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Abstract 

In this paper, we propose an improved method for the removal of additive Gussian 

white noise from PET-CT images. Different from the traditional sparse representation 

based denoising methods, our method is composed of two distinctively steps such as the 

preliminary denoise and the detail compensation. By constructing a sparse representation 

model, denoising is formulated as an optimization problem that can be solved on an 

over-complete dictionary. The proposed method effectively trains this dictionary by using 

K-SVD algorithm with atom replace model. Then the preliminary denoised image is 

reconstructed through improved OMP algorithm with the fidelity factor of SSIM 

(Structural Similarity). The detail compensation image is obtained by using the difference 

between the noisy image and the preliminary de-noised image, and the improved OMP 

algorithm is employed again to get the denoised detail compensation image. Finally, the 

final denoised image is reconstructed by adding the denoised detail compensation image 

to the preliminary denoised image. Experiment results have shown that the proposed 

method is better than some other denoising methods in terms of PSNR and SSIM. 

 

Keywords: atom substitution; detail compensation; sparse representation; image 

denoising 

 

1. Introduction 

With the development of image processing methods, medical diagnostic imaging plays 

an increasingly important part in the clinical diagnosis and treatment. PET-CT is the 

product of the integration of PET and CT. It organically combines the functional 

information of focus obtained by PET and the anatomical information of focus obtained 

by CT, so it possesses the advantages of both PET and CT, and becomes outstanding in 

the clinical diagnosis [1]. However, on account of the apparatus, the environment, and 

other factors, noise interference is inevitable in the process of PET-CT image 

reconstruction, resulting in the deterioration of the image quality and further the accuracy 

of clinical diagnosis and treatment. Therefore, effectively denoising PET-CT images has 

always been a hot spot in the study of medical diagnostic imaging [2-4]. 

In general, according to their characteristics, common denoising methods in medical 

image processing can be divided into two major categories. The denoising methods of the 

first kind are based on transformation domain, such as the classic wavelet-threshold-based 

denoising [5], Contourlet transformation [6], and Curvelet transformation [7]. The mutual 

presupposition of these methods is that noise in the image is mainly in the high-frequency 

region while useful information like the content is mainly in the low-frequency region. 

They distinguish between the content and the noise in the frequency domain by looking 

for the distribution regularity of the frequency spectrum in the image, in order to denoise 

the image. However, experimental results suggest that, in the PET-CT image obtained by 

the current technology, useful information that reflects the content of the image still exists 

in high-frequency region while there is also some noise in low-frequency region. In 

consequence, useful information in high-frequency region could be mistakenly erased and 

some noise in low-frequency region could still exist after denoising by transformation 
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domain methods. Additionally, since each transformation can only represent one single 

characteristic of the image efficiently, the effect of denoising by transformation domain 

methods needs further improvements, as for the PET-CT images which have various 

complicated characteristics [8-10]. The denoising methods of the second kind are based 

on image domain, such as harmonic analysis and Partial Differential Equation (PDE) [11]. 

Image domain denoising methods have great local adaptivity and design flexibility, but it 

does not have a good enough performance in retaining the structural characteristics of the 

image, such as the edge characteristic, limiting its development in medical image 

technologies. 

In recent years, in image analysis and processing, denoising methods on the basis of 

sparse representation have attracted more and more attention. The theory of sparse 

representation is to use the linear combination of the columns with the least number to 

represent a given non-zero vector in a known full row rank matrix (where rows are more 

than columns) [12]. This known matrix is called dictionary, and its columns are called 

atoms. Unlike any transformation domain denoising methods and image domain 

denoising methods, sparse representation replaces orthogonal bases with redundant bases, 

and regards the useful information in the image as a specific structure closely connected 

with the atoms, and vice versa as for the noise. Therefore, the separation of signal and 

noise can be achieved by making sure whether the data have sparse representations on the 

dictionary or not. 

The image denoising method based on sparse representation mainly includes two parts: 

dictionary design, and sparse decomposition of image on dictionary. Mallat and Zhang 

firstly proposed the idea of the decomposition of signals on an over-complete dictionary, 

and after that, researchers proposed various designs of the dictionary, such as the Gabor 

dictionary [13], and the multiscale ridgelet dictionary [14]. These designs have promoted 

the development of the sparse representation theory. However, since they adopted fixed 

atoms unrelated to the content of the image being processed, the calculation became very 

difficult and the denoising failed to achieve its best result [15]. In 2006, Elad and Aharon 

proposed the K-SVD algorithm, which upgrades the over-complete dictionary column by 

column through learning and training and makes the dictionary more adaptive to the 

image to be processed [16]. The sparse decomposition is another part of the sparse 

representation denoising; common sparse decomposition methods include matching 

pursuits algorithm (MP) [17], and orthogonal matching pursuits algorithm (OMP) [18]. 

