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Abstract 

The multi-sensor information fusion predictive control algorithm for discrete-time 

linear time-invariant stochastic control system with random time-delay observations is 

presented in this paper. The algorithm applies the fusion steady-state Kalman filter to the 

predictive control. It avoids the complex Diophantine equation and it can obviously 

reduce the computational burden. The algorithm can deal with the multi-sensor discrete-

time linear time-invariant stochastic controllable system based on the linear minimum 

variance optimal information fusion criterion. The fusion method includes the centralized 

fusion, global optimality weighted measurement fusion. And the two fusion method is 

completely functionally equivalence. Compared with the single sensor case, the accuracy 

of the fused filter is greatly improved. A simulation example of the target tracking 

controllable system with two sensors shows its effectiveness and correctness. 

 

Keywords: Predictive Control, Information Fusion, Centralized fusion, weighted 

measurement fusion 

 

1. Introduction 

A system in which a signal is transmitted at a time or several times delay is called time-

delay systems. The flow of steam and fluid in the pipe, the electrical signal in the long 

line of transmission, there is a time-delay. Systems containing such components are time-

delay systems. For a specific control system, time delay may be caused by a measurement 

element or a measurement process, and may be caused by a control element and an 

actuating element, or caused by them. Strictly speaking, the time-delay in the control 

system is a common, but the size of the difference. Time-delay system is a system that 

can not be ignored. Because of the aging of the components, lack of the sensitivity and the 

delay of the information delivery, there is a time-delay in the system. The study of 

estimation for time-delay systems is of great 

significanceError! Reference source not found.-Error! Reference source not found.. 

In this paper, steady-state Kalman filter is adopted. Steady-state Kalman filtering is not 

optimal because the gain is not optimal, and is asymptotically optimal. From the 

viewpoint of engineering application, the advantage of steady state Kalman filter is to 

avoid the on-line calculation gain, and the gain can be calculated off-line, which can 

simplify the calculation of Kalman filter and reduce the calculation 

burdenError! Reference source not found.-Error! Reference source not found.. 
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Predictive control is a new type of computer control algorithm that has been 

successfully developed in recent years. Because of its control strategy, such as prediction 

model, rolling optimization, and feedback correction, the control effect is good. Since last 

century, predictive control has been widely used in the industrial field, such as the petroleum, 

chemical, metallurgy, machinery and other industrial 

departmentError! Reference source not found.-Error! Reference source not found.. 

Synchronously, its theory has also received great attention in the industrial field and 

academia
Error! Reference source not found.

, especially in the network control 

systemError! Reference source not found.-Error! Reference source not found.. It is suitable 

for the control of industrial production process, which is not easy to establish a precise 

digital model and more complex.  

Since 1970s, with the emergence and development of various kinds of advanced 

weapon systems, it is urgent to improve the tracking precision and accuracy. In order to 

solve these problems, with the development of electronic technology and computer 

application technology, a large number of multi-sensor system with different application 

background has appeared. Multi-sensor information fusion state estimation is an 

important branch or field of multi-sensor information fusion. There are two kinds of 

observation fusion: one is the centralized observation, the observation equation of each 

sensor is merged into one dimensional observation equation, and then used to realize 

centralized global optimal Kalman filter with the state equationError! Reference source not found.

~Error! Reference source not found.. But its disadvantages are that the computational burden is large. 

The other is weighted measurement fusion. The method is based on the linear minimum 

variance criterion to obtain a fusion observation equation of each sensor. The merit of this 

method is that the dimension of the observation equation is not changed, and the global 

optimal state estimation can be obtained. The limitation is that each sensor has the same 

observation. 

In this paper, the multi-sensor information fusion predictive control algorithm for 

system with random time-delay observations is presented. This algorithm avoids the complex 

Diophantine equation, but the state predictor is obtained by using steady-state Kalman 

filter, so it can obviously reduce the computational burden. Compared to the single sensor 

case, using the information fusion algorithm improves the accuracy of the predictive 

control and the stability of the system. And the two fusion method is completely 

functionally equivalence. Simulation results verify its effectiveness and correctness. 

