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Abstract

In recent years, many countries have actively studied wind power gene%@a as a
means of realizing low-carbon green growth through a new renewable engrg The
most efficient method of securing the stable operati n wind t nd reduce
maintenance costs is monitoring and analyzmg thel p atlona atus in realtime
through a remote monitoring system. Remote m stem varlous sensor
technologies and the Wireless Sensor Network t a data on the status
of individual parts in realtime, and they diagnose Tauits thro%*n ignal analysis system.
Application of the fault analysis method can e ce faultresolttion times and minimize
losses. In this study, signals collected f md tu were analyzed, and their
characteristics were extracted throu %wplrlc I decomposmon (EMD). In the

experiment, EMD learning was carmﬁr t usi Iowing fault signals as examples:
The back-propagation (BP) twork% ithm with generator vibration, an
unbalanced rotor, and a be&mlsall ult. This article proposes a method of
diagnosing faults through_signal anal d recognition, and it demonstrates the
validity of the method t a sm@y
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1. Introduction ‘b‘b’

Due to the e@ﬂon of fossil fuels, soaring oil prices, and the elevating prices
of raw mgteEiaI securing new renewable energy sources is a crucial task upon

}\pxwer gen%;uon remote monltormg system, various sensor

Sens rk, empirical mode decomposition, neural network

which the ival of global society depends. Many countries have begun to
encoura only the research and development of renewable energy, but also the
co éalization of related industrial technologies. “New renewable energy”
r%to energy resources that can be converted to eco-friendly and renewable
energy forms, including solar light, solar heat, bio-energy, wind power, hydropower,
ocean energy, and geothermal power [1].

Large-scale wind power generation complexes have already been established. The
scale-up of wind turbines has enabled wind power to extend to the sea, which offers
large spaces and abundant wind resources. However, the cost of maintaining
offshore wind power accounts for 23-35% of overall energy production costs, given
that wind turbine towers are high, scaled-up blades are large, and offshore
complexes are difficult to approach compared with those on land. Thus, large-scale
and offshore wind turbines necessitate the development of technologies to secure
operational reliability by means of the real-time monitoring of faults in individual
turbine parts [2].

The most efficient method of securing stable operation and reduce maintenance
costs is monitoring and analyzing wind turbines’ operational status in realtime
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through a remote monitoring system [3-4]. Remote monitoring systems employ
various sensors to collect and transmit data on the status of individual parts in
realtime and diagnose faults through a signal analysis system. Taking measures
accordingly can reduce fault resolution times and minimize losses.

A wind power generator consists of a wind turbine that converts wind energy into
mechanical energy and a generator that converts mechanical energy into electric
energy. A wind turbine is operated intermittently according to changes in wind
speed. Due to wind speed fluctuation and various environmental factors, mechanical
fault signals are complex, time-varying, and unstable, making faults in wind
turbines difficult to identify. The system used to monitor wind turbine condition
analyzes data collected from vibration sensors installed in turbines’ major
components, including the generator, gearbox, main bearing, shaft, and yaw.gystem.
For wind turbines that are offshore, however, the NI WSN (Wirel s&vﬁsor
Network) environment is established to address limitations in accessi tg%!!
vibration signals of the individual parts can be collected, transmitte

a; the

remotely through the wireless network. Signal data go teti in this are used to
determine whether there is a fault through the |on of gnal analysis
method in the remote monitoring system [ ical S|g nalysis methods

include the Fourier transform method, in Whl e do signals are converted
to the frequency domain for analysis, and @e wavelet tr rm method, in which

time-varying frequency elements identi by expressing signal
characteristics in the frequency-time’ @ln A fa urier transform algorithm
was used to detect rotor faults in duc chine in one study [6], while
another study used a sort of Fo l@ rans hod to detect gearbox and coil
faults [7]. In this study, the ted m mvolves analyzing the spectrum

characteristics of fault sign sing the Hilb rt Huang transform (HHT) based on
empirical mode decomposition (E propose an analytical method of fault
diagnosis by autom@ mon@ the status of wind turbines using the
spectrum charact s& the i ual segments extracted by HHT as the input
values for the ne 9\9 two@

