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Abstract

The multi-sensor information fusion predict@)ntrol a }ﬁfor discrete-time

linear time-invariant stochastic control systep, with random™“ime-delay observations is

presented in this paper. The algorithm app i fusion dy-state Kalman filter to the
predictive control. It avoids the compl ophantine ation and it can obviously
reduce the computational burden. Th % ithm a@?al with the multi-sensor discrete-
time linear time-invariant stoc as@@r troll I§¢s em based on the linear minimum
variance optimal information‘fu%'o iterion. usion method includes the centralized
fusion, global optimality weig measu nt fusion. And the two fusion method is
completely functionally equivalence. d with the single sensor case, the accuracy
of the fused filter is improxe simulation example of the target tracking

controllable systerm&h@ 0 sensois shows its effectiveness and correctness.
Keywords iCtive Co}@,

measuremen n @

1. Introduction _ €7\

A system in V@l signal is transmitted at a time or several times delay is called time-
delay syst Lg’h flow of steam and fluid in the pipe, the electrical signal in the long
line of tr ion, there is a time-delay. Systems containing such components are time-
delay . For a specific control system, time delay may be caused by a measurement
e r a measurement process, and may be caused by a control element and an
ac g element, or caused by them. Strictly speaking, the time-delay in the control
system is a common, but the size of the difference. Time-delay system is a system that
can not be ignored. Because of the aging of the components, lack of the sensitivity and the
delay of the information delivery, there is a time-delay in the system. The study of
estimation for time-delay systems is of great
significanceError! Reference source not found.-Error! Reference source not found..

In this paper, steady-state Kalman filter is adopted. Steady-state Kalman filtering is not
optimal because the gain is not optimal, and is asymptotically optimal. From the
viewpoint of engineering application, the advantage of steady state Kalman filter is to
avoid the on-line calculation gain, and the gain can be calculated off-line, which can
simplify the calculation of Kalman filter and reduce the calculation
burdenError! Reference source not found.-Error! Reference source not found..

nformation Fusion, Centralized fusion, weighted
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Predictive control is a new type of computer control algorithm that has been
successfully developed in recent years. Because of its control strategy, such as prediction
model, rolling optimization, and feedback correction, the control effect is good. Since last
century, predictive control has been widely used in the industrial field, such as the petroleum,
chemical, metallurgy, machinery and other industrial
departmentError! Reference source not found.-Error! Reference source not found..
Synchronously, its theory has also received great attention in the industrial field and
academiaort  Reference - source not - found. = agnacially  in the  network  control
systemError! Reference source not found.-Error! Reference source not found.. It is suitable
for the control of industrial production process, which is not easy to establish a precise
digital model and more complex.

Since 1970s, with the emergence and development of various kinds of advanced
weapon systems, it is urgent to improve the tracking precision and accuracy. In dgde to
solve these problems, with the development of electronic technology an
application technology, a large number of multi-sensor system with differer ication
background has appeared. Multi-sensor information fusion stateéion is an

&

important branch or field of multi-sensor informatio fan. Th two kinds of
observation fusion: one is the centralized observatio obserdation Equation of each
sensor is merged into one dimensional observa @ ationg and YHen used to realize
centralized global optimal Kalman filter with théstate eqﬁﬂu or! Reference source not found.
~Errort Reference source not found. " Bt jts disadvantage that ti@m tational burden is large.

The other is weighted measurement fusian. ethod A sed on the linear minimum
variance criterion to obtain a fusion ob n equatipon Of each sensor. The merit of this
method is that the dimension of the vatio @\r jon is not changed, and the global
optimal state estimation canm)r@ . The \imitation is that each sensor has the same

observation.
In this paper, the multi-senso infor’@ fusion predictive control algorithm for

system with random time-delgy pbservatiog§Ns presented. This algorithm avoids the complex
Diophantine equation e state Prediictor is obtained by using steady-state Kalman
filter, so it can obvi %ﬁ educe the computational burden. Compared to the single sensor
case, using the_i ationAfusion \algorithm improves the accuracy of the predictive
control and bility the' system. And the two fusion method is completely
functionally egeivalen lation results verify its effectiveness and correctness.