Recently, various approaches based on sparse representation have been proposed to 

address the problem of image denoising. For example, Zhang and Xie proposed a 

denoising method based on DCT basis and sparse representation [18], with that method, 

the image’s content could be effectively described from an over-complete dictionary 

which has obtained by learning dictionary from the noisy image itself, and the denoised 

image could be obtained by combine with the sparse representation coeffcients which 

have acquired from the pursuit algorithm. Zhang and Fu proposed a denoising method 

based on adaptively sparse representation in [19], with that method, the K-SVD algorithm 

has been used to learn an overcomplete dictionary based on image itself by choosing a 

reasonable threshold, and the denoised image could be effectively and efficiently restored 

within the application of sparse representation on learned overcomplete dictionary. In [20], 

Zhou and Luo proposed a novel method for constructed the over-complete dictionary 

namely K-LMS algorithm to realize the image representation, and the denoising could be 

achieved by combine the adaptive image sparse decomposition in overcomplete 

dictionary and the threshold process. These methods greatly extended the application 

range of sparse representation, but the dictionary based on the K-SVD algorithm training 

has structural defects, and the current sparse decomposition algorithms generally take the 

reconstruction error between the images before and after denoising as the fidelity term, 

and the fixed threshold as the end condition for iteration. On account of the working 

environment and the detecting object, the PET-CT image possesses a large number of 
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structural characteristics related to human tissue, so if the algorithm above were still to be 

used, the threshold would be difficult to set, and the noise brought in during the 

reconstruction would have great influence on the accuracy of the reconstructed image. 

Therefore, effective methods to obtain the characteristics of the image and suppress noise 

are the keys to better accuracy of PET-CT imaging. 

In this paper, we propose an improved sparse denoising algorithm based on the atom 

substitution model and the structural similarity. Firstly, the utilization efficiency of atoms 

is taken into consideration in training an over-complete dictionary by K-SVD. In other 

words, low-utilization-rate atoms will be substituted by suitable image blocks, in order to 

improve the adaptivity and the structure of the dictionary. Secondly, in the process of 

sparse decomposition, similarity factors will replace the reconstruction error as the new 

fidelity term so as to reserve the structural characteristics of images.  

 

2. Sparse Representation 

Sparse representation extends the traditional orthogonal basis to an over-complete 

dictionary, utilizing the linear combination of a small number of atoms in the dictionary to 

represent the image, limiting the image energy to a small number of non-zero coefficients. 

These non-zero coefficients and the corresponding atoms represent the major 

characteristics and the inner structure of the image. 

 

2.1. Denoising Model 

Research results have shown that, the quality of reconstructed image will be disturbed 

because of the voltage fluctuations, the electrostatic interference and the bad grounding in 

the process of PET-CT detection [22]. The interference signal can be thought of Gaussian 

white noise. Thus, a PET-CT image polluted by noise can be described as follows: 

 F U V                              (1) 

Where F , U  and V  represents observed image, original image and noise, 

respectively. The goal of denoising is to remove or reduce the influence of noise in the 

above model, so that the difference between F  and U  can reach the minimum. 

According to the theory of sparse representation, a dictionary D  is defined to 

establish a sparse representation denoising model for PET-CT image F  with a size of 

N N . Generally, a PET-CT image as a whole contains a large number of detail 

features such as edges and mutation, while local small image patch appears simple and 

has a consistent structure [23]. For this reason, we first establish the denoising model for 

local image block f (  f u v ) which is comprised by some pixel blocks from the 

holistically image F  in sequence. 

Let n
 Rx  be a n n ( n≪N) image patch and define a redundant dictionary as 

n k
D R （ n k ）, all the image patch can be represented as follows: 

f D                             (2) 

Where k
 R  is a matrix of the sparse coefficient, it can be obtained by solving the 

following optimization problem: 

2

0 2
ˆ a rg m in . .s t  D f                    (3) 

Where 
0

  is the 
0

l  norm, 
0

  is the number of the non-zero values, and   is an 

extremely small positive number which represents error tolerance. In this paper, we use 

OMP algorithm to solve equation (2). 

