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Abstract 

In recent years, many countries have actively studied wind power generation as a 

means of realizing low-carbon green growth through a new renewable energy source. The 

most efficient method of securing the stable operation of wind turbines and reduce 

maintenance costs is monitoring and analyzing their operational status in realtime 

through a remote monitoring system. Remote monitoring systems employ various sensor 

technologies and the Wireless Sensor Network to collect and transmit data on the status 

of individual parts in realtime, and they diagnose faults through a signal analysis system. 

Application of the fault analysis method can reduce fault resolution times and minimize 

losses. In this study, signals collected from wind turbines were analyzed, and their 

characteristics were extracted through empirical mode decomposition (EMD). In the 

experiment, EMD learning was carried out using the following fault signals as examples: 

The back-propagation (BP) neural network algorithm with generator vibration, an 

unbalanced rotor, and a bearing misalignment fault. This article proposes a method of 

diagnosing faults through signal analysis and recognition, and it demonstrates the 

validity of the method through a simulation. 

 

Keywords: Wind power generation, remote monitoring system, various sensor 

technologies, Wireless Sensor Network, empirical mode decomposition, neural network 
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1. Introduction 

Due to the exhaustion of fossil fuels, soaring oil prices, and the elevating prices 

of raw materials, securing new renewable energy sources is a crucial task upon 

which the survival of global society depends. Many countries have begun to 

encourage not only the research and development of renewable energy, but also the 

commercialization of related industrial technologies. ―New renewable energy‖ 

refers to energy resources that can be converted to eco-friendly and renewable 

energy forms, including solar light, solar heat, bio-energy, wind power, hydropower, 

ocean energy, and geothermal power [1]. 

Large-scale wind power generation complexes have already been established. The 

scale-up of wind turbines has enabled wind power to extend to the sea, which offers 

large spaces and abundant wind resources. However, the cost of maintaining 

offshore wind power accounts for 23–35% of overall energy production costs, given 

that wind turbine towers are high, scaled-up blades are large, and offshore 

complexes are difficult to approach compared with those on land. Thus, large -scale 

and offshore wind turbines necessitate the development of technologies to secure 

operational reliability by means of the real-time monitoring of faults in individual 

turbine parts [2]. 

The most efficient method of securing stable operation and reduce maintenance 

costs is monitoring and analyzing wind turbines’ operational status in realtime 
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through a remote monitoring system [3-4]. Remote monitoring systems employ 

various sensors to collect and transmit data on the status of individual parts in 

realtime and diagnose faults through a signal analysis system. Taking measures 

accordingly can reduce fault resolution times and minimize losses.  

A wind power generator consists of a wind turbine that converts wind energy into 

mechanical energy and a generator that converts mechanical energy into electric 

energy. A wind turbine is operated intermittently according to changes in wind 

speed. Due to wind speed fluctuation and various environmental factors, mechanical 

fault signals are complex, time-varying, and unstable, making faults in wind 

turbines difficult to identify. The system used to monitor wind turbine condition 

analyzes data collected from vibration sensors installed in turbines’ major 

components, including the generator, gearbox, main bearing, shaft, and yaw system. 

For wind turbines that are offshore, however, the NI WSN (Wireless Sensor 

Network) environment is established to address limitations in accessing the sea; the 

vibration signals of the individual parts can be collected, transmitted, and analyzed 

remotely through the wireless network. Signal data collected in this way are used to 

determine whether there is a fault through the application of a signal analysis 

method in the remote monitoring system [5]. Typical signal analysis methods 

include the Fourier transform method, in which time domain signals are converted 

to the frequency domain for analysis, and the wavelet transform method, in which 

time-varying frequency elements can be identified by expressing signal 

characteristics in the frequency-time domain. A fast Fourier transform algorithm 

was used to detect rotor faults in the induction machine in one study [6], while 

another study used a sort of Fourier transform method to detect gearbox and coil 

faults [7]. In this study, the suggested method involves analyzing the spectrum 

characteristics of fault signals using the Hilbert–Huang transform (HHT) based on 

empirical mode decomposition (EMD). We propose an analytical method of fault 

diagnosis by automatically monitoring the status of wind turbines using the 

spectrum characteristics of the individual segments extracted by HHT as the input 

values for the neural network. 

