
International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016), pp.309-322

http://dx.doi.org/10.14257/ijmue.2016.11.2.30

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2016 SERSC

Agent Based Performance Analysis of Strategic Algorithms in

Prisoner’s Dilemma

Aastha Yadav, Chandini Bhambhani, Pronay Peddiraju

Ronnie D. Caytiles* and N.Ch. S.N. Iyengar

SCSE, Vellore Institute of Technology University, Vellore-632014, TN, India

*Department of Multimedia Engineering, Hannam University, Korea,

{aasthay1705, chandini.bhambhani, pronay.y2k, rdcaytiles}@gmail.com,

nchsniyr@vit.ac.in

Abstract

To create a system that provides a comparison of multiple algorithms that may be

tested in the Prisoner’s Dilemma decision problem using two subjects in a dual agent

environment. As an addition to understanding the effects of various algorithms and logic

that helps influence a single agent’s decision, our system aims at analysing the

performance of the same algorithms in iterative and multi agent systems. The results are

obtained by using concepts of Swarm Intelligence, Multiple Agent Systems and Super

Agents within the testing system. The results of the research are to expose the

advantages and disadvantages of each schema to help plan investments, predict

outcomes and for real world application of the Prisoner’s Dilemma in fields of

Environmental Sciences, Psychology, Economics and many more such fields.

Keywords: Swarm Intelligence, Super-Agent, Multiple Agents

1. Introduction

The well-known prisoner's dilemma game has become the classic economic example

to demonstrate non-cooperative behavior: Two contestants face a „‟dilemma‟‟ in which,

independent of each other's action, each player is better off by defecting than by

cooperating. However, the outcome obtained when both defect, is worse for each player

than the outcome both would have obtained if they would cooperate. Thus, self-interest

oriented behavior does not lead to a globally optimal solution in all cases. A common

view is that this puzzle illustrates a connection between individual and group rationality.

Two players who both pursue rational self-interest may end up worse off than if both act

contrary to rational self-interest.

This paper analyzes choice of outcome done among one of the four possible

permutations in the canonical Prisoner‟s Dilemma payoff matrix.

Analysis of the strategy depends on the following factors of the strategy:

1. “Nice” nature of strategy

2. Retaliation factors

3. Forgiving Nature

4. Non-envious quality

Players can communicate with each other and hence have the possibility to play with

each other, and thereby get to know each other in two stages of pre-play. In order to

make the best choice, each player would have to know what the other player might do,

but the structure of prisoner's dilemma prohibits players from having such knowledge,

unless the situation or game is iterated. The prisoner's dilemma problems lack a single

optimal strategy and both parties rely on each other to achieve most favorable results.

When understood properly, this dilemma can multiply into hundreds of other more

complex dilemmas.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

mailto:rdcaytiles%7D@gmail.com

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)

310 Copyright ⓒ 2016 SERSC

The mechanisms that drive the prisoner's dilemma are the same as those faced by

marketers, military strategists, poker players, and many other types of competitors. The

simple models used in the prisoner's dilemma afford insights on how competitors will

react to different styles of play, and these reactions will reveal suggestions on how those

competitors will probably act in the future. Plethora of disciplines have studied the

game, including artificial intelligence, biology, business, mathematics, philosophy,

sociology, and political science.

2. Prisoner’s Dilemma Problem

The Prisoner‟s dilemma relies on the existence of two extremes in terms of

conditions. The entity or agent in our case may choose to betray or cooperate. A model

based on rationality where entities forecast how the game would be played if they

formed a coalition and then their ability to maximize their forecast, has been shown to

make better predictions of the rate of cooperation in this and similar scenarios. The

prisoner‟s dilemma, of course, is one of the most studied games in the literature. The

rich background of prisoner‟s dilemma research allows us to contrast our results, about

behavior of human subjects playing quantum games, with behavior in the classical

version of the game, which is widely known. Furthermore, the prisoner‟s dilemma is

also a simple version of the public goods game, for which a quantum mechanics

performs efficiently for large groups. Specifically, for two players with equal

preferences and endowments, the public goods problem reduces to the prisoner‟s

dilemma. The prisoner‟s dilemma illustrates the free-rider problem in the simplest

context of a two-person game, in which each player has the choice to “cooperate” or

“defect”. Payoffs for both players are higher when both of them choose to cooperate

instead of both defecting. However, each individual is better off by defecting. The

prisoner‟s dilemma involves the possibility of altruistic behaviors in which participants

can either select actions that most benefit themselves or those that benefit the group as a

whole but at some individual loss.

3. Literature Review

Prisoner‟s dilemma is still a current research area with nearly 15000 papers published

over the last two years [Source: Google Scholar]. New strategies are developed and old

ones revised for implementation in new areas. Research reveals plenty of existing

classical economic mechanisms that solve the free-rider problem in different

environments [5]. Another conclusion drawn was that cooperation is not the outcome in

the infinitely repeated Prisoner‟s Dilemma [13].