Hypothesis that the image f  is obtained by adding Gaussian white noise with 

standard deviation value   into the image u , the denoising result of f  is the solution 
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of the following model (4) according to the maximun a posteriori (MAP): 
2

0 2
ˆ a rg m in . .s t T  f  D             (4) 

Where T is the hard threshold whose value is to be determined by   and  ,  and 

  is the variations of noise. The denoised image y  can be described as ˆˆ u D  . 

According to the regularization optimization and transform the constraint to the penalty 

term, the equation (3) can be changed into:  
2

2 0
ˆ a rg m in r 



                        (5) 

Where r  is the regularization parameter. 

If all the image patch x  are in conformity with the provisions of the formula (4), the 

final denoised model can be described as follows: 
22

2 0 2
, , ,

ˆˆ{ , } a rg m in

i j

i j i j i j i j i j

i j i j

r     
U

U U F D R U


           (6) 

Where   is the Lagrange multiplier, 
ij

r  is the regularization parameter, 
i j

 is the 

sparse coefficient, and 
ij

R is a n N  matrix. 

From equation (6), it can be found that the dictionary D  is fixed. Assume that D  is 

not fixed, then equation (6) can be translated into the following model: 
22

2 0 2
, , , ,

ˆ ˆˆ{ , , } a rg m in

i j

i j i j i j i j i j

i j i j

r     
D U

D U U F D R U


         (7) 

 

2.2. OMP Algorithm 

The principle of the OMP algorithm is to use the least of suitable bases to represent 

functions, and to orthogonalize the selected vectors. In each step of the signal 

decomposition, components neither of the selected vectors nor others will be introduced 

into the residual signal. 

Assume that D  is an over-complete dictionary, 


  is the sparse vector, L  is the 

sparseness value, 

D D , we can describe the OMP algorithm as follows: 

2

2 0
m in ( )

N

L


 
R

F D


                       (8) 

(1) Initialization, satisfying    . 

(2) Iteration 

1) Choose the atoms d  and   which make the objective function obtain the 

minimum value from the complementary set 
C

  of  : 

  
2

2

ˆ a rg m in m in

C





 
d

d

d F D


 ； 

2) Update  , add the chosen atom d  in it:  ˆ   d ; 

3) Update the residual  :  
1

( )
T T

   
 I D D D D F ; 

4) Update 


 ： 1
( )

T T

   
 D D D F . 

(3) Repeat step (2) J  times, over. 
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3. The Proposed Method 

In this section, we introduce the proposed method. One core of our method is the atom 

replace model which can improve the dictionary training method. In addition, we take 

SSIM as a new fidelity term to replace the reconstruction error. 

 

3.1. Structural Similarity 

Traditional image quality evaluate is dependent on some valuable characteristics such 

as pixel gray value. Two of the most commonly used are peak signal to noise ratio 

(PSNR) and mean square error (MSE). However, these two assessments have not 

considered the relevant of pixel and the perception characteristics of human visual system, 

which cause difference with subjective feeling. In 2009, Wang et. al proposed a novel 

image quality assessment method namely histogram structure similarity (SSIM), which 

takes concentration as the main structure information instead of structure of objects in 

image [24]. Experiments in [24] show that SSIM is more suitable to outliers and noise 

compared with other image quality assessment methods, because the distortion extent of 

image can be calculated by combining histogram concentration, luminance and contrast. 

From the fundamental work in [24], we can describe SSIM as follows: 

1 2

2 2 2 2

1 2

2 2
( , )

a b a b

a b a b

c c
S S IM a b

c c

   

   

 
 

   
               (9) 

Where 
a

 , 
b

  are the means of the noised image and the ideal image, 
a

 , 
b

  are 

the variances, 
1

c , 
2

c  are the minimal positive constants related to the values of the pixel. 

SSIM measures the image quality from brightness, contrast and structure, which is more 

in line with the characteristics of human visual system. It has the value between 0 and 1, 

the closer it is to 1, the more similar in structure between the noised and the de-noised 

images. 

 

3.2. Atom substitution Model 

K-SVD algorithm is an effectual dictionary training method. However, when noisy 

image is used as sample, the trained dictionary itself would inevitably contain redundant 

atoms [25]. If the redundant atoms are used to reconstruct PET-CT image, it would cause 

quality degradation. 