This paper is org as follows: Section 2 presents Problem formulation. The
local steady-state %an filter of the ith time-invariant subsystem are presented in
Section 3. Seﬁ4 presents the information fusion Kalman filter. Predictive
control algorithn”base on steady-state Kalman filter is presented in Section 5. A
simulatio%%ﬁple is given in Section 6. The conclusions are presented in Section

7. Q
Z%blem Formulation

Consider the multi-sensor linear discrete-time time-invariant stochastic controllable
system with random time-delay observations

X(t+1) = dx(t) + Bu(t) + T'w(t) ()

yi(t) = Hx(t—7)+v(t), i=1---L 2

where tis the discrete time, the subscript i denotes the ith sensor, L denotes the number of

sensor, x(t)eR" is the state of the system, u(t) is the input, y,(t)eR™ is the

measurement of the ith sensor subsystem, v,(t) e R™ is the measurement noise of the ith

sensor subsystem, w(t) e R" is the input noise, @, B, I', H, is the suitable dimensional
matrix respectively, the time-delay , >0.
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Assumption 1 w(t) e R" and v, (t)e R™,i=1---,L are independence white noises with zero
mean and covariance are Q,, and Q,; individually

e[ w0 weon <[22 @

Where E is the mathematical expectation,, the superscript T denotes the transpose, and J,,
is the Kronecker delta function, &, =1 6y =0(t #k) .

Assumption 2 The initial state value x(0) is uncorrelated with w(t) and v,(t) , and
Ex(0) = x,, covx(0)=PF,.

Assumption 3 u(t) is the known time sequence, or linear function (feedback control) of

(y(®) y(t-1-). /\)
Assumption 4 (&, H,) is completely observable pair, and (@, ") is complete!%y

controllable pair.

Assumption 5 The initial time t, =—o. 1 .

Our aims are based on the measurement (y(t), y\/- , y@) , Using information
fusion steady-state Kalman estimation to get the head¢opti predictive control

algorithm. x
Introducing observation and noise transforr@pn
Z,(t) = y,(t+INER) = v, (t+

i Afo @)
So there is no delay observation e

is as II@

Zi(t :@ )+é:i(t N-."‘,L (5)
Based on the measureme ) Yyt~ ¥(0)), for the system (1) and system (2),

the problem of local steadysstate Ka ilter % (t|t) is equivalent to the local steady-

state Kalman predictor JOMLTT—7,) th& e transformed system (1) and (5).

X, (tt=7) (6)

3. Local S@/?St \Q [

rence source not found. For system (1) and (5) with the
sensor subsystem has the local optimal steady-state Kalman

Lemma 1 Error!
assumption 1-5,
predictor equati

Q\LV X (t+1[t) =¥, X, (t[t-1)+Bu(t+1)+ Ky, (t) (7

Q Y, =®-K,H, (8)
b K, =®XH'Q} 9)
Qi =H; ZH +R (10)

And with the arbitrary initial values are %;(0]0), further > satisfies the Riccati
equation

=X -ZH ' (HZH'+Q,)"H X"+ IQr’' (11)
By type (6), the local steady-state Kalman filter can be computed as
% (t|t) =®" _l)A(zi t|t-7) (12)

Its steady-state error variance matrix of the filter error matrix is equal to the error
variance matrix of the predictor, that is
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t-2
Pi — ¢z‘i *1Zi¢(fi -)T + z¢rI‘QFT¢rT (13)
r=0

Where 7, >2. When 7, =1, we have P =2%,.

Lemma 2 Error! Reference source not found. The multi-sensor linear discrete-time
time-invariant stochastic controllable system (1) and (5) under the assumption 1-5, the
cross covariance between any two local filter satisfies Lyapunov equation:

—max(kl,kj)—Z
Pk k)= "oy X dIIQrie’, k .k, <-2 (14)
j=0
4. Fusion Kalman Filter »\)°
The system (1) and (5) can be written as Yv
29 () = HOx()+ & (t) (15)

Z(0>(t):[le(t) e 2 (t)] \‘% & (16)

HO(t) =[HS (17)

COm=[gw - E@ /\\) (18)

QP = dlag(Q (19)
Theorem 1 Error! Reference sour oun Reference source not found.
For system (1)-(15) under Assumpti , th centrallzed fusion steady-state
Kalman filter x© (t|t) are cal ulate
ROt +1]t) =¥ x@ (t|t=1) @” t+)+ Ky (1) (20)

PIRP-KIHO (21)