This paper is organized as follows: Section 2 presents Problem formulation. The 

local steady-state Kalman filter of the ith time-invariant subsystem are presented in 

Section 3. Section 4 presents the information fusion Kalman filter. Predictive 

control algorithm base on steady-state Kalman filter is presented in Section 5. A 

simulation example is given in Section 6. The conclusions are presented in Section 

7. 

 

2. Problem Formulation 

Consider the multi-sensor linear discrete-time time-invariant stochastic controllable 

system with random time-delay observations 

( 1) ( ) ( ) ( )t t t t   x Φx Bu Γw                                                   (1) 

( ) ( ) ( ) 1, ,i i i it t t i L   y Η x v ，                                                  (2) 

where t is the discrete time, the subscript i denotes the ith sensor, L denotes the number of 

sensor, ( ) nt x R  is the state of the system, ( )u t  is the input, ( ) mi

i t y R  is the 

measurement of the ith sensor subsystem, ( ) mi

i t v R  is the measurement noise of the ith 

sensor subsystem, ( ) rt w R  is the input noise, 
i

Φ B Γ Η， ， ，  is the suitable dimensional 

matrix respectively, the time-delay 0i  .  
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Assumption 1 ( ) rt w R  and ( ) , 1, ,mi

i t i L v R  are independence white noises with zero 

mean and covariance are 
wQ  and 

viQ  individually 

 
( ) 0

E ( ) ( )
( ) 0

i tk

i i

t
k k

t


     
    

     

w Q
w v

v R
                                       (3) 

Where E is the mathematical expectation,, the superscript T denotes the transpose, and 
tk  

is the Kronecker delta function,  )(0,1 kttktt   . 

Assumption 2 The initial state value (0)x  is uncorrelated with ( )tw  and ( )i tv , and 

0(0) x x , 
0cov (0) x P . 

Assumption 3 ( )tu  is the known time sequence, or linear function (feedback control) of 

( ( ) ( 1) )t t y y， ， . 

Assumption 4 ( , )iΦ Η  is completely observable pair, and ( , )Φ Γ  is completely 

controllable pair. 

Assumption 5 The initial time 0t . 

Our aims are based on the measurement ( ( ) ( 1) (0))t t y y y， ，， , using information 

fusion steady-state Kalman estimation to get the N-step-ahead optimal predictive control 

algorithm. 

Introducing observation and noise transformation 

( ) ( ), ( ) ( )i i i i i it t t t    z y ξ v                                               (4) 

So there is no delay observation equation is as follow 

( ) ( ) ( ) 1, ,i i it t t i L  z Η x ξ ，                                               (5) 

Based on the measurement ( ( ) ( 1) (0))t t y y y， ，， , for the system (1) and system (2), 

the problem of local steady-state Kalman filter ˆ ( | )i t tx  is equivalent to the local steady-

state Kalman predictor ˆ ( | )zi it t x that for the transformed system (1) and (5).  

ˆ ˆ( | ) ( | )i zi it t t t  x x                                                        (6) 

 

3. Local Steady-State Kalman Filter 

Lemma 1 Error! Reference source not found. For system (1) and (5) with the 

assumption 1-5, the ith sensor subsystem has the local optimal steady-state Kalman 

predictor equations:  

ˆ ˆ( 1| ) ( | 1) ( 1) ( )zi pi zi pi it t t t t t     x Ψ x Bu K y                                   (7) 

pi pi i Ψ Φ K H                                                         (8) 

T 1

pi i i i

K ΦΣ H Q                                                          (9) 

T

i i i i i  Q H Σ H R                                                      (10) 

And with the arbitrary initial values are ˆ (0 | 0)ix , further i  satisfies the Riccati 

equation 

Τ Τ 1 Τ Τ[ ( ) ]i i i i i i i vi i i

   Σ Φ Σ Σ H H Σ H Q H Σ Φ ΓQΓ                              (11) 

By type (6), the local steady-state Kalman filter can be computed as 

1ˆ ˆ( | ) ( | )i

i zi it t t t
 

 x Φ x                                                  (12) 

Its steady-state error variance matrix of the filter error matrix is equal to the error 

variance matrix of the predictor, that is 
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2
1 ( 1)

0

i i

t
r r

i i

r

 


    



 P Φ Σ Φ Φ ΓQΓ Φ                                          (13) 

Where 2i  . When 1i  , we have 
i iP Σ . 

