Numerical Simulation on Crater Characteristics of Different Shape of Projectiles Hypervelocity Impact on Thick Plates

Liu Xun ${ }^{1 *}$ and Gai Fangfang ${ }^{2}$
${ }^{1}$ College of Civil Engineering and Architecture, Harbin University of Science and Technology, Harbin 150080, China
${ }^{2}$ College of Sciences, Heilongjiang University of Science and Technology, Harbin, 150022, China
E-mail: liuxun0627@163.com

Abstract

Hypervelocity impact by space debris can cause direct dâmage to spaceeraft internal subsystem, and even lead to catastrophic failure of manned spacecraft. Toे research the crater characteristics of different shape of projectites hypervelocity impact on semi infinite thick aluminum alloy plates, Lagronge and SPH)(smoothed particle hydrodynamics) coupling method in AUTODYN is used. By anabyzing the influence on crater characteristics by different impact velocity of spherical projectile, different ratio between length and diameter and different impact velocityof cylindrical projectile, we obtain the law of crater characteristics of the semianfinite thick plates. The research results have reference value and engineering application of guiding significance to the study of spacecraft space debriśshield structure design.

Keywords: space debrisshypervelocity impact; crater semi-infinite plate; numerical simulation

1. Introduction

With the increasing of human space activities, space environment is becoming increasingly complex, space debris is one of the main threats to spacecraft. The research of protection to meteoroid and space debris hypervelocity impact receives high attention [1-5], by the hypervelocity impact experiment and numerical simulation researches on the protective perfornance of spacecraft shield structure, a variety of protective structure are developed, ane used for the protection of spacecraft to meteoroid and space debris [6-9]. Because the speed limit and the cost of hypervelocity impact experiment, the numerical smulation is an efficient method to study the properties of protective structure By using the appropriate material model and numerical simulation method, the results can be agreement very well with the experimental.

2. Numerical Simulation

Because the Lagrange grid method can smooth processing material boundary, and also can tracking the deformation history of the model conveniently, the semi infinite plate model is established by using the Lagrange grid method, while the projectile by SPH method. Due to axial symmetry when the spherical projectile normal impact on semi infinite plate, only half of the projectile and plate is established in order to reduce the amount of calculation. Figure 1 shows the initial geometric model.

Figure 1. Initial Geometric Model
In order to verifies the validity of the numerical model, take the experimental data from reference [11] to compared with 10 experimental conditions in reference [11] are selected to simulate. The material sphericak projectile is 2 A 12 aluminum alloy, the velocity of the projectiles is between $0.96 \mathrm{~km} / \mathrm{s}$ and $5.39 \mathrm{~km} / \mathrm{s}$, the diameter of the projectiles is from 2 mm to 6 mm , the impact angle is 0 degrees. The material of the target plate is 5A06 aluminumploy, the plate thickness is 5 mm , with the size of $120 \mathrm{~mm} \times$ 120 mm , target plate are fixed on the target frame with four edges. The parameters of experimental conditions are shownin Table 1.

Table 1. Parameters of Experimental Conditions [11]

No.	the diameter of the profectiles $D(\mathrm{~mm})$	velocity of the projectiles $v(\mathrm{~km} / \mathrm{s})$	plate thickness $t(\mathrm{~mm})$
01	5.91	1.16	5
02	4.35	1.74	5
03	4.35	1.44	5
04	4.10	1.81	5
05	3.45	2.08	5
06	3.03	2.60	5
07	2.74	3.05	5
08	2.00	3.98	5

Figure 2 shows when the diameter of the projectile is 5.91 mm , the impact velocity is $1.61 \mathrm{~km} / \mathrm{s}$ and the diameter of the projectile is 4.35 mm , the impact velocity is $1.74 \mathrm{~km} / \mathrm{s}$, the numerical simulation results of the crater shape.

Figure 2. Numerical Simulation Results
Table 2 gives the results of numerical simulation and the experimental results from reference. The crater diameter, depth of crater and bulge height were compared. Can be seen from Table 2, the error of numerical simulation results and experimental results is
not more than 10%. Thus, in the range of allowable error, numerical simulation results and experimental results are the same, which verifies the validity of the numerical model.

Table 2. Comparison between Numerical Simulation Results and Experimental Results [11]

No.	depth of crater (mm)			crater diameter (mm)			bulge height (mm)		
	Exp.	Sim.	error (\%)	Exp.	Sim.	error (\%)	Exp.	Sim.	Error (\%)
01	2.7	2.51	7.0	8.30	8.28	0.2	2.18	1.97	9.6
02	5.08	4.86	4.3	7.28	7.06	3.0	2.80	2.73	2.5
03	4.52	4.36	3.5	7.34	6.88	6.3	2.56	2.48	3.
04	3.28	3.37	2.7	7.82	7.28	6.9	2.08	2.15	333
05	2.58	2.72	5.4	6.12	6.26	2.3	1.48	1.5	2.0
06	4.82	4.68	2.9	6.42	6.24	2.8	2.06	196	4.9
07	4.60	4.88	6.1	6.36	6.54	2.8	1.96	205	4.6
08	3.46	3.12	9.8	5.78	5.58	3.5	1.14	1.07	6.1