New approaches upgrade known ideas through genetic algorithms and heuristic

approaches and successfully recognize opponents, to anticipate their moves and try to

achieve better results. These approaches have analyzed cooperative behavior in a

prisoner's dilemma game in the presence of high stakes, communication, and two rounds

of pre-play, involving two voting decisions. It is observed that stake size,

communication as well as pre-play have a significant impact on cooperation [4].

Cooperative play in prisoner‟s dilemma games by designing an experiment to

evaluate the ability of two leading theories of observed cooperation namely, reputation

building and altruism have been studied. They analyze both one-time and finitely

repeated games to gauge the importance of these theories. We can conclude that neither

altruism nor reputation building alone can explain our observations [9]. Complex

adaptive systems to find the optimal approach do not aggregate strategies in hope of

demonstrating the “Wisdom of crowd” phenomenon [6].

There is always a problem of possibility to misjudge the opponent, which will bring

worse results in the end. However, the information carries the key role in any sort of

intelligent activities and strategies. Individuals with more information will have

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)

Copyright ⓒ 2016 SERSC 311

advantage in most situations as the strategies that learn about the opponents and adjust

their own responses will certainly have an increasingly important role in the future.

Hence, our project aims at bringing in a new viewpoint using software instead of

hardware in optimizing the strategies or moves in a prisoner‟s dilemma, with the help of

performance analysis of various algorithms on a set of agents.

4. Derivation of Optimal Strategy

1. Bayesian Nash Equilibrium: If the statistical distribution of opposing strategies

can be determined, an optimal counter strategy can be derived analytically.

2. Monte Carlo Simulation: Simulation of large population of entities where entities

with low scores die out and those with high scores reproduce (induce the

instantiation of more such entities). Mix of algorithms in final population

generally depend on the mix in the initial population.

5. Architecture

There are a lot of different architectures we can choose when playing social dilemma

games, or in an actual social dilemma with iterative processes. In our project, our aim is

to achieve a general case involvement of single agent-to-agent interaction or multi-agent

interaction, which runs through a set of algorithms to produce an optimized result, which

leads to the benefit of either single or both parties as required by the user.

Table 1. Representation of Prisoners’ Dilemma

5.1 General Case

The general case in our project is for multi-agents. Single agent-to-agent interaction

has been explained in detail as a special case. In multi-agent interaction, there are single

agent-to-agent interactions taking place simultaneously, as in, at a time there can be „n‟

number of interactions between only 2 agents. The architecture of the general case is

explained by the following Figure 1.

If both players cooperate, they both receive the reward R for cooperating. If both

players defect, they both receive the punishment payoff P. If say agent A defects while B

cooperates, then A will receive the temptation payoff T, while B receives the non-

beneficial payoff S. If agent B defects while A cooperates, then B will receive the

temptation payoff S, while B receives the non-beneficial payoff T.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)

312 Copyright ⓒ 2016 SERSC

Figure 1. General Architecture

Here n = 4, i.e., the number of interactions between two agents in the above multi-

agent interaction is 4. Our implementation of code will include various algorithms

wherein, the agents are designed to carry out one of the strategies as mentioned in the

list of strategies explained below. Once the above interactions have taken place, only

those interacting agents in a relationship, who have benefitted will stay on. Say for

example, Agent 1 benefits over Agent 8 ensures Agent 1 stays on, Agent 2 and Agent 6

benefit via cooperation ensuring both Agent 2 and Agent 6 stay on, Agent 3 and Agent 5

get non-beneficial results which eliminated both Agent 3 and Agent 5, and Agent 7

benefits over Agent 4 which results in eliminating Agent 4.The non-benefitted agents are

eliminated to serve their time or deal with their punishment but, the other agents are

paired with remaining agents on either side until one or both teams emerge with

beneficial payoffs.

5.1.1 Case 1

If the user requires only two participating agents, a single agent-to-agent interaction

will entail where n=1. This is a particular case of the general case stated above, which

has a faster compile time and can be specified by the user to eradicate multiple agent

interaction complexities. Once again, strategies are implemented with both interacting

Agents and one or both agents receive beneficial payoffs.

Figure 2. n=2 Agents

5.1.2 Case 2

Figure 3. Master Slave Implementation

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)

Copyright ⓒ 2016 SERSC 313

This has the same as the general case, consisting of „n‟ interactions, which is reduced

to an optimal solution, but here, we have a master agent. The master agent in each team

is the agent that all other subordinate agents try to protect. When involved in interactions

with opposing agents, they sacrifice themselves by settling for non-beneficial payoffs so

that the master agent always receives the reward payoff. By following this mechanism,

the master agent earns enough reward payoffs to benefit the entire team.

6. Working Implementation

In this project, primarily agents will be made using the agent capabilities of the C#

programming language using Visual C++ programming and the Visual Studio software.