W o
E(C) H (O)TQ(C) -1 (22)
QQ bq;g HOZOHOT QW 23)

PO =[1,-KPOHO1x® (24)
And with thg@\rary initial values are %,(0]0), further 3., satisfies the Riccati
equation

@\¢[Z(C) —_>OH (O)T(H © (@) OT +Q _)*1 H (O)E(C)]dj'f + I'QFT (25)
@QP‘” is fused steady-state filter error variance matrix.
T

e system (5) can be written as

ZO(t) = HOX(t) + & (t) (26)

79() =[ZQW1]1§QW12 ® (27)

£ 130T YA (29)

QY = [Z Q1" (29)

Theorem 2 Error! Reference source not found.-

Error! Reference source not found. For the system (1) and (26) under the
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Assumption 1-5, global optimality weighted measurement fusion steady-state Kalman
filter equations:
KOt +1t+1) =%, XO(t|t) + K, 2 (1) (30)
¥ =[l,-K,H]l® (31)
Where ¥, ais a stable matrix, the filtering gain K is as follows:
E(O) " Im1 _Qv
H® M
K= . :1 (32)
HOp" M, .

The pseudo inverse X* of the matrix X is definedas X" =(X"X)*X", g i of
correlation of (@, H), the coefficient matrix M, can be recursively comfpu S

M, =—AM,, —-—A M \a. @ (33)
&\

Where M, =1, M, =0(k <0), D, =0(k >n,)

Optimality weighted measurement fusion fl'@ng error co \)e matrix P, satisfies
the Lyapunov equation

P, =¥ . P¥ +[I, — 'ﬁ%ﬂé r'i, K H“’)] + K OKT (34)
The multi-sensor linear &g ime nvarlant stochastic controllable

system (1) and (5) under the ass tion 1 optlmal centralized fusion steady-

state Kalman filter from ( (25) i IIy functional equivalence to weighted

measurement fusion steady-state K fiter (30) ~ (34). That they have the same

values of Kalman estl and ¢ nding error variance matrix.

5. Predicti roI AlgOnithm Base on Steady-State Kalman Filter
For syste @) with the assumption 1-5, select the fused state

e x ) (e =[0-- 0

10---0]) as the @%d variable, select x, (t) as the reference track at time t. For the

m-i

every time tcpntrol increments Au(t), Au(t+1),---» Au(t+N,-1) need to be obtained to
make t @es in the future e"x (t+ j|t),j=1---,N as close to the given reference track
s possible. Where N, is the control time domain, N is the optimize time

do .
Defining the expanse function Error! Reference source not found.:

J=(X@-X)'Q,(X?-X,)+A4U"R,4U (35)
Where X, =[x (t+1) x (t+2) - Xr(t+N):|T is the reference track of state, and
setting e" =
[ef - ], XO=e"[x97+1]t) KOT(t+2]t) - XOTE+N[t)] is called the
controlled state, and Q, =diag(q,,---,qy) 1is called the error weighted matrix,
R, =diag(r;,--,r, ) is called the

Controlled weighted matrix.
From (1), we have
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X (t+1[t) = ®X, (t|t)+ Bu(t) (36)
Substituting (20) or (30) into (36) yields
KO (t+1]t) = DR (t|t) + Bu(t) (37)
And
RO+ j|t) = KO (t|t) + @' 'Bu(t) +---+ Bu(t + j —1) (38)
Defining
Au(t) =u(t)—u(t-1) (39)
Having
ut+j-D=Aut+j-D+Ault+ j—2)+---+Au(t) +u(t-1) (40)

Substituting (40) into (38) yields
KO+ j1t) =@ KOt |t) + (D" +--+ D+ 1)BAU(t) + (D' * +---+ D+ 1) BAU(t +1) 4 -
BAU(t+ j—-D)+ (@' +---+D+1)

so that

i X© —eT[@ % (t|t)+diNAU+¢15Au\ ] @ (42)
. : %
o - ¢2 >, = (@+1)B G %
@" (¢”1+ +®+1)B @+ + \
& SN
@

0 Au(t)
Au(t+1)

, AU =

Au(t+N,-1)