2. Paper I\@ lyzing Fault Signals of Wind Turbines

2.1. Hilbert-Huan %ﬂ sform

In this method,ime-frequency signals are decomposed into signals with different
internal f ency elements by EMD [8-10]. With respect to the individual
decompoé@’lgnals, the Hilbert—-Huang transform is performed to acquire
instan@ s frequency signals. The Hilbert—Huang transform was first introduced
i y Norden E. Huang. The signals decomposed by EMD are called intrinsic
@unctions (IMFs), because the individual signals have different frequency
elements. In this article, the frequency signals collected from the generator were
decomposed into IMFs by EMD. This article also suggests a method for diagnosing
generator faults using the characteristics of the decomposed IMFs.

The elements decomposed into the IMF refer to the status, where the magnitudes
of the maximum and minimum values are locally symmetrical with respect to 0 in
the physically instantaneous frequency range. The IMF elements can be expressed
as the sum of cl(t), c2(t),..., cn(t) and the remainder, rn(t), until the time indicated
in the following equation.

il

©® =) 6@+ 50 (21)

j=1
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The equation indicates that the data can be decomposed into individual IMFs and
remainders, and the original data can be composed with the decomposed values. The
IMFs should satisfy the following two conditions:

(1) The number of extreme in the data and the number of zero crossings are the
same or differ by 1.

(2) The mean of the top and bottom envelopes is 0 at all points.

Table 1.The Algorithm of EMD

EMD Algorithm

the following steps.
(1) The given data ={},which input vibration signals from the wind turbine,
as s, (t) as in the following equation, and 1 is substituted for k:s, (£)

(2) With all local maximum values ofs;(t), the top en%e is obtain

EMD is the empirical method for obtaining an IMF. An IMF is obtained through
o
g)

cubic spline.
(3) As in Step (2), the bottom envelope is obtained
At this point, all data should be present betweg
(4) The instantaneous mean of the top and b
and h, (£} is calculated as the diffeferice bet
Inh,, +(£) | n denotes the nth IMF, a enotes t%l
repeated calculation is
hy x(£) = s (8) — my(£). &

(5) If hy (£} does not meet th con he IMF, k is increased by 1.
Steps (2), (3), and 44)(a repeat hy (£} as =.(£) until the two

{(t) and my;(£)).
er of times that the
the IMF. Thus,

conditions of the | e satlsfled
If by (£} meets the two conditio he IMF, h,, .(t) becomes the nth IMF of
c(£), which is hus, c % (t).

(6) Letw (t) be ﬁé j?tfmalnder from whichey, (t], the kth IMF element, is
subtrac o {t]

NnT er'.';. et\as s;(t). To obtain the (n+ 13th IMF, which is
c@j n is increase , and Steps (2), (3), (4), (5), and (6) are repeated.

If % (£)

t satlsz MF condltlons any longer, or if there is almost no vibrant

element in the si repeated process is stopped.

2.1. Transfxf_r provement Suggestion for Enveloping

If we an exact EMD division result, it needs accurate envelope calculation.
@ral EMD analysis method uses cubic spline interpolation to obtain the
e@ne This method requires knowledge of all sample points from Pyto B, and
thenYUses two points in the curve to predict a new curve. However, this method
causes overshoot when each approximate sample point has a lengthened interval and
the gap of curvature is big. Therefore, following thesis 12, the causes of overshoot
of Cubic Spline Interpolation, we focus on keeping each point’s interval constant
and on preventing the overshoot interval of approximate sample points from
changing much. This is done to obtain a curve between two points that use five
sample points from P;s, toPF,_,. This point differs from Cubic Spline Interpolation;
Cubic Spline Interpolation uses two points that are approximate, and this method
uses five sample points. However, according to the change in the interval of points,
obtaining the curve length is also different. Obtaining signals from the generator
occurs irregularly, and frequency changes appear frequently [9-10]. Therefore, this
problem also regards the points problem, which involves big changes. It is theory of
the way in which the interval between two points is modulated, and then we can
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estimate the curve more exactly. It could reduce the overshoot phenomenon. In
order to obtain a curve C;(t) between two points, we can obtain imaginary sample
points. This has to satisfy a condition.

