International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.3 (2016), pp.333-344
http://dx.doi.org/10.14257/ijmue.2016.11.3.31

Energy-Efficient Resource Allocation for OFDM-Based Cognitive
Radio Networks with Imperfect Spectrum Sensing

Shuang Liang, Shouyi Yang*, Wanming Hao and Bing Ning

School of Information Engineering, Zhengzhou University, Zhengzhou 450001,
China
First author e-mail: iesliang@163.com
*Corresponding author e-mail: iesyyang@zzu.edu.cn

Abstract v
In this study, energy-efficient (EE) resource allocation in orth guency
division multiplexing-based cognitive radio networks perfect sensmg is
investigated. We present a new EE model by considerviM sensmg rars. Optimizing

such an EE expression saves valuable resourc as ba e, by selectlvely

allocating power to underutilized subcarriers, and alSo’achi
general EE expression. Given that the primary “uiser’s in
defined as either the Peak Interference Pow!éPIP) constr or Average Interference
Power (AIP) constraint for all subchannel compar EE performance for the two
interference power constraints. Fmall%» propos tlmal EE resource allocation
scheme based on the quasmon atio n the EE and transmit power.
Simulations show that the ne gn mp%g EE compared with the conventional
EE design, and the EE is h| ith AIP genstraint than that with PIP constrain under
certain interference power

Keywords: ener a@hcy, OFD\9 nitive radio, imperfect spectrum sensing

1. Introdugy
With the h of*@ss multimedia and high data rate requirements, wireless
¢

spectrum resources a oming increasingly crowded. By contrast, spectrum efficiency
in the traditional fbss management scheme is extremely low [1]. Faced with the
situation menti bove, cognitive radio (CR) technology has been proposed to
improve spectru t|||ty by exploiting the secondary user (SU) to access the spectrum
hole that % occupied by the primary user (PU). Orthogonal frequency division
multipl OFDM) has become a potential access technology in future CR systems
its flexibility in radio resource allocation [2].

%cent years, the resource allocation problem in the OFDM-based CR system has
been’studied in the literature [3-8]. To improve SU’s capacity, optimal and suboptimal
power allocation schemes for OFDM-based CR systems are presented [3]. In [4], the
authors proved that PU can achieve a larger throughput using Average Interference Power
(AIP) constraint instead of Peak Interference Power (PIP) constraint. Adaptive power
loading for OFDM-based CR systems with statistical interference constraint has been
studied in [5-6]. Considering the PU activity, the authors presented a risk-return capacity
model and improved the spectral efficiency (SE) in [7-8], although a reduction in the
attainable throughput was obtained.

Meanwhile, with the explosive growth of high data rate wireless services and
requirement of ubiquitous availability, energy consumption is also growing, leading to
large amounts of greenhouse gas emissions and high operation expenditures. Green radio,
which emphasizes energy efficiency (EE), is becoming a new research hotspot for future
wireless networks. In [9], the authors addressed the EE resource allocation problem, and
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proposed optimal and low-complexity suboptimal algorithms in both downlink and uplink
orthogonal frequency division multiple access (OFDMA) networks. The relationship
between EE and SE has been studied in the downlink OFDMA network [10]. To
maximize the system’s EE, authors have proposed an optimal iterative algorithm based on
convex optimization theory and parametric programming [11]. An efficient barrier
method has been developed to maximize EE in [12].

However, most previous studies on EE resource allocation in CR networks were
confined to the perfect spectrum sensing (SS). [7-8] considered PU activity or imperfect
SS, but they did not consider EE. [9-12] only addressed the EE resource allocation
problems with perfect SS. In practice, inevitable sensing errors for the subcarrier exist
because of inherent feedback delays, estimation errors, and quantization errors.

Thus, in this paper, we specifically deal with the problem of EE resource allocgtion fer
an OFDM-based CR system with imperfect SS. In consideration of account se Mers
or available subcarrier, we propose a new EE model by defining a rate los fu%m. The
new EE design differs from the traditional EE design in such a way that @ odel the
randomness in link capacity as a product of the probabili sensing’e d rate loss,
ubc rrle ptimizing this
ly allocating less
constraints for PUs,
model, and determine

which is a function of allocated power in the correspon
EE expression saves valuable resources, such as o% ife, by se
e AIE&»

power to underutilized subcarriers. After introdu
we formulate a quasiconcave optimization problem for this n

the optimal solution for subcarrier power al ct-n

This paper is organized as follows: S’ descrl e system and formulates the
objection function; Section Il presen 0pt| I tion approach for maximum EE;
Section IV contains the numerlcal ; an V presents the conclusion of the
study. %
2. System Descriptiowd Pr ormulation