 

2. Paper Method of Analyzing Fault Signals of Wind Turbines 
 

2.1. Hilbert–Huang Transform 

In this method, time-frequency signals are decomposed into signals with different 

internal frequency elements by EMD [8-10]. With respect to the individual 

decomposed signals, the Hilbert–Huang transform is performed to acquire 

instantaneous frequency signals. The Hilbert–Huang transform was first introduced 

in 1998 by Norden E. Huang. The signals decomposed by EMD are called intrinsic 

mode functions (IMFs), because the individual signals have different frequency 

elements. In this article, the frequency signals collected from the generator were 

decomposed into IMFs by EMD. This article also suggests a method for diagnosing 

generator faults using the characteristics of the decomposed IMFs. 

The elements decomposed into the IMF refer to the status, where the magnitudes 

of the maximum and minimum values are locally symmetrical with respect to 0 in 

the physically instantaneous frequency range. The IMF elements can be expressed 

as the sum of c1(t), c2(t),…, cn(t) and the remainder, rn(t), until the time indicated 

in the following equation. 
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The equation indicates that the data can be decomposed into individual IMFs and 

remainders, and the original data can be composed with the decomposed values. The 

IMFs should satisfy the following two conditions: 

(1) The number of extreme in the data and the number of zero crossings are the 

same or differ by 1. 

(2) The mean of the top and bottom envelopes is 0 at all points. 

Table 1.The Algorithm of EMD 

EMD Algorithm 

 

EMD is the empirical method for obtaining an IMF. An IMF is obtained through 

the following steps. 

(1) The given data ,which input vibration signals from the wind turbine,are set 

as  as in the following equation, and 1 is substituted for k: . 

(2) With all local maximum values of , the top envelope is obtained using the 

cubic spline. 

(3) As in Step (2), the bottom envelope is obtained with the local minimum values. 

At this point, all data should be present between the top and bottom envelopes. 

(4) The instantaneous mean of the top and bottom envelope, , is calculated, 

and  is calculated as the difference between and ). 

In , n denotes the nth IMF, and denotes the number of times that the 

repeated calculation is performed to calculate the IMF. Thus, 

. 

(5) If  does not meet the two conditions of the IMF, k is increased by 1. 

Steps (2), (3), and (4) are repeated with  as  until the two 

conditions of the IMF are satisfied. 

If  meets the two conditions of the IMF, becomes the nth IMF of 

, which is . Thus, . 

(6) Let  be the remainder of , from which , the th IMF element, is 

subtracted, . 

(7) The remainder  is set as . To obtain the th IMF, which is 

, n is increased by 1, and Steps (2), (3), (4), (5), and (6) are repeated. 

If cannot satisfy the IMF conditions any longer, or if there is almost no vibrant 

element in the signal, the repeated process is stopped. 

 

2.1. Transform Improvement Suggestion for Enveloping 

If we obtain an exact EMD division result, it needs accurate envelope calculation. 

The general EMD analysis method uses cubic spline interpolation to obtain the 

envelope. This method requires knowledge of all sample points from to , and 

then uses two points in the curve to predict a new curve. However, this method 

causes overshoot when each approximate sample point has a lengthened interval and 

the gap of curvature is big. Therefore, following thesis 12, the causes of overshoot 

of Cubic Spline Interpolation, we focus on keeping each point’s interval constant 

and on preventing the overshoot interval of approximate sample points from 

changing much. This is done to obtain a curve between two points that use five 

sample points from  to . This point differs from Cubic Spline Interpolation; 

Cubic Spline Interpolation uses two points that are approximate, and this method 

uses five sample points. However, according to the change in the interval of points, 

obtaining the curve length is also different. Obtaining signals from the generator 

occurs irregularly, and frequency changes appear frequently [9–10]. Therefore, this 

problem also regards the points problem, which involves big changes. It is theory of 

the way in which the interval between two points is modulated, and then we can 
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estimate the curve more exactly. It could reduce the overshoot phenomenon. In 

order to obtain a curve  between two points, we can obtain imaginary sample 

points. This has to satisfy a condition. 

Table 2. The First Stage of Improvement Overshooting with Cubic Spline 
Interpolation 

(1) If , 

 

The distance between points  and  is shorter than 1/2 of the distance between 

points  and , 

 

[ ] =>[ ] 

 

was used instead of . 

 

appears as a time-based centered coordinate, which was drawn previously 

as . 

 

It used the centered coordinate between and .  

 

Thus, it uses  instead of , and  , . is obtained using 

the  formula.  

 

 
 

where it is assumed that , , ,  

 

 
 

 

In this method, the interval between points  and is relatively big. Therefore, 

using  reduces the interval of the sample points. 