Table 2. The First Stage of Improvement Overshooting with Cubic Spline
Interpolation

(1) If 2L; = L;_4,

The distance between points F and F ., is shorter than 1/2 of the distance between
points F;_; and F;,

[Picz: Py P Prass Praa] =>[Fiey, €in (0.5). P Py B ] '

€;_,(0.3)was used instead of B _, .

C;_.(0.5)appears as a time-based centered coordina chewas d |ously
as C;(f).

It used the centered coordinate between F _ la ;

Thus, it uses C;_, (0.3} instead ofP’l 1, _2 B ¥5]|s obtained using
the C;{t) formula.
() =P(2t* — 3t + 1) +é~)&bt9 i\@ -2+ )+ P (* — %)
where it is assumed thaﬂén =n-— 1%::

C(05) = “P‘“Q) \Q
2\,

z1,c;(0 =P, C;(1)=F,

In this m@ mterva etween points P,_; and Piis relatively big. Therefore,
duc nterval of the sample points.

using C;_4(

Figure 1. Cubic Spline Interpolation with 5 Points (Case 1)
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Table 2. The Second Stage of Improvement Overshooting with Cubic Spline
Interpolation

(2 If2L; = Ly,

The distance between F; and F;; is smaller than 1/2 of the distance between F;_;
and 7,
[P '|.--F;_ 1_:P;__|P;_+1_|P;_+-|] >[ L—"-'Pl 1.IP H+1’%}

In this case, the interval of points between F;; and F; ., is relatively big.
. Pjag+Piag . Do
Therefore, using . instead of F,,; can reduce the sample points interval.

In other words, %is C;.,00.5), ; )

Piy1+ Py

Ci+1 (0. SJ—W @

Figure 2. Cublc‘&&‘ erpo&\(mth 5 Points (Case 2)
m

Table 2. The Third Stage o pro nt Overshooting with Cubic Spline
méwsolatlon

@) if2L, < m&fh = Lua

[P@'QPP ?L_pr:i_lr;n-ﬁmﬂw%]

If step (1) and s occur at the same time, all techniques using step (1) and step (2)
are used to redu interval of sample points.
AL

N P + P,
QQ Ci+1(0.5) = %

Figure 3. Cubic Spline Interpolation with 5 Points (Case 3)
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— cubic spline interpolation

— proposed method

Figure 4. The Result of Improvement Overshootin

Figure 4 shows the compared result using Cubic Spl rpolatl the suggested
method. Following the picture, we can identify tha ts improve the
overshoot incurred from Cubic Spline Interpolatl

2.2. Neural Network Algorithms
A neural network algorithm [11-13] |® chnolo cs.ny modeled structure of the

biological stimulus transmission proce eur bjective of a neural network is
to develop a high- performance aI % gnals that are difficult to process
using a conventional sequen t m, suc V|sual tactile, and auditory senses
used by humans and other orgarlls . For this purpose, various neural network

algorithms have been pro
network algorithms hav
neural network is

ed. Contrar onventlonal sequential algorithms, neural
llel st in various forms. The most frequently used

ered nst that can be separated into many dimensions. A

multilayered netw com f many single-layered neural networks that can only
be separated Ai 4 FigureR@Iu rates the structure of a typical multilayered neural
network.