Lemma 2 Error! Reference source not found. The multi-sensor linear discrete-time 

time-invariant stochastic controllable system (1) and (5) under the assumption 1-5, the 

cross covariance between any two local filter satisfies Lyapunov equation: 

max( , ) 2

1 ( 1)Τ T Τ

0

( , )
i j

i i

k k

k k j j

ij i j ij

j

k k

 

   



  P Φ Σ Φ Φ ΓQΓ Φ , , 2i jk k                     (14) 

 

4. Fusion Kalman Filter 

The system (1) and (5) can be written as 
(0) (0) (0)( ) ( ) ( )t t t z Η x ξ                                                       (15) 

(0)

1( ) ( ) ( )Lt t t


    z z z                                                    (16) 

(0)

1( ) Lt


    H H H                                                      (17) 

(0)

1( ) ( ) ( )Lt t t


    ξ ξ ξ                                                    (18) 

1

(0) diag( , , )
Lv v Q Q Q                                                         (19) 

Theorem 1 Error! Reference source not found.-Error! Reference source not found. 

For system (1)-(15) under Assumptions 1-5, the optimal centralized fusion steady-state 

Kalman filter ( )ˆ ( )c t tx  are calculated by 

( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ( 1| ) ( | 1) ( 1) ( )c c c c c c c

p pt t t t t t     x Ψ x B u K y                                 (20) 

( ) ( ) (0)c c

p p Ψ Φ K H                                                        (21) 

( ) ( ) (0)T ( ) 1c c c

pi 

K ΦΣ H Q                                                      (22) 

( ) (0) ( ) (0)T (0)c c

v  Q H Σ H Q                                                    (23) 

( ) ( ) (0) ( )[ ]c c c

n fi P I K H Σ                                                     (24) 

And with the arbitrary initial values are ˆ (0 | 0)ix , further i  satisfies the Riccati 

equation 

( ) ( ) ( ) (0)Τ (0) ( ) (0)Τ 1 (0) ( ) Τ Τ[ ( ) ]c c c c c

vi

   Σ Φ Σ Σ H H Σ H Q H Σ Φ ΓQΓ                       (25) 

Where ( )c
P  is fused steady-state filter error variance matrix. 

The system (5) can be written as 
(o) (o) (o)( ) ( ) ( )t t t z Η x ξ                                                  (26) 

(o) 1 1 1

1 1

( ) [ ] ( )
L L

vi vi i

i i

t t  

 

  z Q Q z                                              (27) 

(o) 1 1 1

1 1

( ) [ ] ( )
L L

vi vi i

i i

t t  

 

  ξ Q Q ξ                                               (28) 

(o) 1 1

1

[ ]
L

vi

i



 



 Q Q                                                        (29) 

Theorem 2 Error! Reference source not found.-

Error! Reference source not found. For the system (1) and (26) under the 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol.11, No.3 (2016) 

 

 

Copyright ⓒ 2016 SERSC      173 

Assumption 1-5, global optimality weighted measurement fusion steady-state Kalman 

filter equations: 
( ) ( ) (o)ˆ ˆ( 1| 1) ( | ) ( )c c

f ft t t t t   x Ψ x K z                                         (30) 

(o)[ ]f n f Ψ I K Η Φ                                                     (31) 

Where 
fiΨ  a is a stable matrix, the filtering gain 

fiK  is as follows: 

1

(o)

(o)
1

(o) 1
1i

m v

fi

I









  
  
  
  
  

      

QΗ

MΗ Φ
K

MΗ Φ

                                            (32) 

The pseudo inverse X   of the matrix X  is defined as 1( )X X X X    ,   is index of 

correlation of (o)( , )Φ Η , the coefficient matrix 
kM  can be recursively computed as 

1 1 a ak k n k n k     M A M A M D                                       (33) 

Where 0 imIM , 0( 0)k k M , 0( )k dk n D . 

