International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.3 (2016), pp.179-186
http://dx.doi.org/10.14257/ijmue.2016.11.3.17

A Fast Speckle Reduction Algorithm Based on GPU for Synthetic
Aperture Sonar

Xu Kuit, Zhong Heping® and Huang Pan !

! Naval Institute of Underwater Acoustic Technology,
Naval University of Engineering,
Wuhan 430033, China
E-mail: 57869588@qq.com;

Abstract 2
Synthetic aperture sonar (SAS) is a kind of high resolution imaging sqfia b eckle
exists in SAS image for that SAS is a coherent imagin stem es |t very
difficult to visually and automatically interpret. In thls a r, a fas kle reduction
to I

algorithm for SAS is proposed in GPU environ ch he olve the speckle
reduction problem of SAS image in real-tim Iy, or nal SAS image is
partitioned into small rectangular blocks with p over?’gp& nd uploaded into the
shared memory of GPU by block of thre econdl Lee filtering process is

performed on every blocked SAS imag ultl cor PU simultaneously. Finally,
the whole processed result is obtalr%w mergi se local filtered images. The
feasibility and high efficiency of t ho X firmed by the speckle reduction

experiment on the real SAS m&y
Keywords: Synthetic apeqrt)ure sonar; G&&'ﬁpeckle; Lee Filter
1. Introduction, ® Q ’&

Synthetic ape sonarﬁ%p is a new high resolution underwater imaging
technology. much S rephysical aperture which moves in a straight path at
constant vel 0 sy e%y a large aperture to produce an image that has high azimuth
resolution independent ge and wavelength. SAS is widely used in small underwater
target search, chann eying and mapping and so on. For that SAS imaging system is
a coherent syste h makes speckle appear. Speckle seriously influences the quality
of image, which es the SAS image automatic interpretation become very difficult.

In ordeNémprove the quality of SAS image, speckle reduction operation must be
performe SAS imaging. A good speckle reduction algorithm should well eliminate

the o noise of SAS image and effectively keep the edges and detailed texture
r :b

on. In addition, the efficiency of the speckle reduction algorithm should meet the
equirements of SAS system in real time. The common used speckle reduction algorithms
have local statistics adaptive method [4-7], the wavelet method and diffusion equation
method [8]. During those algorithms, Lee filtering algorithm [4] is an effective method,
which can effectively eliminate the spackle of SAS image. It disadvantage is its low
efficiency, especially for processing large SAS image, which makes it difficult to use in
practice. GPU technology provides a new method of real-time speckle reduction for SAS
image using Lee filter [9].

This paper proposes a real-time speckle reduction method for SAS image in GPU
environment. Firstly, the SAS image is loaded into the memory of GPU, then the whole
image is divided into blocks with partly overlap according to the number of threads.
Secondly, the GPU kernel function is called on the host, which uses multiple stream
processors to process the blocked SAS image simultaneously, and then the final filtered
SAS image is reconstructed for the blocked filtered SAS image and downloads to the

ISSN: 1975-0080 IJMUE
Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.3 (2016)

host. Finally, the efficiency of the proposed method is verified by speckle reduction
experiment on real SAS image.

2. CUDA Programming Model

In CUDA programming model, the side of CPU is often called host, while the side of
GPU is often called device. Computing tasks are completed by both CPU and GPU. CPU
is good at logical and sequential computing work, while GPU mainly focuses on highly
parallel data-processing work. CPU has its own memory and registers, and GPU also has
its own memory and registers, but they are independent of each other. In CUDA program,
the procedure called by the host executing on the GPU is called kernel function, which
will be executed in parallel. If the parallel part of a program has been determiped, the
whole program can be divided into two parts. One part is several kernel functio&%ﬂch
run on the device; the other is serial parts running on the host. Thus, a comp DA
program is usually composed by the serial code executed on the CPU mber of
core functions executed on the GPU.

The parallel execution of kernel functions is realize ‘% CUI&;D)eads which is
managed by the thread-block-grid three levels of s ne, three thread block
can be composed by lots of threads that perfor@ ame sk, number of thread
blocks can form grid with one or two dimensio mevels of parallel in a

kernel function, which are the coarse parallel een the blocks in one grid and the fine
parallel between the threads in one block i tmgmsb@ other thread hen the kernel
function is executed, every thread he ~&kernél function once, and which
distinguishes from other thread b nde read can communicate between
threads with in the same bloc thread% erent blocks cannot communicate,
which can only communi hrough t chronization instructions. The thread
hierarchy of CUDA programming model n in Figure.1.