AL

N/

6&

N

Q)Q

Input Hidden Output
Layer Layer Layer

Figure 5. The Structure of Neural Networks

In the recognition process of a neural network, the input signal to the input layer
is multiplied by the synapse connected to the hidden layer (weight) and then
transmitted to all the hidden layers. The same procedure is repeated once to
determine the output value, and the output is sent to the next layer through the
activation function in each layer. The activation function should be a monotone
increasing function. Typical activation functions include the identity function, unit
function, or sigmoid function. The activation function is related to the activation of
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actual neurons, which are activated after being stimulated. In an identity function,
activation is performed infinitely according to the stimulus. This concept does not
correspond to the activation of actual neurons, being far removed from the intended
neural network model. In a unit function, the activation is expressed as constant
within a certain stimulus, which is also different from the intended neural network
model. A sigmoid function, however, shows vigorous activation within a certain
stimulus, and the degree of activation by a stimulus decreases as it approaches the
maximum activation. This pattern is similar to that of actual neurons, and thus the
sigmoid function is the function that is most frequently used in neural network
models. Eq. (2.2) shows a bipolar sigmoid function. The denominator is 1 in a
unipolar sigmoid function. Figure 6 shows the sigmoid function.

__ l—exp(-x] °
AW = 1+exp(—x] ( 2 ' 2 x) )

0.5 e 1
AD 1+ exp(-x)

--10 -$
dBAG The Sigmoid Function
The most |mporta @or in ang the type of neural network is the

learning method the In this study, the back-propagation (BP)
algorithm, in Wh' the Welgh% sought by delta learning, was applied. In delta

learning, th
difference
error function

_1 @ 2 2.3
2§ (2.3)

ntial the error is used to reduce the error (i.e., the

en th% o@/ ve value and the output value). Eq. (2.3) shows the

the o alue:
tpi = Op;)

re tpi denotes the objective output of the unit j in the middle layer in the
input vector. The change in weight is given in Eq. (2.4):

JE
AW o0 —
L Eﬁ.-"-’i_j

In the BP algorithm, the weight changes in the backward direction; the output
layer weight is first corrected, and then that of the hidden layer is corrected. Figure
7 shows the details of the BP algorithm learning process.
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l Initialize weights and counter |
l Set learning rate and £, |
i

Compute output
NET, = X,V] 7= f(NET) -—
NET,=ZWT  y=f(NET)

Compute output error

1 2
E=5(“:.—-J’;.—)

]

Calculate error signal &, , d; |

< Emax?. 1
} Update weight
VL= Vk 4 a8, X,

Wi = Wk 4 a4, 7,

[
YES
NO More patterns in
the training set?

Figure 7. The BP Neural Network gorltth)

3. Experiment and Results

3.1. System Block Diagram

Figure 8 shows a block diagram of th@@e syste %sed in this article. The
inst

signal data collected by the various sé aIIed ch component of the wind
turbine are gathered by the individ es ofit SN and then transmitted to the

remote monitoring system thro KI he remote monitoring system
Iected s and diagnoses a fault through the

analyzes the characteristics %&h
signal analysis algorithm a e neura@et ork. If the result shows a fault, an
alarm is given |mmed|ate \

Remote monitoring system

!
i
i
i
i
i
i
H
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Improved BP
EMD Training

Figure 8. The Block Diagram of the Entire System: Sensing Stage,
Constituted with Varies Sensors; Data Collection Stage, which Collects and
Transmits the Data by NI WSN; Remote Monitoring System, which Analyzes

the Signal and Diagnoses the Faults

3.2. Noise Reduction

The wavelet shrinkage is a typical method for denoising, which is based on
wavelet thresholding [13-14]. The theory of this method is that if the calculated
wavelet coefficients are not close to the threshold value, they will be assigned 0 to
remove the noise. This method has a good effect on the frequency fields higher than
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the actual noise level of a signal. If the data of the specific frequency component has
a lower value than the noise level, it will be assigned by 0. Additionally, the data
that has a lower value will be noise. The method can be divided into three steps.

1. To calculate the wavelet coefficients of the input signal using the wavelet
transform until one meets the predetermined level.