3. Analysis of the Numerical Simulation Results?

3.1. Effect of Velocity of Spherical Projectile on the erater Characteristics

The crater characteristics is researched by select 12 groups of spherical projectiles with diameter is 6 mm and the impact velocity is between $1 \mathrm{~km} / \mathrm{s}$ and $12 \mathrm{~km} / \mathrm{s}$. The Shock state model is used if the inpact velocity orthe projectile is between $1 \mathrm{~km} / \mathrm{s}$ and $7 \mathrm{~km} / \mathrm{s}$, if the impact velocity is 0 ver $7 \mathrm{~km} / \mathrm{s}$ oneven higher, the projectile would be vaporized or liquefied, then the Tillotson state qoodel should be chosen. Figure 3 and Figure 4 show the variation curye the diameter and depth of crater with the velocity of spherical projectiles.

Figure 3. Crater Depth
From Figure 3 and Figure 4, we can seen that the velocity of projectile is one of the main factors which affecting the depth and diameter of the crater. Figure 3 shows if the projectile velocity is between $1 \mathrm{~km} / \mathrm{s}$ and $8 \mathrm{~km} / \mathrm{s}$ or if it is between $10 \mathrm{~km} / \mathrm{s}$ and $12 \mathrm{~km} / \mathrm{s}$, the crater depth increases with increasing of the velocity of the projectile, but if the velocity is between $8 \mathrm{~km} / \mathrm{s}$ and $10 \mathrm{~km} / \mathrm{s}$, the crater depth decreases with increasing of the
velocity of the projectile. Figure 4 shows the diameter of the crater has the same law with the depth of the crater.

Figure 4. Crater Diameter
In summary, for the spherical projectile, in the projectile diameter is a constant, the law of damage on the thick plate by the rojectile is changed with increasing impact velocity. If the projectile velocity is between $1 \mathrm{~km} / \mathrm{s}$ and $8 \mathrm{~km} / \mathrm{s}$ and if it is between $10 \mathrm{~km} / \mathrm{s}$ and $12 \mathrm{~km} / \mathrm{s}$, the damage of prejectile on the plate increases with increasing impact velocity, if the projectile velocity is between $8 \mathrm{~km} / \mathrm{s}$ and $10 \mathrm{~km} / \mathrm{s}$, the damage of projectile on the plate decreases with increasing impact velocity.

3.2. Effect of Velocity of Cylindrical Projectile on the Crater Characteristics

To research the effect of velocity of cylindrical projectile on the crater characteristics, select 12 group of cylindrical projectiles with the ratio of length to diameter is $5(\mathrm{~L}=15.325 \mathrm{~mm}, \mathrm{D}=3.065 \mathrm{~mm}$) and impact velocity from $1 \mathrm{~km} / \mathrm{s}$ to $12 \mathrm{~km} / \mathrm{s}$. Figure 5 and Figure 6 show the variation-curve of the diameter and depth of crater with the velocity of cylindrical projectiles.

Figure 5. Crater Depth

Figure 5 shows if the projectile velocity is between $1 \mathrm{~km} / \mathrm{s}$ and $4 \mathrm{kn} / \mathrm{s}$ or if it is between $5 \mathrm{~km} / \mathrm{s}$ and $10 \mathrm{~km} / \mathrm{s}$, the crater depth increases with increasing of the velocity of the projectile, if the velocity is between $4 \mathrm{~km} / \mathrm{s}$ an $/ \mathrm{d} 5 \mathrm{~km} / \mathrm{s}$ or $\mathrm{i} f$ it is between $10 \mathrm{~km} / \mathrm{s}$ and $12 \mathrm{~km} / \mathrm{s}$, the crater depth decreases with increasing of the vereeity of the projectile. Figure 6 shows if the projectile velocity is between $1 \mathrm{~km} / \mathrm{s}$ and $10 \mathrm{~km} / \mathrm{s}$, the crater diameter increases with increasing of the velocity of the projectile, if the velocity is between $10 \mathrm{~km} / \mathrm{s}$ and $12 \mathrm{~km} / \mathrm{s}$, the crater diameter decreases with increasing of the velocity of the projectile.

In summary, for the cylindfica projectile, at the ratio of length to diameter is a constant, if the projectile velociry is less than $10 \mathrm{~km} / \mathrm{s}$, the damage of projectile on the plate increases with increasing impact velocity, if the projectile velocity is more than $10 \mathrm{~km} / \mathrm{s}$, the damage of profectile on the prate decreases with increasing impact velocity.

3.3. Effect of the Ratio of Length to Diameter of Cylindrical Projectile on the Crater Characteristics

To research the effect of ratio of length to diameter of cylindrical projectile on the crater characteristics, select 12 group of cylindrical projectiles with the same mass and same impact velocity $(3 \mathrm{~km} / \mathrm{s})$, and the ratio of length to diameter is between 0.1 and 12 . Figure 7 and Figure 8, show the variation curve of the diameter and depth of crater with the ratio of lengthto diameter of cylindrical projectiles.