Grid 0

QQ M \ Block(0,0) \ \ Block(1,0) ‘
Er@l N ‘ Block(0,1) ‘ ‘ Block(l,1) ‘

o
Grid n
\ Block(0,0) \ \ Block(1,0) \
Kernel n

\T—r ~_ | [Block@) | | Block@y) | .

Block(1,1)

Q | Thread(0,0) || Thread(1,0) |---| Thread(150) |
| Thread(0,1) || Thread(1,1) |.--| Thread(15.1) |
\ Thread(0,15) \ \ Thread(1,15) \ \ Thread(15,15) \

Figure 1. The Thread Hierarchy of CUDA Programming Model

3. Lee Filtering Algorithm

3.1 Basic Principle

Lee filtering is a typical speckle reduction algorithm for SAS image based on the local
statistical characteristics, which is unnecessary to establish the precise statistical model.
This algorithm is based on the multiplicative noise model of fully developed, and
assuming that the speckle noise is white noise. During the process of processing, a local

180 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.3 (2016)

area should be selected and assume that the prior mean and variance can be calculated the
mean and variance of the local area.

Suppose the intensity image of SAS is denoted by Z. Z can also be expressed
byZ =XV, in which X and Z stand for the actual scattering intensity and speckle
intensity, and they are independent random variables. In local window, the mean of

speckle intensity is equal 1, which means V =1. The mean of the intensity image

Z =XV =X-V =X, which means the observed intensity is equal to the mean of
speckle intensity. The variance of the observed intensity is derived as follows.

var(Z) = E[(Z - E(2))*]

= E[(XV - E(XV))’] .
= E[(XV)?*]-E*(XV) ?&
= E(XZ)E(\/Z)—EZ(X)EZ(V)
Suppose the area of the local window is flat, then w & t E(=y ,and
var(Z) = E(X*)E(V?) -
=X (E(V?)
-X 5\P

Therefore, the variance of noise in t M windo |s
'&&

The actual scattering intensi mea mated using minimum mean-square error
criterion under the multiplicative spee@ﬂ el in space. Assuming the actual scattering
intensity can be expres the obs intensity and the mean of which as follows,

Qszazmz
Where ts the on of actual scattering intensity. a. b are the
to eter

coefficient mé hich value should make the minimum mean square error of

X . By soIvingJ = E[%
a—1-p=1-aX)
var(Z)

Q\L' oo E(XN-Z" _var(X)

], we can get

O E(X?)EV?)-Z° Var(Z)
% we can get the final expression of X as follows,
=7 X)) 57
var(Z)

3.2 Parallelization

Suppose the SAS image is denoted by X(m,n), and 1<m<M , 1<n<N,
which stand for the number of row and column of SAS image respectively. For any point

(i, J) in the image, the estimated value 5((i, j) is based on the local image result with
the centered (i, j) and the size of window 2W, +1 and 2W, +1 respectively. When
the local window is 5x5 and the center point is (7,7) in the SAS image, the sketch

Copyright © 2016 SERSC 181

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.3 (2016)

map of Lee filtering is shown in Figure.2. Firstly, the local SAS image block is obtained
according to the coordinate of the current point. Then the filtered value of the current
point is estimated according to the formula of Lee filtering. Finally, the filtered result is
written back to the result array. Lee filtering process is very simple, but its computation
density is very high, especially when local window increases, the efficiency decreased
significantly, which serious influence of SAS image automatic subsequent processing.

=S &
e

05|07 |04 |04|09

0203050305 Lee

Figure 2. Sketch Map of the Lee Fllterm?y 5x5 Window Applied on Pixel of
Coordi s(7,7) \

GPU provides a new method f ffici \$ le reduction of SAS image based
on Lee filtering algorithm. Th art ofq e reduction by Lee filtering in GPU
environment is as follows:

(1) Allocate memory in PU by caIImg@aMaHoc function according to the number
of row and column of S

(2)Upload the S S\ from th emory of host to GPU by calling cudaMemcpy
function. &

(3)Start p puti ction of Lee filter by calling the kernel function at the
host. Firstl ry bloc hredd begins to compute the local blocked image to be
processed according to index of the current thread block and the size of the local
window. Then the lg S image is uploaded to the shared memory by the threads of

every thread cal s a value of one point according to its local thread index, and then

writes the rgsult to’the global memory.
(4)Do the result from the memory of GPU to host by calling cudaMemcpy

functlo
@ e the size of local window is (2W, +1)x(2W, +1) and the size of thread
i

s set to 16x%16 due to hardware limitations. Each thread computes one filter value.

