major modifications. 

First the wavelet entropy is calculated instead of verification of white noise. The rationale 

is that the number of decomposition layer is inversely proportional to information entropy; 

the smaller the entropy, the higher the certainty of the information is [17]. Second singular 

spectrum analysis is performed. The singular value is calculated for each decomposition 

layer starting from the first layer, which is an important basis for estimating the optimal 

number of decomposition layers. 

 

2. Threshold Denoising Model for Ultrasonic Signal 

In ultrasonic testing, the ultrasonic signals are interfered by fluctuation of power 

supply voltage, electrostatic interference, bad grounding as well as the scattering and 

reflection of the ultrasonic waves from the heterointerface and the coarse grains. 

These noises usually have flat broad-bands spectrum and are regarded as additive 

white Gaussian noises. A noise-containing original ultrasonic signal ( )x i  is 

expressed as follows: 

),2,1()()()( Niiziyix                                                 (1) 

Where ( )y i  is the pure ultrasonic signal and ( )z i  is noise. 
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The purpose of denoising is to filter out the noise component ( )z i  and to obtain 

pure ultrasonic signal ( )y i  and an accurate estimate ( )y i . The disagreement 

between the two is represented by a risk function [18]: 

2

( ), ( )

1

( ( ) ( ))
N

y i y i

i

y i y i N


                                                       (2) 

Then we can get the following result by performing discrete wavelet transform on 

formula (1): 

2

( ), ( )

,

( ( , ) ( , ))y i y i

j k

j k j k N                                                  (3) 

Where ),( kj  and ),( kj  are wavelet coefficients of the pure ultrasonic signal 

and the estimate of the ultrasonic signal, respectively. After wavelet decomposition, the 

average power of the wavelet coefficients of noise decreases with the increasing number 

of decomposition layers. Thus the noise energy is mostly concentrated in many small 

coefficients and the wavelet coefficients of noise are still noise. In contrast, the signal 

energy is mostly concentrated in a few large coefficients. As a result, the amplitude of the 

wavelet coefficients of signal will be larger than that of the wavelet coefficients of noise 

in the last decomposition layer. Denoising can be done by setting an appropriate threshold 

that enables wavelet coefficients of 0. Thus, the estimate of the ultrasonic signals after 

transform through equation (1) is: 

( ) thr( ( ), )y i x i T                                                                 (4) 

Where thr( )  is threshold function and T  is threshold. 

 

3. Selection Algorithm of Optimal Decomposition Layer 

In this section, we describe the proposed method. One major modification made in 

this paper is introducing singular spectrum analysis. The signals contaminated by 

noise will have much more mutation points, which can be measured by singularity. 

To perform singular spectrum analysis, we can understand the features of the 

noise-containing signals [19]. In addition, the wavelet entropy over the signal 

subinterval in each layer is calculated. Finally the optimal number of decomposition 

layers is determined by combining the entropy ratio of detail coefficient and original 

signal and the slope of the singular value spectrum. 

 

3.1. Singular Spectrum Analysis for Wavelet Coefficients 

Singular spectrum analysis is applied to the prediction and analysis of time series. 

By singular value decomposition, the trend characteristics, period characteristics and 

noise characteristics of the signals can be obtained [20]. 

Suppose the wavelet coefficients in the j -th decomposition layer) constitute a 

series 1 2{ , , , }Nx x xx  with the length of N . To perform the singular spectrum 

analysis, the original series x  is transformed into a smoothing matrix. This step, 

according to Takens’s theorem, is also known as embedding [19]. Delaying the 

series x  by   creates an L -dimensional embedding, and the smoothing matrix 

A  is obtained: 

1 2 ( 1)

1 2 ( 1)

( 1) 1 ( 1) 2

N L

N L

L L N
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x x x

x x x
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 
 
 
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A

                                    

(5)

 
Where the delay time   is related to the degree of autocorrelation of the original 

series x . The lower the degree of autocorrelation of x , the smaller the   is. 
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Singular value decomposition is performed for the smoothing matrix A . Literature 

[19] believes that for any real matrix A ( L NA R ), there must be orthogonal 

matrices U ( L LU R ) and V ( N NV R ) that make T=A UDV , where D  is a 

diagonal matrix,
1 2( , , , )m= diag   D , 

1 2( )m     . All elements in D  are 

the eigenvalues of matrix A . They represent m  characteristic directions of the 

energy of the series, i.e., m  singular values of series x . The singular value   is 

given by: 

1

1 m

i i i

im
  



                                                                    (6) 

Thus, in each layer, the singular values are similar and the singular value spectrum is 

flat when the noise is predominant in the wavelet coefficients. This is because the wavelet 

coefficients are noise at low SNR. When the signal is predominant in the wavelet 

coefficients, there will be large variation between the singular values and the singular 

value spectrum is tilted. On this basis, the compression of signal energy and the dispersion 

of noise energy can be evaluated in the wavelet coefficients. 