Optimality weighted measurement fusion filtering error covariance matrix 
0P  satisfies 

the Lyapunov equation 

T (o) T (o) T (o) T

0 0 [ ] [ ]f f n f w n f f f    P Ψ PΨ I K H ΓQ Γ I K H K K                       (34) 

The multi-sensor linear discrete-time time-invariant stochastic controllable 

system (1) and (5) under the assumption 1-5, the optimal centralized fusion steady-

state Kalman filter from (20) ~ (25) is fully functional equivalence to weighted 

measurement fusion steady-state Kalman filter (30) ~ (34). That they have the same 

values of Kalman estimators and corresponding error variance matrix.  

 

5. Predictive Control Algorithm Base on Steady-State Kalman Filter 

For system (1) and (4) with the assumption 1-5, select the fused state 
( ) ( )c

i t
e x (

i

 e

1

[0 0

i

 

1 0 0]

m i

) as the controlled variable, select ( )rx t  as the reference track at time t . For the 

every time t , control increments ( ) ( 1) ( 1)u t u t u t N     ， ， ，  need to be obtained to 

make the states in the future ( )ˆ ( | ), 1, ,c

i t j t j N  e x  as close to the given reference track 

( )rx t j  as possible. Where N  is the control time domain, N  is the optimize time 

domain. 

Defining the expanse function Error! Reference source not found.: 
( ) ( )ˆ ˆ( ) ( )c c

r y r uJ     X X Q X X ΔU R ΔU                                      (35) 

Where ( 1) ( 2) ( )r r r rx t x t x t N


     X  is the reference track of state, and 

setting  e  

i i


   e e , ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ( 1| ) ( 2 | ) ( | )c c c ct t t t t N t


        X e x x x  is called the 

controlled state, and 1diag( , , )y Nq qQ  is called the error weighted matrix, 

1diag( , , )Nr r
 R is called the  

Controlled weighted matrix. 

From (1), we have 
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ˆ ˆ( 1| ) ( | ) ( )i it t t t u t  x Φx B                                                    (36) 

Substituting (20) or (30) into (36) yields 
( ) ( )ˆ ˆ( 1| ) ( | ) ( )c ct t t t u t  x Φx B                                                  (37) 

And  
( ) ( ) 1ˆ ˆ( | ) ( | ) ( ) ( 1)c j c jt j t t t u t u t j      x Φ x Φ B B                            (38) 

Defining 

( ) ( ) ( 1)u t u t u t                                                              (39) 

Having 

( 1) ( 1) ( 2) ( ) ( 1)u t j u t j u t j u t u t                                (40) 

Substituting (40) into (38) yields 
( ) ( ) 1 2ˆ ˆ( | ) ( | ) ( ) ( ) ( ) ( 1)c j c j jt j t t t u t u t               x Φ x Φ Φ I B Φ Φ I B  

1( 1) ( ) ( 1)ju t j u t       B Φ Φ I B (41) 

so that 
( ) ( )ˆ ˆ[ ( | ) ( 1)]c c

x Nt t t

    X e Φ x Φ U Φ u                                         (42) 

Defining 
 

2

x

N

 
 
 
 
 
 

Φ

Φ
Φ

Φ

,

1 2

( )

( ) ( )

N

N N 

 
 


 
 
 

      

B

Φ I B B
Φ

Φ Φ I B Φ Φ I B B

0 0

0
,

( )

( 1)

( 1)

u t

u t

u t N

 
 

 
 
 
 
    

ΔU

, 

1

( )

( )N





 
 


 
 
 

   

B

Φ I B
Φ

Φ Φ I B

(43) 

Substituting (42) into (35), setting 0
J


ΔU

, it yields that 

1 ˆ( ) [( ) ( ) ) ( ) { [ ( | ) ( 1)]}N y N N y r Nt t t u t 

           ΔU e Φ Q e Φ R e Φ Q X e Φ x Φ        (44) 

From (39) and (44) , the predictive control is obtained as 

1( ) ( 1) ( )u t u t t   e U                                                         (45) 

Where
1 [10 0]e . 