In order to accurately calculate the filtered value on the edge, we need to extend the
boundary of the local blocked SAS image shown in Figure.3, which is determined by the

size of local window. The width of extended boundary are W, and W, which are the

current block siﬂm& usly and a synchronization operation is needed at last. Finally,

half size of local window, then the size of the local SAS image becomes
(16+2W,)x (16 +2W,) . When the local SAS image is loaded into the shared memory,

some threads need to load more than one data due to the expending. In order to keep the
balance of loading data, the thread with the index (i/16, j/16) is used to load the local

data with the index (i, J), which can maximize the loading balance of different thread. In
order to ensure the local SAS image is loaded before filtering, the sync threads function
should be called.

182 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.3 (2016)

WXo QWX
X 3
Wy Wy
Figure 3. Sketch Map of Blocking x)°
In addition, to ensure that estimation based on the calculated value, all | age data

already contained in the shared memory required to I data after the ¢ threads
function is called, contained in data synchronization.

environment is analyzed. The hardware co

ratiop the”testing system is: CPU:
Intel(R) Xeon(R) X5650 2.67G (2 GPU g es), ME : 48G, Display card: Tesla

4. Experiment Q
In this section, the performance of the f;s eckle f& algorithm in GPU

C2050, Operation System: Windows war ironment: Visual Studio 2008 and
CUDA 5.0. The raw data sets hav acq ing the lake trial in July 2010 in
QianDao Lake, Zhejiang Prov Chlna % Institute of Underwater Acoustics,
Naval University of Englne The |ma restlt shown in Figure.4(a) is acquired by

CS imaging algorithm, a

he siz \% mage is 8800x2880. Before filtering, the
e

seen the terrain of this area is very rich, but

the speckle is v |ously, hich affects the subsequent image interpretation
SAS system is shown in Table. 1.

%1. System Parameter of the Trial

ameter value parameter value
ban kHz) 20 pulse repetition period (ms) 320
C Vequency (kHz) 150 length of sub-array (m) 0.04
pulse width (ms) 20 number of receiver 40
locity (m/s) 1446 platform speed (m/s) 25
Q sampling rate (kHz) 40 range of sampling (m) 51-231
@QO 1
£ 20
e
5
£
& 40

50 100 150 200
Range /m

(a) Image Result of SAS

Copyright © 2016 SERSC 183

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.3 (2016)

0.6

N
o

Azimuth /m

50 100 150 200
Range /m

(b) Result by 3x3 Lee Filtering

Azimuth /m

Azimuth /m

00 150
Range /m

50

& (d) Result by 7x7 Lee Filtering
L':i ure 4. Experiment on the Real SAS Image Data

The&d result by Lee filtering algorithm is shown in Figure.(b)-(d), which are
pro with the size of window 3x3, 5x5 and 7x7 respectively. It can be seen the
image fadiometric resolution becomes higher with the local size of window increasing,
and the speckle has been effectively suppressed. In order to compare the filtered results
with different size of window, a local area image has been selected from the whole image,
which starts from 76m to 86m in range and 38m to 48m in azimuth. The local image

result and the filtered result corresponding to the Figure.4(a)-(d) are shown in
Figure.5(a)-(d).

184 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.3 (2016)

Azimuth /m
Azimuth /m

76 78 80 82 84 86
Range /m

76 78 80 82 84
Range /m

(a) Image Result of SAS (b) Result by 3x3 Lee Filten

Azimuth /m

80 82

82
Range /m

(c) Result by 5x5 Leeﬁnng . %
erlmK \he Real Data (Local area)