2. Perform threshold processing using an appropriate threshold value.

3. Perform the wavelet inverse transform for disposed coefficients to achieve the
goal of signal recovery.

Regarding the threshold method proposed by Donoho, there are hard threshold
methods and soft threshold methods. Denoise using a soft threshold is simple,
convenient, and favored. Therefore, we also used this method for denoising. Figure
10 shows the results of signal denoising using the wavelet transform. x).

Original data 1 ploto VA% ] result of noise reduction 1 ploto M I

N~
Figure 9. The R @)5 of N X'duction by Wavelet Thresholding

3.3. Signal Charaabg ics An

S
The prim ose of aJ‘%rbine condition monitoring is to provide an early
warning ab bnormalCtoenditions. Hence, the signal analysis method basically
adopted by most of they ondition monitoring system works by setting the alarm
generation criteria (- al magnitude) through statistical analysis of the normal
signals and testing Wifether the obtained signal exceeds the criteria.

Figure 11. The Enveloping Results by Cubic Spline Removal Overshoot

Figure 11 shows normal vibration signals for the simulation. In this article, EMD
was applied to the collected generator vibration signals, assuming that the individual
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vibration modes and noises could be independently decomposed from the IMF
components obtained by applying EMD to the vibration signals of the generator
system. Figure 12 is a spectrum graph showing the envelope as well as the mean
values obtained by linking the top and bottom extreme values through cubic spline
interpolation in EMD. In Figure 12, the blue line is the envelope connecting the
maximum extreme values, while the green line is the envelope connecting the
minimum extreme values. The red line connects the mean values.

In the experiment, individual signals were analyzed and compared by EMD
through the application of various noises to the normal signals. The frequency
elements in normal signals and the signals with which noises were mixed were
analyzed to determine whether there was a fault.

3.4. Determination of Generator Faults x)

Given that vibration signals can change suddenly dependlng on t i rblne
conditions, the unique characteristics of the normal signals and gnals are
analyzed and classified by neural network Iearnlng ral ne@ earning, the
weight means the parameter between the man S an outpits. The weight
generally includes a number of local minim atues, sensitive to the
initial weight. It is updated by the BP algorith by le n the BP algorithm,
the weight is updated in the backward pha;%n the forwardyphase, the input pattern
is presented to the neural network, and utput&%calculated using the input
functions and activation functions fo node point, the input signals are
transmitted forward only—that War tput layer. With the weight
arbitrarily set at the initial st utpu WI|| definitely not agree with the
objective value in the outpw.ia% resulti g Iarge error. In the backward phase,
the difference between the obj ctlve b and the actual output is calculated to
obtain the error, and the |ghts C ng one layer with another are updated in
the direction from thexo put laye e input layer. After adjusting the weights,
the output calcula h the input will give a smaller error than that given in
the first trial T, ocesNig~epeatedly executed until the output aligns with the
desired vaI e sy comes stable—in other words, when the sum of the
errors reaches=the pre |ned error criteria. More learning data make it easier to
find the same patter diagnose faults. Although learning takes a longer time in
the BP algorithm in other neural network algorithms, the recognition time is
shorter.
In this pa r analyzing the fault signal (stator imbalance, bearing fault, rotor
fault, etc neural network training was applied to vibration signal processing.
Flrst Qﬂng to various classification types, we obtained 30 random samples

% frequency components of the fault signal and normal signal separately.
C

nally, the natural frequency had been computed for this. Because of the great
hanges of the generator’s vibration frequency, the EMD feature data of eight
frequencies for the sampling signal were used for the input layers. Twenty-four
hidden layers and four output layers were used.