Consider two situations: 

(1) If there exists an atom
k

d whose similarity to the atom
l

d is over 0.99 in Matrix 

=
T

l k
D d d (where

l
d and

k
d refer to any unidimensional column vectors in the 

dictionary ˆ N k
D R ), that is, there exist redundant atoms in the dictionary: 

if ( , ) 0 .99, ( )
l ij

i j m orm lize D d R U                 (10) 

(2) If the non-zero number of the sparse coefficient
l

 corresponding to the atom
l

d , 

0l
T (whereT refers to the lower limit of the number of sparse coefficients), the 

atom
l

d is considered to be utilized too little, denoted by: 

0
if , ( )

l l i j
T n o rm lize d R U                  (11) 

Under the two circumstances, atoms need to be substituted. Research shows that 

the 2
L norm of the residual vector in the signal decomposition can represent the degree of 

approximation of the dictionary D  and the sparse coefficient   to the image. 

Therefore, we propose an atom substitution model in which the image block ˆ
i j

R U of the 

lowest degree of approximation is utilized to substitute the atom
l

d  as follows: 
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,

ˆ ˆa rg m ax
l i j i j

i j

 d R U D                       (12) 

 

3.3. The Proposed Method 

Based on the above analysis, we propose an improved PET-CT denoising model as 

follows: 
22

2 0 2
, , , ,

ˆ ˆˆ{ , , } a rg m in 1 (

i j

i j i j i j i j i j

i j i j

r S S IM      
D U

D U U F D R U )


     (13) 

Where the first and second items on the right side both are bound terms, and the third 

one is the similarity factor which replaces the reconstruction error as the new 

computational fidelity term. 

To calculate equation (13), we first define D  is a known over-complete dictionary, 

satisfying F U . Then the optimal solution of each image block can be solved as 

follows: 

0

ˆ a rg m in (1 ( ))

i j

i j i j i j i j i j
r S S IM   D R U



               (14) 

Finally, the denoised result can be represented as follows: 
1

, ,

ˆ ˆ( )
T T

ij ij i j i j

i j i j

 


   U I R R F R D（ ） 
              (15) 

Where I  is the unit matrix. 

In conclusion, the principle of our method can be summarized as follows: 

(1) Initialization: We set the over-complete DCT dictionary as the initial dictionary D , 

satisfying F U ; 

(2) Sparse coding: We incorporated SSIM into OMP algorithm and encoding each 

image block as described in equation (9); 

(3) Dictionary training: We define the error matrix as T

k j j

j k

  E U d  , and set the 

atom used for sparse decomposition in the dictionary as { 1 }
i

i i k  ω ( ( ) 0 )
T

j
i  , 

then switch the dictionary updating as follows: 

,

m in (1 ( , )) . .
j j

T T

j j j i

j k

S S IM s t



 
d

U d


  ω               (16) 

We can solve equation (16) as follows by using SVD and fist-order approximation: 
T

k
E Q ΔV                            (17) 

Repeat step (3) J  times, then update the dictionary.  

(4) Atom substitution: We replace the redundant atoms as described in equation (12), 

and obtain the sparsity dictionary. 

(5) Output the denoised result: We first calculate Û  on the basis of equation (15), and 

obtain the preliminary denoised image. Then we compensate the preliminary denoised 

image by using the difference between the preliminary denoised image and the original 

image, and output the final denoised image. 

 

4. Experiments 

In this section, several experiment results of the proposed method are reported to show 

the denoising performance and compared with other two methods, including K-SVD in 

[16] and the method in [20]. These methods are applied to several test images, all of them 

are 256 256  gray scale images with 8 bits per pixel. In our experiments, PSNR values 

and visual appearance are both adopted as the objective indices to assess the quality of 

denoised images, and the chosen parameters of the proposed method are set as follows: 

sparseness number L  is set to 6, patch size n  is set to 64 ( 8 8 ), threshold T  used in 
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OMP algorithm is calculated by (1 .0 2 0 .6 ) n  , and iteration number J  in the 

K-SVD dictionary training algorithm is 20. 

In the first experiment, we perform tests on three PET-CT images and compared the 

SSIM results obtained by using the detail compensation or not (namely UNCPS). For the 

sake of simplicity, we add the white noises with the variations of   10, 20 and 40 in the 

images. The SSIM results are given in Table 1. 

As one can see in Table 1, the proposed method outperforms the UNCPS on all SSIM 

results, values raise at 0.74%, 0.78% and 0.81%. The more the details in the images 

increases, the higher the value of SSIM would be in the proposed method. It suggests that 

after the preliminary denoising step, some details in the images would be decreased 

toghther with the noise, thereafter would lead to the lack of useful information. We obtain 

the final denoised images by adding the compensation images to the preliminary denoised 

image, which can help effectively keep structure characteristics, meanwhile, the useful 

information in PET-CT images can be better retained. 