We consider an OF ased CR)§§5 m. In the spectral domain, the side-by-side CR
radio access model d, as depicted in Figure 1. We assume that the frequency bands
B1, B2,.. are upied e PUs. N available subcarriers exist in the vicinity of
these PUs @ d the SLJ cairopportunistically access those subcarriers using OFDM.
We assume tha of each CR subcarrier is W. Let L={1, 2, ..., L} and N={1,

., N} denote the all PUs and all available subcarriers, respectively.

&

P i
and 2| ... |bendL

mbw

v
3
5

b2

: Figure 1. Spectrum in an OFDM-Based CR System

In this paper, we assume that the instantaneous channel gains are perfectly known at the
transmitter, and denote the channel power gains from the base station to the CR and from
the CRtothe PU I, 1 =1, ..., L, on subchannel n as h, and s, ,, respectively.

The power spectral density (PSD) of the SU signal on subchannel n can be written as
follows [13]:

7 ()= pT. (T (1)

Where p, is the SU transmit power on the nth subchannel, and T, is the symbol
duration. Therefore, the interference power introduced by the SU signal on subchannel n
into PU I’s can be written as follows:
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2
L (dyy P) =Py s‘sln‘ _[ - B/[smnﬂ—]df:anrsl) ( )

Where d,, is the spectrum distance between the nth subcarrier and Ith PU band, and

2 J‘%*B%
q

KO =T, Y (%] df denotes the interference factor of the nth subcarrier.

SI‘n

Similarly, the interference power introduced by the Ith PU band into the nth subcarrier
at the SU is as follows:

Qu@yep) =", /\h\ 0oy (£ 3)

Where ¢, ,(f) is the PSD of the Ith PU signal.
Based on the Shannon capacity formula, the capacity on the nth subchamspe is

calculated as follows: Yy
r, =W Iogz{“ @6 (4a)
Where 52 denotes the additive white Gau53|a aru@(l‘ is the signal-to-

noise ratio gap parameter, which indicates ho ar the system perating from capacity.
. \h\
We define® " +ZQ ), SO 1, =W log,(1+ p,g .)

A practical CR system has two W senS| rs [14] namely, misdetection and

false alarm. Misdetection occur, subc is sensed to be available for SU but
is used by the PU, or a givench fails to de the presence of an arriving PU on the
given channel. False alarm meaft$ that as g&nnel is identified to be used but is actually
vacant. In this study, we detection events. Given the occurrence of
misdetection, power dn ntin th channel is wasted. To reduce power waste, we
define a rate loss is a fi% of the power invested by the cognitive network.

We assume that e err tion probability (EDP) on subchannel n, namely, the
misdetection bability, expected rate loss is expressed as follows:
Ar =a, 7(p, us, th& ted rate of the nth subchannel is expressed as follows:

> ro =W log, 1+ p,g,)-a,2(p,) (4b)

Which is aso‘@vn as the risk-return model [8]. Although many types of rate loss
function exigt.[15], to simplify the analysis, we use a linear rate loss function:
2( pJ@j@ here C is the normalized average cost per unit power for the SU to utilize

th e.
%nsure the quality of service of the PU, the interference power introduced by all
subchannels to the PUs must be lower than a certain threshold. PU’s interference
tolerance can be defined as either the PIP constraint or AIP constraint. Therefore, we
define probability Pr as the probability that the AIP to the Ith PU is lower than the
threshold 1o

N
Dp KO <1 left2, -, L} (5a)
n=1

Pr(i pKO<IP)za le{l2, -, L} (5b)

n=1
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Where a denotes the probability. We assume that s, is the Rayleigh distribution with a

known parameter 4, so the distribution of |s||2 is an exponential distribution with
parameter 2. Hence, Eq. (5b) can be written as follows:

1
ltn

1—e WL S o 2L} ©)

After some mathematical manipulation, Eq. (6) can be rewritten as

N KO < I (7)
HZ:;,PH " T 207~ In(- a)]I el

Practically, energy consumption includes transmit power and circuit4.energy

consumption, so all power consumption at the base station is [17]
Pun =EP+P, Z (8)

Where P is the total transmit power,P:an, Eis the\& ocal o ain efficiency
of power amplifier, and P, is the circuit power.