In this study, neural network learning was performed with respect to generator
vibration, unbalanced rotor, and bearing misalignment fault signals. First, regarding
individual fault signals and normal signals, the frequency components at 2000
positions were randomly sampled, and their natural frequencies were acquired. For
the generator, given that its vibration frequency is greatly affected by wind
fluctuation, the three types of fault signals collected at eight positions were used as
the output values shown in Table 1, and 24 hidden layers were applied in order to
estimate the damage more precisely.
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Table 1. The Fault-Type Code

. o Rotor fault Bearing fault Normal
imbalance
001 010 100 000

Using a training pattern that estimated the damage frequency and degree of
damage, neural network learning was repeated until convergence was achieved. The
initial weights of the neural networks were randomly set so that each neural network
could conduct learning with different initial weights. In Table 1, the 001 pattern
expresses stator imbalance; the 010 pattern expresses rotor faults; the 100$%ty!rn

expresses bearing faults; and the 000 pattern expresses normal conditiozlp le 2
d

shows examples of the fault detection data with respect to normal sign fault
signal patterns. Table 3 compares the learning results with respect dual fault
signals when the BP algorithm was applied, when t )%+ EM applied, and
when our proposed method was applied. Overa arni in the learning

stage was longer when our algorithm was ap
However, our algorithm showed a better rece

an when BP was applied.
ition& and a shorter fault
recognition time.

Table 2. The R of Fa t\tectlon
Fault Input value
T Test value
ype A TY T3 T4 T5 T6 TV
Stator

. 0.0015 0.8901 O 00 0.9254 - 2253 0.7101 0.1335 0.0427 -0.0179 0.0122
imbalance )%0

_ Stator 0.0236 0.7225 0.1356 0.0428 -0.0186 0.0127

imbalance
Bearing
fault

Bearing
fault

Bearing
fault
Normal %;76'0.07320.0385 0.2710 0.1812 0.0546 0.2243 0.0992 0.0384 -0.0293 0.0186
0.2380 0.0104 0.0685 0.1749 -0.0810 0.5984 0.1256 0.0413 -0.0245 0.0161

Normal @

Ro I’f@ 0001 0.0027 0.7915 -0.3581 -0.1115 -0.1658 -0.7091 -0.0314 0.6246 0.7402 0.0234
ult 0.0007 0.0814 0.8309 -0.4109 -0.1298 -0.0743 0.6305 -0.0345 0.7344 0.0635 0.6456

Rotor fault 0.0031 0.0175 0.9651 0.0405 -0.6551 0.0124 0.8009 0.4640 0.0413 1.0805 0.2806

000330 -03
imbalance ¢ S
. Stator 0@ 00034 0.2821 0.2263 0.7283 0.1370 0.0429 -0.0193 0.0131
0352 @).3343 0.9239 0.1930 -0.3881 0.0463 0.0324 -0.0343 0.0205
0.9785 0.01 2 0.4409 1.0810 0.4969 -0.4568 0.0378 0.0314 -0.0351 0.0213

0.88024. 0.0031 -0.5129 0.7145 0.7216 -0.5184 0.0292 0.0303 -0.0360 0.0216

4. Conclusion

To address the location limitations of wind turbines that may have various faults
due to environmental factors, this article proposes a communication network that
transmits vibration signals collected by various sensors to a remote monitoring
system through the establishment of the NI WSN system. Signal analysis using HHT
was proposed as an efficient fault diagnosis method. HHT presents the frequency
domain components under phase shift on the polar coordinates, as well as amplitude
information on individual signals. Hence, HHT can present information in the time-
frequency domain in a manner similar to that of STFT and the wavelet transform. In
addition, HHT decomposes signals into signals with different internal frequency
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components, beginning with high-frequency components. The frequency
components decomposed in this way have independent characteristics, whose
detection can be used to accurately diagnose faults in offshore wind turbines
through BP neural network learning. To test the efficiency of the proposed
algorithm, learning was performed with three fault signals: Generator vibration, an
unbalanced rotor, and bearing misalignment. The results showed that the BP
algorithm was more efficient in terms of recognition ratio and recognition time than
the general neural network learning algorithms. The proposed method may be
applied to the analysis of mechanical and electrical faults in various industries.
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