 

 

Figure 1. Cubic Spline Interpolation with 5 Points (Case 1) 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol.11, No.3 (2016) 

 

 

Copyright ⓒ 2016 SERSC      71 

Table 2. The Second Stage of Improvement Overshooting with Cubic Spline 
Interpolation 

(2) If , 

 
The distance between  and  is smaller than 1/2 of the distance between  

and ,   

[ ] => [ ] 

 

In this case, the interval of points between  and  is relatively big.  

Therefore, using  instead of  can reduce the sample points interval.  

In other words, is . 

 

 

Figure 2. Cubic Spline Interpolation with 5 Points (Case 2) 

Table 2. The Third Stage of Improvement Overshooting with Cubic Spline 
Interpolation 

(3) if  and  

 

[ ] => [ ] 

 

 

If step (1) and step (2) occur at the same time, all techniques using step (1) and step (2) 

are used to reduce the interval of sample points. 

 

 

Figure 3. Cubic Spline Interpolation with 5 Points (Case 3) 
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Figure 4. The Result of Improvement Overshooting 

Figure 4 shows the compared result using Cubic Spline Interpolation and the suggested 

method. Following the picture, we can identify that the C and D points improve the 

overshoot incurred from Cubic Spline Interpolation. 
 

2.2. Neural Network Algorithms 

A neural network algorithm [11–13] is a technologically modeled structure of the 

biological stimulus transmission process by neurons. The objective of a neural network is 

to develop a high-performance algorithm to process signals that are difficult to process 

using a conventional sequential algorithm, such as the visual, tactile, and auditory senses 

used by humans and other living organisms. For this purpose, various neural network 

algorithms have been proposed. Contrary to conventional sequential algorithms, neural 

network algorithms have parallel structures in various forms. The most frequently used 

neural network is a multilayered network that can be separated into many dimensions. A 

multilayered network is composed of many single-layered neural networks that can only 

be separated linearly. Figure 5 illustrates the structure of a typical multilayered neural 

network. 

 

 

Figure 5. The Structure of Neural Networks 

In the recognition process of a neural network, the input signal to the input layer 

is multiplied by the synapse connected to the hidden layer (weight) and then 

transmitted to all the hidden layers. The same procedure is repeated once to 

determine the output value, and the output is sent to the next layer through the 

activation function in each layer. The activation function should be a monotone 

increasing function. Typical activation functions include the identity function, unit 

function, or sigmoid function. The activation function is related to the activation of 
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actual neurons, which are activated after being stimulated. In an identi ty function, 

activation is performed infinitely according to the stimulus. This concept does not 

correspond to the activation of actual neurons, being far removed from the intended 

neural network model. In a unit function, the activation is expressed as constant 

within a certain stimulus, which is also different from the intended neural network 

model. A sigmoid function, however, shows vigorous activation within a  certain 

stimulus, and the degree of activation by a stimulus decreases as it approaches the 

maximum activation. This pattern is similar to that of actual neurons, and thus the 

sigmoid function is the function that is most frequently used in neural network 

models. Eq. (2.2) shows a bipolar sigmoid function. The denominator is 1 in a 

unipolar sigmoid function. Figure 6 shows the sigmoid function. 

    ( 2 . 2 ) 

 

 

Figure 6. The Sigmoid Function 

The most important factor in determining the type of neural network is the 

learning method to find the weight. In this study, the back-propagation (BP) 

algorithm, in which the weight is sought by delta learning, was applied. In delta 

learning, the differential value of the error is used to reduce the error (i.e., the 

difference between the objective value and the output value). Eq. (2.3) shows the 

error function of the output value: 

 

 

    

Where tpi denotes the objective output of the unit j in the middle layer in the 

input vector. The change in weight is given in Eq. (2.4): 

 

  ( 2 . 4 ) 

 

In the BP algorithm, the weight changes in the backward direction; the output 

layer weight is first corrected, and then that of the hidden layer is corrected. Figure 

7 shows the details of the BP algorithm learning process. 
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Figure 7. The BP Neural Network Algorithm 

3. Experiment and Results 
 

3.1. System Block Diagram 

Figure 8 shows a block diagram of the entire system proposed in this article. The 

signal data collected by the various sensors installed in each component of the wind 

turbine are gathered by the individual nodes of the WSN and then transmitted to the 

remote monitoring system through the gateway. The remote monitoring system 

analyzes the characteristics of the collected signals and diagnoses a fault through the 

signal analysis algorithm and the neural network. If the result shows a fault, an 

alarm is given immediately. 