Considering the introduction of the EDP in t dy, se a new EE model
using Eq. (4b) as capacity. The general EE mogdel (using EQ. S capaC|ty) can also be
considered. Thus, we aim to maximize EE ifferent ¢ases (such as AIP constraint or
PIP constraint for the PUs). In practice,” mal rate irement Ry, IS used to ensure
the SU’s reliable communication. He eE p@ization problem can be written as
follows: { %

4 . (©)
o >
Subject to: . Q \Q
\ \‘ N N [
Q R:Zrn orR=>r, (10)
< , n=1

N
Q 2 8 > p, <Py (12)

n=1

(b, R>R,, (12)
@r (5a) or (5b) (13)
LV P, =20,Vn (14)
Where s the total transmit power constraint to the SU.

@lmal Power Allocation
The EE optimization problem includes four cases. Given the limited space, we only

conduct a detailed analysis on the new EE problem with AIP constraint.
Based on [9], we summarize the following theorem, which has been proved in the

Appendix.
We redefine the optimization problem as follows:
R(P)
n(P)@——=—

EP+P, (15)

max R(P)
e EP+P
@max Zn:l(vv IOgZ(,\:‘I'+ pngn) —(DnCpn)

&Y PP
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subject to
N
> =Ry, (16)
n=1
S 1y (17)
nZp KO < m Jefl,2, L}
z p,=P (18)
n=1
p,>20,ne{l2,---,N} (19)

Theorem 1: For a certain total transmit power P, the maximum EE, namely, 7(P), is
continuously and strictly quasiconcave in P. R

We assume Py, is the minimum transmit power when R(P) is under constral ),
and Py, denotes the maximum transmit power when R(P) is under constraint (1 in and
Py, can be calculated using the following equations:

e Al

(21)

Where p and A, are the non-negati varia Xociated with the non-equality
constraints (16) and (17), and the noti o) d as ()" = max{-,0}. The solution
can be obtained based on Theor

For a certain transmit po ( € [P %(Pth Putar)]), R(P) under the constraints
(17), (18), and (19) is d@:ult to solve\ then propose Theorem 2 to solve this
problem.

Theorem 2: The\d@smlssmn)&\&ty R(P) is maximized by
s —

QAK +u+p,C)in2 %
n=1

Proof: Consideri t maximization of a concave function is equivalent to
minimization of i tive value, we can rewrite the optimization problem as follows:

\L, min i((ﬂncpn ~W log, (1+p,g,)) (23)
Subj Q
(17), (18), (19) (24)

Introducing the so-called Lagrange parameters u,f, and u, to the constraints in Egs.
(17), (18), and (19), respectively, the Karush—Kuhn—Tucker conditions can be written as
follows [17]:

u20vle{l2- L} (25)
4, 20,vnef{l,2,---N} (26)
4.0, =0,vne{,,2,---N} (27)
P _ (28)
Uy (Zl Kn pn 292[_":(1_ a)]) Olv' E{l, 27 L}
N
Q. p,—P)=0 (29)
n=1
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> K¢ 30
_dg%+¢"c‘”"+§K5’“'+ﬁ:°vV"e{1,2«--N} (30)
We can rewrite Eq. (30) as follows:
,_L N () (31)
T p;gn)ln2+(p“c+§Kn v+p

We then substitute Eq. (31) into Egs. (26) and (27), and eliminate ..

N | > Wgr| (32)
¢HC+§K5>U,+ﬂ_m,wea,z,---m

(7%+(ﬁnc+il('sl)ul +B)p.=0,Yne @2, N) (33)

1+ p,9,)In2 = o
When¢C+ZKmU . ﬁ< , then Eq. (32) can only be true if pn >0, according t@é).