Figure 7. Crater Depth

Figure 7 shows the crater depth increases with increasing of the ratio of length to diameter of the projectile. Figure 8 shows if the ratio of length to diameter of the projectile is between 0.1 and 0.8 , the crater diameter increases with increasing of the ratio of length to diameter of the projectile, if the ratio of length to diameter of the projectile is between 1 and 20, the crater dameter decreases with increasing of the ratio of length to diameter of the projectile.

In summary, for the cylindrical projectile, if the phass and impact velocity of the projectile are constants, the crater depth increases with increasing of the ratio of length to diameter of the projectile, thus, the damage of projectile on the plate increases with increasing ratio of length to diameter.

4. Conclusions

Numerical simalations by AUMODYN have been performed for the impact of spherical and cylindrical projectiles on the semi infinite aluminum alloy plate to investigate the crater characteristics with Lagrange and SPH coupling method applied. The validity of the numegral model is verified by compared with the experimental results. Effect of the velocity of spherical projectile, the velocity and the ratio of length to diameter of cylindrical projectile with the same mass on the crater characteristics is studied by the numerical model. The results show:
(1) For the spherical projectile, if the projectile diameter is a constant, the law of damage on the thick plate by the projectile is changed with increasing impact velocity. If the projectile velocity is between $1 \mathrm{~km} / \mathrm{s}$ and $8 \mathrm{~km} / \mathrm{s}$ and if it is between $10 \mathrm{~km} / \mathrm{s}$ and $12 \mathrm{kn} / \mathrm{s}$, the damage of projectile on the plate increases with increasing impact velocity, if the projectile velocity is between $8 \mathrm{~km} / \mathrm{s}$ and $10 \mathrm{~km} / \mathrm{s}$, the damage of projectile on the plate decreases with increasing impact velocity.
(2) For the cylindrical projectile, if the ratio of length to diameter is a constant, and if the projectile velocity is less than $10 \mathrm{~km} / \mathrm{s}$, the damage of projectile on the plate increases with increasing impact velocity, if the projectile velocity is more than $10 \mathrm{~km} / \mathrm{s}$, the damage of projectile on the plate decreases with increasing impact velocity. If the mass and impact velocity of the projectile are constants, the crater depth increases with increasing of the ratio of length to diameter of the projectile, thus, the damage of projectile on the plate increases with increasing ratio of length to diameter.

Acknowledgement

This work is supported by National Natural Science Foundation of China (11202070). Young Talent Training Program of Heilongjiang University of Science and Technology (Q20130208).

References

[1] N. N. Smirnov, A. B. Kiselev, K. A. Kondratyev and S. N. Zolkin, "Impact of Debris Particles on Space Structures Modeling", Acta Astronautica, vol. 67, (2010), pp.333-343.
[2] J. Huang, X. M. Zhao, L. S. Ren, L. Yi, Z. X. Zhou and S. Liu, "A New Engineering Model of Debris Cloud Produced by Hypervelocity Impact", International Journal of Impact Engineering, vol. 56, (2013), pp.32-39.
[3] E. L. Christiansen and J. H. Kerr, "Ballistics Limit Equations for Spacecraft Shielding", Intemational Journal of Impact Engineering, vol. 26, (2001), pp. 93-104.
[4] F. K. Schäfer and M. Herrwerth, "Shape Effects in Hypervelocity Impact on Semi Infinite Metallic Targets", International Journal of Impact Engineering, vol. 26, (2001), pp. 699-711.
[5] X. L. Wang, "A Research of Modified Dynamic Matrix Control Based on Genetie Algoritl/m", Journal of Harbin University of Science and Technology, vol. 18, (2013) pp. 52-55.
[6] C. J. Hayhurst and R. A. Clegg, "Cylindrically Symmetric SPH Sipuutations of Hypervelocity Impacts on Thin Plates", International Journal of Impact Engineering vol. 20, (1997), pp. 337-348.
[7] R. Q. Chi, "Research and Modeling of Debris Cloud Produced by Hypervelocity Impact of Projectile with Thin Plate", Dissertation for the Doctoral Degree in Engineering, Harbin Institute of Technology, (2010).
[8] G. S. Guan, "Hypervelocity Impact Characteristic Investigation of Spacecraft Space Debris Shield Configuration", Dissertation for the Doctoral Degree in Engineering, Harbin Institute of Technology, (2006).
[9] F. F. Gai, B. J. Pang and G. S. Guan, "Numerical Inyestigatron on the Characteristics of Debris Clouds Produced by Hypervelocity Impact on Pressure Vessels", Chinese Journal of High Pressure Physics, vol. 23, (2009), pp. 223-228.
[10] R. Q. Lin, T. Huang and C. Y. Wang, "A New GPC Algorithm and Its Implementation in Direct Torque Control of PMSM", Journal of Harbin University of Science and Technology, vol. 16, (2011), pp. 65-71.
[11] G. S. Guan, B. J. Pâng and.R. Q. Chi, "Experimental Investigation of High Velocity Impact on 5A06 Single Sheet Plate, Chinese Journal of Experimental Mechanics, vol. 21, (2006), pp. 144-150.