 

6. Simulation Example 

Consider 3-sensor the multi-sensor linear discrete-time time-invariant stochastic 

controllable system with random time-delay observations (1) and (2), where 1

2

( )
( )

( )

x t
t

x t

 
  
 

x  

is the state, ( )iy t  is the measurement of the ith subsystem, 
1

0 1

T 
  
 

Φ , 21

2
T T



 
  
 

B , 

21

2
T T



 
  
 

Γ , 0.4T   is the sampled period,  1 0.1 0.5Η ,  2 0.1 0.6Η , 

 3 0.1 0.8Η . 

And ( )tw  and ( )i tv  are assumed to be independent Gaussian white noises with zero 

mean and variances 0.1Q , 1 0.1v Q , 2 0.3v Q , 3 0.5v Q . 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol.11, No.3 (2016) 

 

 

Copyright ⓒ 2016 SERSC      175 

The estimation criterion of the controlled system is defined as the sum of mean square 

error function (SMSE) of the differences of the state reference track ( )rx t  and the 

controlled state fusion estimator 
0

ˆ ( | )i t t
e x  weighted by scalars

 

Error! Reference source not found.-Error! Reference source not found. 

( ) 2

0

0 1

1
ˆSMSE( ) [ ( | ) ( )]

k L
j

i r

t j

k t t x t
L



 

   e x                                         (46) 

Where ( )

0
ˆ ( | )j

i t t
e x  is the jth Monte Carlo simulation state estimates at time t. 

In Monte Carlo simulation for 30 times, 
1 ( )x t  is selected as controlled state. Setting the 

control time domain 3N   and the optimize time domain 3N  , and the reference track 

( )rx t  is the 20 units step signal that appears at the time 100t  , and the error weighted 

matrix diag(3, 2,1)y Q , and the controlled weighted matrix diag(3, 2,1) 0.1  R . 

The simulation results are shown in Figure1-Figure5. Controller output u(t) is shown in 

Figure1 and Figure3. Figure2 and Figure4 show the comparison curves of the state 

reference track ( )rx t  and the fused steady-state Kalman filter. From Figure2 and Figure4, 

it shows that the fused steady-state Kalman filter can track the state reference track ( )rx t  

closely, where the straight lines denote the state reference track, and the dashed curves 

denote the fused steady-state Kalman filter. It indicates that this algorithm has good 

convergence and attenuation, and the overshoot is small, and the controlled output is 

stable. The curves of the sum of mean square error (SMSE) for local and fusion steady-

state Kalman filters are shown in Figure5. We can see that that the accuracy of the fused 

steady-state Kalman filter is higher than single local Kalman filter. 
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Figure 3. Controller Output u(t) 
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Figure 5. The Monte Carlo Curves of the Sum of Mean Square Error (SMSE) 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol.11, No.3 (2016) 

 

 

Copyright ⓒ 2016 SERSC      177 
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:
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7. Conclusion 

In this paper, multisensor information Fusion Predictive Control for time-invariant 

systems is presented. The algorithm for time-invariant system combines the fusion steady-

state Kalman filter with predictive control firstly. Compared with the classic generalized 

predictive control, the advantages are as follows: 

1. This algorithm based on steady-state Kalman filter avoids the complex Diophantine 

equation
 
and computing the gain on-line, so it can obviously reduce the computational 

burden.  

2. Classic generalized predictive control only deals with time-invariant system, or the 

time-varying system that parameters varies slowly, this is called adaptive generalized 

predictive control Error! Reference source not found.. However steady-state Kalman 

filter can deal with the time-varying system, so the predictive control system based on 

steady-state Kalman filter can deal with the linear time-varying and time-invariant 

system. 

3. The stability of the fusion steady-state Kalman filter is making the stability of the 

system get better, and the ability of anti-jamming is enhanced. 

4. Using the information fusion algorithm compared to the single sensor case, the 

accuracy is improved. 

5. The optimal centralized fusion steady-state Kalman filter from (20)-(25) is fully 

functional equivalence to weighted measurement fusion steady-state Kalman filter (30)-

(34).  
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