- (34)
n (wnC+ZK‘”u. + AN ‘% @

However, If(pnC+ZK(')u,+ﬂ> , then p" >0 |® possxe use it would violate
tl

Eq. (33). Thus, p’ =0 isthe onIy solutlon in se. 'I;he | power can be rewritten
as follows: \
=) @ (35)
$= ] Vnefl,2,-
+ZK"’U ¥

This formula completes proof 2.
For any strictly quasi e func unique global maximum always exists. In this

study, we need to e the um of the quasiconcave function n(P) in [Pmin,

Piax] (Pmax = mm tota|) ﬁ%:mme the maximum or minimum of a function in a

certain range/w e functio cave or quasiconcave, fully developed algorithms in
[17] can be et ndescribe our scheme to determine the optimal power allocation
that can maximize EE. scheme is illustrated in Figure 3. First, Ppin and P, are
and (21). Pnn is used as the initial value, which is shown in
s at P, after some iteration, we can roughly determine the scope of
wever, Figure 2 illustrates two possible cases. If we use [P,-1, Pn] as

the scope ptimal value, such as Case 1, we will not find the optimal value if Case
2 occurs on the above two cases, we can use [P,-,, P,] instead of [P,-;, P,], and

the Iue must be found in the range [P,-,, P,], which is shown in Step 2. Finally,
% i

e Golden Section Search to find the optimal value of 7(P) in [P,-,, P,], which is
n Step 3.

n(F)
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niF)

Case 2

°
Power Allocation Algorithm x)
1. Initialization:
Calculate P =[p,, p,.--, p,] and Ig =[f)1, E,Z ..‘Apn] 6

using (20) and (21),and get P,;, and P,,,

P, <P, “—
min ? ’71 §F>1+P

2. One-dimensional search: Q
2.1) By« PR,P, < min(kP,P,,) k>1
Calculate P, = [p?, pz?] using (22)
B 1(W log, )~ 2.CPIA %
Ifn,<n ax go wise continue.
2. 2) |n(k
Cal ula [Pl 3, using (22)
>, 1(W fo ngn>—¢HCp")_
772 P ;
|f M, < 771 max 290 to step 3;
othewiSe go to step 2.2).
search:
Q while £,6>0,1=0.618)
b P =P, +(@1-2)(P,—P);
Pl = Po +’1(P2 - Po)v

@b Calculate P =[p/, ps,---, p£] using (22),k €{0,1};
log, (@ C|
e > Wlog, @+ p,g,) - #,Cp,) Ke{o):
\I ER P

If 7, >1,, P, < P, othewise P, < P;.
}

Q 4. Finish:
P =%(P2 +F,),Calculate P =[p,, p,.---, p,] using (22);

> Wlog, @+ p,g,) - ¢,Cp,)
EP+P, '

7 <
Figure 3. Proposed Research Algorithm

The above is our detailed analysis, and an optimal solution can be obtained by applying
the research algorithm.

4. Simulation Results

In this Section, several numerical examples are presented to compare the EE under
different cases. In the simulation, we consider a simple system consisting of two PU, PU;
and PU,, as shown in Figure 4. Three sub-bands consist of 16 subcarriers. In this paper,
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the values of T', T, W, and B are 1, 4 ps, 0.3125 MHz, and 1 MHz, respectively. The
circuit power P, is assumed to be 102 W. The total power budget is assumed to be
P = 1 W. The noise power is assumed to be No = 10™ W/Hz. We assume that the EDP
or every subcarrier available is the same for all subchannels, and the linear loss function
with normalized cost per unit power C = 3.125 x 104 bits/s/mW. The channel gain h, and
S are assumed to be independent identically distributed Rayleigh random variables. The
drain efficiency of the power amplifier is set to 78%.

B

PU,

z
P,

1 216 17--

Figure 4. Example of a Simple OFDI\@M CR%@
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Figure 6. EE versus the EDP with I, = 10™ W
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Figures 5 and 6 show the EE versus EDP under different cases with a = 0.98. In Figure
5(n= 10°° W), we observe that the EE decreases as the EDP increases, and the EE with
AIP constraint is higher than that with PIP constraint. As the EDP increases, the waste of
the power increases, thereby decreasing the EE. Previous analysis showed that the SU can
transmit more power under AIP constraint before reaching the maximum EE, and a high
EE results in a large transmit power. We can also find that the EE of the new model is
higher than the EE of the general model, and the gap between them increases with rising
EDP. When EDP is equal to 0, the EE for the new model and general model is the same
because no error is detected when EDP = 0. However, as the EDP increases, the waste of
power with the general EE model is higher than that with the new EE. We consider the
power loss brought by the error detection in the new EE model, reducing the unnecessary

waste of power. Unlike Figure 5, Figure 6 (I;,= 10™* W) shows that the EE under gifferent
constraints (AIP or PIP) is the same. We also find that the EE is higher than th%%w- ure

5. Given the increase in interference threshold, SU is allowed to transmit mor er so
that the EE improves. Similar EE under AIP constraint, and PIP canstrajnt can be
explained by the fact that the EE has reached the m@gﬁ withi cope of the
interference threshold to the PU.