 

3.2. Entropy and Entropy Ratio 

According to information theory, entropy refers to the mean uncertainty of 

information contained in all signals. By multi-scale wavelet transform, the wavelet 

coefficients of each scale are converted into series of probabili ty distribution. The 

entropy calculated from this series reflects the sparsity of wavelet coefficient matrix, 

in other words, the uncertainty or disorder of the signals. 

After discrete wavelet transform of the original ultrasonic signal ( )x i , the 

high-frequency detail coefficient at time k  in the j -th decomposition layer is ,j kd  

and the low-frequency approximation coefficient is ,j k . Thus the energy of detail 

coefficient in the j -th decomposition layer ( 0,1, , )j N  is given by: 
2

,j j k

k

E d
 
                                                       (7)

 
Then total energy of the signal can be calculated as follows: 

22

,( ) j k j

j k j

E x i d E                                                      (8) 

The relative wavelet energy is j jP E E . The detail coefficient ,j kd  is the j -th 

decomposition layer is equally divided into n  subintervals: 

2

,( )
N n

j j k

k

E k d                                                                  (9) 

Where N  is the number of sampling points. ,j kP  in each subinterval is 

calculated as the ratio of wavelet energy ,j kE  in the k -th subinterval to total 

energy of wavelet coefficient in this layer: 

,k ,k /j j jP E E                                                                   (10) 

,k

1

n

j j

k

E E


                                                                     (11) 

Thus the wavelet entropy k  in the k -th subinterval is: 

, ,ln( )k j k j k

j

P P                                                                (12) 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.11, No.4 (2016) 

 

 

Copyright ⓒ 2016 SERSC      377 

The entropy 
0  of the original signal and the wavelet entropy j  of detail 

coefficient in the j -th layer are calculated. The entropy ratio   is 

0j                                                                          (13) 

Higher entropy of high-frequency detail coefficient usually indicates fewer noise 

components in the wavelet coefficients and higher certainty of the information. Literature 

[20] believes that when the entropy ratio of detail coefficient and original signal in a layer 

is 5%, the noise in the wavelet coefficients can be neglected. 

 

3.3. The Proposed Method 

From the above analysis, the steps of the proposed algorithm can be described as 

follows: 

(1) Step 1. Discrete wavelet transform is performed for the original ultrasonic signals 

to obtain high-frequency and low-frequency wavelet coefficients. 

(2) Step 2. Using (12) and (13), the maximal number g  of decomposition layers with 

entropy ratio above 5% and the minimal number h  of decomposition layers with entropy 

ratio below 5% are calculated, respectively. g  and h  satisfy: 

1g h                                                                 (14) 

(3) Step 3. Singular value analysis is performed for the detail coefficients after wavelet 

transform of the original signal. Using (6), m  singular values are calculated for the 

g -th and the h -th layer, and the slope of the singular value spectrum K  is calculated 

by
1 mK   . 

(4) Step 4. The optimal number j  of decomposition layers is calculated using the 

formula below: 

,

,

g h

h g

g K K
j

h K K


 

  

                                                       (15)

 
 

4. Experiment and Analysis 

To evaluate the performance of the proposed algorithm, simulation experiment is 

carried out using MATLAB R2010. For singular spectrum analysis, the delay time   

and the dimension m  of the embedding are determined with caution since their values 

have a significant impact on the singular values. Dimension being constant, reducing the 

delay time will increase the variation rate of the singular value; delay time being constant, 

increasing the dimension will make the changes of the singular value spectrum too violent 

and add to the calculation load. By referring to literature [19], the parameters are set as 

8   and 8m  . Besides SNR, we also adopt REPV  as another performance 

indicator, which is calculated as follows: 

100%
i o

i

T T
REPV

T


 

                                                
(16)

 

Where 
iT  is the peak value of the original signal and 

oT is the peak value of the 

denoised signal. REPV is a measure of energy loss after denoising. In ultrasonic testing, 

the amplitude and shape of ultrasonic wave of flaws are the basis for judging the type and 

size of the flaws. The higher the SNR and the lower the root mean square error (RMSE) 

and REPV , the better the denoising effect and the less the loss of useful information will 

be. 

Flaw echoes are non-stationary signals modulated by the central frequency of the 

probe, and they are simulated with the formula below: 
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( )( ) cos[2 ( )]tf t e f t     
                                          (17) 

Where   and   are modulation factors, f  is the central frequency of the probe 

and   is echo delay. 

The parameters are 3.24  , 1210  , 65 10    and 
62 10f    in formula (17). 