 

 

Figure 8. The Block Diagram of the Entire System: Sensing Stage, 
Constituted with Varies Sensors; Data Collection Stage, which Collects and 
Transmits the Data by NI WSN; Remote Monitoring System, which Analyzes 

the Signal and Diagnoses the Faults 

3.2. Noise Reduction 

The wavelet shrinkage is a typical method for denoising, which is based on 

wavelet thresholding [13–14]. The theory of this method is that if the calculated 

wavelet coefficients are not close to the threshold value, they will be assigned 0 to 

remove the noise. This method has a good effect on the frequency fields higher than 
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the actual noise level of a signal. If the data of the specific frequency component has 

a lower value than the noise level, it will be assigned by 0. Additionally, the data 

that has a lower value will be noise. The method can be divided into three steps.  

1. To calculate the wavelet coefficients of the input signal using the wavelet 

transform until one meets the predetermined level. 

2. Perform threshold processing using an appropriate threshold value.  

3. Perform the wavelet inverse transform for disposed coefficients to achieve the 

goal of signal recovery. 

Regarding the threshold method proposed by Donoho, there are hard threshold 

methods and soft threshold methods. Denoise using a soft threshold is simple, 

convenient, and favored. Therefore, we also used this method for denoising. Figure 

10 shows the results of signal denoising using the wavelet transform. 

 

 

Figure 9. The Results of Noise Reduction by Wavelet Thresholding 

3.3. Signal Characteristics Analysis 

The primary purpose of wind turbine condition monitoring is to provide an early 

warning about abnormal conditions. Hence, the signal analysis method basically 

adopted by most of the condition monitoring system works by setting the alarm 

generation criteria (signal magnitude) through statistical analysis of the normal 

signals and testing whether the obtained signal exceeds the criteria. 

 

 

Figure 10. An Example of Normal Signals 

 

Figure 11. The Enveloping Results by Cubic Spline Removal Overshoot 

Figure 11 shows normal vibration signals for the simulation. In this article, EMD 

was applied to the collected generator vibration signals, assuming that the individual 
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vibration modes and noises could be independently decomposed from the IMF 

components obtained by applying EMD to the vibration signals of the generator 

system. Figure 12 is a spectrum graph showing the envelope as well as the mean 

values obtained by linking the top and bottom extreme values through cubic spline 

interpolation in EMD. In Figure 12, the blue line is the envelope connecting the 

maximum extreme values, while the green line is the envelope connecting the 

minimum extreme values. The red line connects the mean values.  

In the experiment, individual signals were analyzed and compared by EMD 

through the application of various noises to the normal signals. The frequency 

elements in normal signals and the signals with which noises were mixed were 

analyzed to determine whether there was a fault. 

 

3.4. Determination of Generator Faults 

Given that vibration signals can change suddenly depending on the wind turbine 

conditions, the unique characteristics of the normal signals and fault signals are 

analyzed and classified by neural network learning. In neural network learning, the 

weight means the parameter between the many inputs and outputs. The weight 

generally includes a number of local minimum values, and it is sensitive to the 

initial weight. It is updated by the BP algorithm or by learning. In the BP algorithm, 

the weight is updated in the backward phase. In the forward phase, the input pattern 

is presented to the neural network, and the outputs are calculated using the input 

functions and activation functions for each node. At this point, the input signals are 

transmitted forward only—that is, toward the output layer. With the weight 

arbitrarily set at the initial stage, the output value will definitely not agree with the 

objective value in the output layer, resulting in a large error. In the backward phase, 

the difference between the objective output and the actual output is calculated to 

obtain the error, and the weights connecting one layer with another are updated in 

the direction from the output layer to the input layer. After adjusting the weights, 

the output calculated with the new input will give a smaller error than that given in 

the first trial. This process is repeatedly executed until the output aligns with the 

desired value and the system becomes stable—in other words, when the sum of the 

errors reaches the predetermined error criteria. More learning data make it easier to 

find the same pattern and diagnose faults. Although learning takes a  longer time in 

the BP algorithm than in other neural network algorithms, the recognition time is 

shorter. 

In this paper, for analyzing the fault signal (stator imbalance, bearing fault, rotor 

fault, etc.), the neural network training was applied to vibration signal processing. 

First, according to various classification types, we obtained 30 random samples 

from 300 frequency components of the fault signal and normal signal separately. 

Additionally, the natural frequency had been computed for this. Because of the great 

changes of the generator’s vibration frequency, the EMD feature data of eight 

frequencies for the sampling signal were used for the input layers. Twenty-four 

hidden layers and four output layers were used. 