Table 1. Comparison of SSIM between UNCPS and the Proposed Method 

Image Noise σ UNCPS proposed 

Lung-1 

10 0.916 0.925 

20 0.893 0.901 

40 0.867 0.874 

Lung-2 

10 0.909 0.917 

20 0.886 0.891 

40 0.859 0.865 

Lung-3 

10 0.901 0.907 

20 0.877 0.884 

40 0.841 0.847 

 

Figure 1 shows the SSIM result obtained by the proposed method and the UNCPS with 

different  . As it is shown that, although the growth rate of SSIM caused by the 

proposed method decreases when the σ is greater than 50, it is still better than the value 

obtained by the UNCPS. The result indicates the proposed method is effective and 

feasible. 
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Figure 1. Comparison of SSIM between UNCPS and the Proposed Method 

In the second experiment, we compared the SSIM and PSNR results obtained by the 

proposed method，K-SVD [16] and the method in [20] on five PET-CT images. Table 2 

shows the comparison results. As is shown that the tests were performed on the same 
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three images with   10, 20 and 40. It can be found that the results obtained by the 

proposed method are better than the others for the same image with the same  . For 

instance, by adding the white noise with the variance of 20 to the “Image-3”, the PSNR 

result obtained by the proposed method is 24.70 dB, with increased value by 0.49dB and 

0.08dB respectively compared with the values in K-SVD and the method in [20], the 

SSIM result obtained by the proposed method is 0.884, with the increased ratio by 5.23% 

and 2.07% respectively compared with the values in K-SVD and the method in [20]. It 

also can be found that the results obtained by the proposed method are better than the 

others for different images with different  . For instance, the PSNR result obtained by 

the proposed method is increased by 0.35 dB and 0.11 dB on average respectively than in 

K-SVD and the method in [20], and the SSIM result obtained by the proposed method is 

increased by 5.27%and 2.14% on average respectively than in K-SVD and the method in 

[20]. 

Table 2. Performance of the De-Noising Methods by SSIM and PSNR 

Image Noise σ 

SSIM PSNR 

K-SVD 
Method 

[20] 
Proposed K-SVD 

Method 

[20] 
Proposed 

Image-1 

10 0.878 0.905 0.925 28.74 28.85 28.91 

20 0.856 0.882 0.901 28.13 28.36 28.47 

40 0.832 0.855 0.874 26.69 26.86 26.95 

Image-2 

10 0.869 0.893 0.917 27.48 27.69 27.83 

20 0.848 0.873 0.891 26.60 26.82 26.97 

40 0.822 0.847 0.865 24.26 24.58 24.65 

Image-3 

10 0.862 0.889 0.907 25.54 25.77 25.89 

20 0.840 0.866 0.884 24.21 24.62 24.70 

40 0.806 0.832 0.847 22.48 22.76 22.94 

 

We also compared the denoised effects got in the proposed method and the other two 

for all the five images on a strong noise case with   70. The denoising performance is 

illustrated in Figure 2. From the aspect of subjective visual effect, we can see that K-SVD 

produces overly smoothed denoised results where the noise has been suppressed but also 

edges and other features of the image have been blurred. It has the worst visual quality. 

Method [20] generates clearer edges and textures than K-SVD. However, it also 

introduces many disturbing artifacts in both edges and smoothing regions. Our method 

obtain the best visual quality, where the edges can be better preserved while removing 

noise without introducing much artifacts.  

 

5. Conclusion 

In this paper, we have proposed an adaptive image denoising method for PET-CT 

images. We established a sparse representation model adapted to solve generalized image 

restoration problem. We applied this estimator to remove the Guassian white noise in 

image, and made some improvement by utilizing SSIM and atom replace model. Our 

experimental results demonstrated that the proposed method can effectively remove noise 

while keeping sharp edges and clear textures. In addition, our method can achieve a 

competitive performance in both subjective visual quality and objective PSNR and SSIM 

value compared with other two denoising algorithms. In feature work, we will consider 

dictionary training methods. 
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Figure 2. Visual Comparison of the Reconstructed Results on Three PET-CT 
Images, With Σ=70 

The first column: noise-free images. The second column: reconstructed results obtained 

by K-SVD. The third column: reconstructed results obtained by method [20]. The fourth 

column: reconstructed results obtained by the proposed method. 
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