SNR is set as -5, 0 and 5, respectively. The wavelet base and the threshold are chosen by 

the method in literature [21]. When SNR is -5, the entropy ratio is 0.0543 and the slope of 

the singular value spectrum is 1.3346 after decomposition to the 6th layer; the entropy 

ratio is 0.0491 and the slope of the singular value spectrum is 1.4784 after decomposition 

to the 7th layer. By the proposed algorithm, the optimal number of decomposition layers 

is 7. When SNR is 5, the entropy ratio is 0.0513and the slope of the singular value 

spectrum is 1.7931 after decomposition to the 4th layer; the entropy ratio is 0.04877 and 

the slope of the singular value spectrum is 1.2337 after decomposition to the 5th layer. 

Thus the optimal number of decomposition layers is 4. 

Under three different SNRs, the output SNR and REPV  for layer 1 to 8 are 

calculated, as shown in Table 1, 2 and 3. The data in bold are the results using the 

proposed algorithm, and the underlined data are the results using the method in literature 

[18]. 

Table 1. Evaluation Result in Different Decomposition Layers ( 5inSNR   ) 

Index L=1 L=2 L=3 L=4 L=5 L=6 L=7 L=8 

outSNR  -4.719 -4.223 -3.831 -1.784 -1.132 -0.973 -0.857 -0.865 

REPV  27.94% 24.46% 18.83% 13.54% 9.47% 6.13% 5.76% 6.58% 

Table 2. Evaluation Result in Different Decomposition Layers ( 0inSNR  ) 

Index L=1 L=2 L=3 L=4 L=5 L=6 L=7 L=8 

outSNR
 

1.927 2.743 2.926 3.305 3.357 3.372 3.378 3.364 

REPV  28.15% 19.07% 11.71% 5.28% 2.49% 3.52% 3.93% 2.76% 

Table 3. Evaluation Result in Different Decomposition Layers ( 5inSNR  ) 

Index L=1 L=2 L=3 L=4 L=5 L=6 L=7 L=8 

outSNR
 

5.424 6.439 9.257 10.308 10.370 10.328 10.311 10.172 

REPV  24.29% 15.96% 9.12% 4.17% 5.05% 6.91% 7.39% 7.68% 

 

It can be seen from the table that the output SNR is the minimum at input SNR of -5 

and 7 wavelet decomposition layers. Using the method in literature [18], when there are 8 

decomposition layers, the output SNR increases by 0.93%, while REPV increases by 

14.2%. When the input SNR is 0, neither the output SNR calculated by the proposed 

algorithm nor that by the method in literature [18] is the greatest; the greatest output SNR 

occurs in the 7th layer. But this does not mean that the proposed algorithm is less good. In 

the 7th layer, REPV is 3.93%, which is higher by 57.83% than that in the 5th layer. 

However, the output SNR in the 7th layer is only higher by 0.63% than that in the 5th 

layer. To improve the accuracy, we combine output SNR and REPV to determine the 

optimal number of decomposition layers self-adaptively. As a comparison, the output 

SNR using the method in literature [18] is higher by 0.21% than that using the proposed 

method, and the REPV  is also higher by 10.8%. Although the largest output SNR is 

obtained using the method in literature [18], which is higher by 0.61% as compared with 

our algorithm, the REPV  is higher by as large as 21.1%. Greater REPV  indicates 
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more severe signal distortion and higher probability of false/missed detection. This result 

has proved the effectiveness and reliability of the proposed algorithm. 

The waveforms under the optimal number of decomposition layers estimated by the 

proposed algorithm and the method in literature [18] with input SNR of -5, 0 and 5 are 

shown in Figure 2. The visual effect is already the best after reaching the optimal number 

of decomposition layers, and there is no need for further decomposition. 
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Figure 1. Evaluation Result Obtained by the Proposed Method and the 
Method in [18] 

The first column is the test signal with input SNR of -5, 0, and 5. The second column is 

the de-noised waveform by the proposed method. The third column is the de-noised 

waveform by using method in [18]. 
 

5. Conclusion 

With wavelet threshold denoising, an ideal result can be obtained at a smaller number 

of decomposition layers for signals with high SNR. But when the SNR is low, the number 

of decomposition layers should be increased. Obviously, the optimal number of 

decomposition layers varies with SNR of the original signal. We propose a method to 

determine the optimal number of decomposition layers by combining the entropy ratio 

and the slope of the singular value spectrum. Simulation experiment indicates that the 

optimal number of decomposition layers can be determined self-adaptively for different 

SNR. The proposed algorithm prevents signal distortion caused by too many 

decomposition layers, increases the efficiency of ultrasonic testing and reduces the 

calculation load. The loss of useful information is minimized with higher output SNR and 

lower REPV using the proposed algorithm. Therefore, the algorithm is effective when 

the SNR of the original signal is unknown. Designing new threshold function and 

thresholding rule will be the topic for further research. 
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