In this study, neural network learning was performed with respect to generator 

vibration, unbalanced rotor, and bearing misalignment fault signals. First, regarding 

individual fault signals and normal signals, the frequency components at 2000 

positions were randomly sampled, and their natural frequencies were acquired. For 

the generator, given that its vibration frequency is greatly affected by wind 

fluctuation, the three types of fault signals collected at eight positions were used as 

the output values shown in Table 1, and 24 hidden layers were applied in order to 

estimate the damage more precisely. 
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Table 1. The Fault-Type Code 

 Output layer 

Type 
Stator 

imbalance 
Rotor fault Bearing fault Normal 

CODE 001 010 100 000 

 

Using a training pattern that estimated the damage frequency and degree of  

damage, neural network learning was repeated until convergence was achieved. The 

initial weights of the neural networks were randomly set so that each neural network 

could conduct learning with different initial weights. In Table 1, the 001 pattern 

expresses stator imbalance; the 010 pattern expresses rotor faults; the 100 pattern 

expresses bearing faults; and the 000 pattern expresses normal condition. Table 2 

shows examples of the fault detection data with respect to normal signals and fault 

signal patterns. Table 3 compares the learning results with respect to individual fault 

signals when the BP algorithm was applied, when the BP + EMD was applied, and 

when our proposed method was applied. Overall, the learning time in the learning 

stage was longer when our algorithm was applied than when the BP was applied. 

However, our algorithm showed a better recognition ratio and a shorter fault 

recognition time. 

Table 2. The Results of Fault Detection 

Fault 

Type 
Test value 

Input value 

T0 T1 T2 T3 T4 T5 T6 T7 

Stator 

imbalance 
0.0015 0.8901 0.0021 -0.9254 -0.2121 -0.2253 0.7101 0.1335 0.0427 -0.0179 0.0122 

Stator 

imbalance 
0.0033 0.9222 0.0027 -0.3257 0.0052 0.0236 0.7225 0.1356 0.0428 -0.0186 0.0127 

Stator 

imbalance 
0.0456 0.9013 0.0034 0.0938 0.2821 0.2263 0.7283 0.1370 0.0429 -0.0193 0.0131 

Bearing 

fault 
0.8462 0.0352 0.0015 0.3343 0.9239 0.1930 -0.3881 0.0463 0.0324 -0.0343 0.0205 

Bearing 

fault 
0.9785 0.0141 0.0062 0.4409 1.0810 0.4969 -0.4568 0.0378 0.0314 -0.0351 0.0213 

Bearing 

fault 
0.8802 0.0095 0.0031 -0.5129 0.7145 0.7216 -0.5184 0.0292 0.0303 -0.0360 0.0216 

Normal 0.2756 0.0732 0.0385 0.2710 0.1812 0.0546 0.2243 0.0992 0.0384 -0.0293 0.0186 

Normal 0.0947 0.2380 0.0104 0.0685 0.1749 -0.0810 0.5984 0.1256 0.0413 -0.0245 0.0161 

Rotor fault 0.0001 0.0027 0.7915 -0.3581 -0.1115 -0.1658 -0.7091 -0.0314 0.6246 0.7402 0.0234 

Rotor fault 0.0007 0.0814 0.8309 -0.4109 -0.1298 -0.0743 0.6305 -0.0345 0.7344 0.0635 0.6456 

Rotor fault 0.0031 0.0175 0.9651 0.0405 -0.6551 0.0124 0.8009 0.4640 0.0413 1.0805 0.2806 

 

4. Conclusion 

To address the location limitations of wind turbines that may have various faults 

due to environmental factors, this article proposes a communication network that 

transmits vibration signals collected by various sensors to a remote monitor ing 

system through the establishment of the NI WSN system. Signal analysis using HHT 

was proposed as an efficient fault diagnosis method. HHT presents the frequency 

domain components under phase shift on the polar coordinates, as well as amplitude 

information on individual signals. Hence, HHT can present information in the time-

frequency domain in a manner similar to that of STFT and the wavelet transform. In 

addition, HHT decomposes signals into signals with different internal frequency 
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components, beginning with high-frequency components. The frequency 

components decomposed in this way have independent characteristics, whose 

detection can be used to accurately diagnose faults in offshore wind turbines 

through BP neural network learning. To test the efficiency of the proposed 

algorithm, learning was performed with three fault signals: Generator vibration, an 

unbalanced rotor, and bearing misalignment. The results showed that the BP 

algorithm was more efficient in terms of recognition ratio and recognition time than 

the general neural network learning algorithms. The proposed method may be 

applied to the analysis of mechanical and electrical faults in various industries.  
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