Range /m

(d) Result by 7x7 Lee Filtering

Flgure

The performance \b fficien

window on CP PU |
edge kept | e decr
number of Io are |n

local window is 7x7
good. The efficie

computing platf
memory i U
memory

omparlson of the Lee filtering with different size of
n jn Table.2. It can be seen the coefficient of noise and
wh|Ie the radiometric resolution and the equivalent
W|th the size of local window increasing. When the size of
Itered results shown in Figure.4(d) and Figure.5(d) are very
omparison is analyzed in the following under two different
7When GPU is used to reduce speckle, we should firstly allocate
, then upload the data to GPU and download the filtered result to the
ost. When dealing with the test data, we needs 19.8 ms and 22.0 ms,
respecti When the size of local windows is 3x3, 5x5 and 7x7, the computing time
proces by single CPU is 1654 ms, 2999 ms and 5134 ms, respectively. When
progessed by GPU, the kernel function only needs 16.5ms, 23.7ms and 34.9ms to run. The
total’filtering time by GPU is the sum of running time of kernel function, upload and
download time, which are 58.3 ms, 65.5 ms and 76.7 ms, respectively. The speed up is
increasing with the size of local window increasing which can up to 28, 45 and 66,
respectively, which can meet the demand of real-time speckle reduction of SAS system.

Table 2. The Performance and Efficiency Comparison of the Lee Filtering
with Different Size of Window

A B C D E F G H
3x3 0.59 2.89 4.32 0.32 1654 16.5 28
5x5 0.54 3.46 4.56 0.18 2999 23.7 45
77 0.51 3.85 4.72 0.12 5134 34.9 66

A-size of window, B- coefficient of noise (standard deviation or mean value), C-

Copyright © 2016 SERSC

185

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.3 (2016)

equivalent number of looks, D- radiometric resolution, E- edge kept index, F-computing
time by CPU (ms), G- GPU kernel time (ms). H- speed up.

5. Conclusion

This paper presents a GPU-based speckle reduction method for SAS image, which can
meet the demand of real-time processing. Lee filter is taken as a filtering algorithm to
reduce the speckle of SAS image, which achieves a good result, but there exists the edge
fuzzy problems inherent by Lee filter algorithm. When the Lee filter is optimized, this
usually increases the calculation time and reduces the efficiency of the algorithm. Take
the method of this paper, which only needs millisecond to reduce speckle of SAS image
using GPU. This will break the bottle-neck of real-time speckle reduction for SAS image.
Therefore, the next step is working on how to improve the precision of speckle reﬁﬁgi)n

Acknowledgement 6
é\@ou

This work was supported by National Natural Sci nda China (Grant
No0.41304015).

References Q Q)
[1] L. Jingnan, Y. Fanlin and Z, Jianhu, “Elemer}%ntroductlogxynthetlc Aperture Sonar and

Interferometric Synthetic Aperture Sonar”, Hy! ic Surve d Charting

[2] M. P. Hayes and P. T. Gough, “Synthetic a| sonar: a rev of current status”, IEEE Journal of
Oceanic Engineering, vol. 34, no. 3, (200 07-2

[3] Z. X.Bo, T.J. Song and Z. H. ng, Scall 2&6 Algorithm for Synthetic Aperture Sonar
Based on Data Fusion of Multi4ec Journa%a in Engineering University, vol. 34, no. 2,
(2013), pp. 1-6.

[4] J.S. Lee, “Speckle suppression anttanalysis %ﬂhetlc aperture radar images”, Optical Engineering,
vol. 25, no. 5, (1986), pp. 638-642.

and T. Qﬂ “Adaptive noise smoothing filter for images with
naIyS|s and Machine Intelligence, vol. 7, no. 2, (1985),

[5] D. T. Kuan, A. A. Sa

signal-dependent poi
pp. 793-802. \'

[6] V.S. Frost,J. and anmugan, “A model for radar images and its application to adaptive
digital filtéringy ltlpllcatlve se™, IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI,

vol. 4, (1982), pp. 157
[71 M. Bhuiyanr, M Ah% . Swamy, “Spatially adaptive wavelet-based method using the cauchy
prior for denoising images”, IEEE Transactions on Geoscience and Remote Sensing, vol. 17,
no. 4, (2007), pp.
[8] Y.YuandS.
vol. 11, no. 11,

peckle reducing anisotropic diffusion”, IEEE Transactions on Image Processing,

[91 X. Hanxg%glel and Z. Zuxun, “Parallel Algorithm of Harris Corner Detection Based on Multi-GPU”,
Geom |

nformation Science of Wuhan University, vol. 37, no. 7, (2012), pp. 876-881.

Author

Kui Xu, Lecturer, received the B.Eng. degree from the Radar
Engineering, Naval University of Engineering, Wuhan, China, in
2002 and the M. Eng. degree from the Signal and Information
Processing, Nankai University, Tianjin, China in 2008. He has
published more than 10 technical journal papers and
international conference papers. His research interests include
underwater acoustical signal processing.

186 Copyright © 2016 SERSC