\ - (d)t ‘I)B 43)
.\Q )& (@ '+ +D+1)B
Substltutlng 4 (35)as aJ _0 it yields that
AU(t v)+R, )’1(eri ) Q, x{X, —e "D X(t|t)-D  U(t—D)1} (44)
From (39) and (44) redictive control is obtained as
u(t) =u(t—1)+e AU(t) (45)

wher \L&S}

6. Sir@Qon Example
%ider 3-sensor the multi-sensor linear discrete-time time-invariant stochastic

controllable system with random time-delay observations (1) and (2), where x(t) = {Xi 8}
X2

. . . 1T !
is the state, y,(t) is the measurement of the ith subsystem, q):[o 1] B{%TZ T} ,

T
:BTZ T} , T=04 is the sampled period, H, =[0.1 05], H,=[0.1 0.6],

=[0.1 0.8].
And w(t) and v,(t) are assumed to be independent Gaussian white noises with zero
mean and variances Q=0.1, Q,=0.1, Q,,=0.3, Q, =05.
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The estimation criterion of the controlled system is defined as the sum of mean square
error function (SMSE) of the differences of the state reference track x (t) and the

controlled state fusion estimator e %, (t]t) weighted by scalars
Error! Reference source not found.-Error! Reference source not found.

Kk

SMSERQ) =3 S Ter 3¢9 x, (OF (46)

Where e"x{"(t|t) is the jth Monte Carlo simulation state estimates at time t.

In Monte Carlo simulation for 30 times, x, (t) is selected as controlled state. Setting the
control time domain N, =3 and the optimize time domain N =3, and the reference track
X, () is the 20 units step signal that appears at the time t =100, and the error @ed
matrix Q, =diag(3, 2,1) , and the controlled weighted matrix R, =diag(3, 2,1)x

hown in

The simulation results are shown in Figurel-Figure5. Controller output/u(
Figurel and Figure3. Figure2 and Figure4 show the corfyparison the state
reference track x, (t) and the fused steady-state Kalman*@r. Fro re2 and Figure4,

it shows that the fused steady-state Kalman fiIter@ the sta rence track x, (t)
ence

closely, where the straight lines denote the state Wnd the dashed curves
denote the fused steady-state Kalman filterﬁndicates tﬁ&l is algorithm has good

convergence and attenuation, and the .ovﬁ is sm nd the controlled output is
stable. The curves of the sum of mean error (S for local and fusion steady-
state Kalman filters are shown in Fi é hat that the accuracy of the fused

ec
steady-state Kalman filter is higher, single@kalman filter.
A

30

20

. Q? 10 \‘
¥,

(b 205 100 200 300

& T/Step

Q\L' Figure 1. Controller Output u(t)

output of col

%

O

0 100 200 300
T/Step

Figure 2. State Reference Track x, (t) and the Centralized Fusion Steady-
State Kalman Filter x©(t|t)
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The output of controller

W

S.10
-20
0 100 200 300
T/Step
Figure 3. Controller Output u(t) x)'

30

20

10

0

-10

T/St
Figure 4. State Referenérack X ( nd Welghted Measurement Fusion

S y-Sta \man Filter 3 (t|t)
€yd Q@

T/Step
Figure 5. The Monte Carlo Curves of the Sum of Mean Square Error (SMSE)
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- the centralized fusion
. weighted measurement fusion

4—k : Subsysteml
+—+  Subsystem?2
~A—2 Subsystem3

!

7. Conclusion

In this paper, multisensor information Fusion Predictive Control for time-invariant
systems is presented. The algorithm for time-invariant system combines the fusion steady-
state Kalman filter with predictive control firstly. Compared with the classic generallzed
predictive control, the advantages are as follows:

1. This algorithm based on steady-state Kalman filter avoids the complex tlne
equation and computing the gain on-line, so it can obviously reduce th atlonal

burden.

2. Classic generalized predictive control only deals \ﬁ% e-in ystem, or the
time-varying system that parameters varies slowly, ' all Ive generalized
predictive control Error! Reference source no . ady-state Kalman
filter can deal with the time-varying system, so redi trol system based on
steady-state Kalman filter can deal with %mear tm%%;wing and time-invariant
system.

3. The stability of the fusion steady- &alman flﬁ; IS making the stability of the
system get better, and the ability of min nced.
orlth %ﬂ

4. Using the mformatlon f red to the single sensor case, the
accuracy is improved.

5. The optimal centrallzed ion ste%ate Kalman filter from (20)-(25) is fully
functional equivalence to @ghted ent fusion steady-state Kalman filter (30)-
(34). @’
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