QK
Q) 4

5.3[;\ L J Va
>y ﬁﬁazo.%
a=0.97 |+
—+— a=0.98
AL
gc Yy
N7

By

" “\E

G R
Q’Q” 0 |

45—
02) 004 006 008 01 012 014 016 018 0.2

EDP

5.2 £ 4
&

A

DN

5.1

EE(bit/Joule)
Y 2=
\§ 7 f 9,
4 M;—/_‘ >

'§ib‘é 7. EE versus the EDP under Different a

We depigt the EE of the new model versus the EDP in Figure 7. Figure 7 shows that the
EE decre the EDP increases. Moreover, Figure 7 shows that the EE increases as a

decrea s phenomenon is very easy to understand. The interference threshold will
i@hen a decreases, so the SU can transmit more power, thereby improving the

EE®
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Figure 8. EE versus the Interfereh@hresh@
In Figure 8, we plot the expected EE versus n"[ cet esMh, where ¢, and a
n

are 0.1 and 0.98, respectively. We observe that cre EE initially increases
and then saturates. Given that the EDP is not Ito O, t f the proposed model is
always higher than the EE of the general for d mterference thresholds. As

Figure 8 shows, when the interferenc old is snallthe EE with AIP constraint is

higher than that with PIP constrainty{but’the the two constraints is almost the

same when the interference thiesolg”is lar a small interference threshold, the

power transmitted by the SU all, and the power does not maximize the EE. However,
hol %

for a bigger interference threshold, the SU& ransmit a larger power, and the EE may be
maximized (Flgure 2) mpari iglires 5 and 6, we can also obtain a similar
solution.

5. ConclusaQ \Qﬁ

In this stu e Co the problem of EE resource allocation in an OFDM-based
CR system with mpe% S. To incorporate power waste during error detection, we
introduced a ne odel by defining a rate loss function. AIP constraint and PIP
constraint for aﬂ&hannels were considered. Finally, we formulated an optimization EE
problem, and ined the optimal power allocation by the quasiconcave relation
between th?\%and transmit power. Simulation results show that the EE with the new
model is r than that with the general model, and the EE with AIP constraint also
improves compared with that with PIP constraint. However, we must consider the
ir@e of the interference threshold on EE.

6. Appendix

Proof: First, we prove that R(P) is strictly concave with constraints (11), (16), (17), and
(19). We can easily prove that R(P) is concave. Egs. (11), (17), and (19) are linear
constraints, so we can easily prove them for concave constraints using the definition. For

(16), it can be proven as follows: we assumeP=[p;,p;,L ,p-] andP,=[p’,p;,L ,p’] meet Eq.

(16), and P3=9P1+(1'9)P2 (66(0,1))
Then, we have
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N
Z(W log, (1+ p3g,)—¢,Cp3)

z

Z(\Nlog @+(@p, +(L-0)P7)9,) - 2.C(Op, +(1-6)p7))

z

Z(ﬁ(W log,(1+ p;g,) —9,CP;) + (1-0)(W log, (1+ pZg,) —¢,Cp?))

>6R, + (1-0)R,,,

R (36)
Hence, R(P) is strictly concave in P,
Second, we prove that R(P) is continuously and strictly concave with constraints (11),
(16), (17), (18), and (19). Let P; be the transmit power matrix corresponding to R(P) We

assume that P;<P,<P;, and define pZ:PS’PZPI RoR

Pl =aP +(1-0)P; , where

%,H P,—P
R(P)=R(P;)2R(P,)>aR(P)+(-w)R(P,)=wR(P)+( . For every P, au I|m|t
R(P) always exists, so R(P) is continuously and strlctly concave in P. @

Finally, we prove 7(P) is strictly quasiconcave in W%[hen d e super level
sets of 7(P) as S,={P€[Pmin, Pmal|7(P)>c}. Ac

to4[16] (P) is strictly
guasiconcave in P if S, is strictly convex for an n o <0, no points
exist on the counter n(P) =a. When o> 0 is e to S, ={P€ [Pnin

PradladP + aPc-R (P) < 0}. ?
Thus, we have proved that R(P) is stric@ ncave m@o S, is strictly convex in P.
This formula completes the proof of Th% 1. @
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