The agents were made using the available agent classes under the header file #include

<agents.h> and concurrency class in the VC++ system32 console application files. Once

the agents were created, we applied the existing strategic algorithms on them to arrive at

the most optimized and efficient algorithm as seen in the following two models:

Flow Diagram

Diagram 1. Model 1 of Case 1 under 5.1.1

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)

314 Copyright ⓒ 2016 SERSC

Diagram 2. Model 2 of Case 2 under 5.1.2

7. List of Strategies/Algorithms [16]

This list consists of those strategies, which already exist. Using these algorithms, we

repeatedly carried out execution on the two models and arrived at out most optimized

algorithm with efficient runtime.

7.1 TFT (Tit-for-Tat) Strategy

This is an old strategy and still consistently one of the best Prisoner's Dilemma (or

any social dilemma game) strategies in existence. The rules are very simple:

- Your first move is always to cooperate.

- You choose what your partner's last choice was.

The advantage with this strategy is that it inevitably evens out to everyone having

even T and S outcomes.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)

Copyright ⓒ 2016 SERSC 315

7.2 Win-Stay, Lose-Switch (WSLS) Strategy

This strategy was one of the first to "counter" TFT. The rules for this strategy are also

very simple:

- Your first move is to cooperate.

- If you encounter a T or R payoff, stay with your previous choice ("win-stay").

- If you encounter a P or S payoff, switch your choice ("lose-switch").

7.3 The Generous Tit-for-Tat (GTFT) Strategy

This is a very simple update to the traditional TFT. The GTFT implements a simple

forgiveness factor. GTFT is best when a player has a fuzzy strategy.

- Always cooperate first.

- Choose what your partner chose previously.

- In the case of S payoff, cooperate X% of the time (in most reports, cooperating

10% of the time is enough).

7.4 Zero Determinant GTFT (ZD-GTFT) Strategy

The rules for this strategy are almost identical to the GTFT except for one rule:

- Always cooperate first.

- Choose what your partner chose previously.

- In the case of S payoff, cooperate X% of the time (in most reports, cooperating

10% of the time is enough).

- In the case of T payoff, defect X% of the time (in the perfect ZD-GTFT, you

would defect 10% of the time if you are cooperating 10% of the time for S

payoffs).

This strategy compensates you for your generosity by being more extortionate for the

temptation payoff. For example, say you encounter an S payoff and defect next turn.

Your partner chooses to cooperate and you end up with a T payoff. TFT would say to

return to a cooperative choice always, with psychological hopes that you are going to

return to greater cooperative choices. ZD-GTFT says you can exploit the potentially

cooperative environment by "taking some off the top" and defecting again one out of 10

times. Although, you are also generously giving away points at the same rate when the

tables are turned. The only difference is that in the case of ZD-GTFT versus GTFT, ZD-

GTFT will win out because GTFT is impervious to anything but cooperating if the

partner cooperates previously.

7.5 All Defection (ALLD) Strategy

You can imagine the rules for ALLD being probably what they exactly are: Always

defect.

This strategy generally comes into play if a player defects initially and finds

themselves in a position where they would rather keep what they have (particularly in a

T payoff) rather than gain anymore. It only ever works in that specific situation. In

games where there is a global variable of competing against not just the one opponent

but all other players, ALLD fails because you are up against other strategies with greater

payoffs.

7.6 All Cooperation (ALLC) Strategy

The opposite of ALLD: Always cooperate.

This strategy is chosen if people believe themselves to be on a team as opposed to

competing against each other. That notion is preceded by focusing more on the idea of a

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)

316 Copyright ⓒ 2016 SERSC

"global" competition. Another reason why this strategy is sometimes chosen is when the

initial choice is a R payoff. Sometimes people believe that R is the most common

choice, and therefore choose cooperation to increase that opportunity.

ALLC again fails against almost all other strategies, just like ALLD. Any single

defection against ALLC guarantees you winning, regardless of the amount of iterations.

8. Experimentation and Performance Evaluation

8.1 Output

From the performance test on algorithms performed taking into consideration the

runtime and most optimized result, we find that when the first move is Cooperation, the

Generous Tit-For-Tat Algorithm has the least runtime and most optimized result.

Figure 4. Sample Output Code with Runtime

When the first move is Defection, the Win-Stay Lose-Switch Algorithm is the most

optimized with least runtime as shown in the output analysis given below.

First Move – Cooperation: Win- Stay Lose-Switch Algorithm = 0.002904333s

First Move – Defection: Generous Tit-For-Tat Algorithm = 0.003101533s

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)

Copyright ⓒ 2016 SERSC 317

Table 2. Representation of Prisoners’ Dilemma

8.2 Tables and Graph

Table 3. Output when Always Starting with Co-Operation

Tit for
tat(TFT)

Win-Stay, Lose-Switch
(WSLS) Generous TFT(GTFT)

Zero Determinant
GTFT(ZDGTFT)

0.002004 0.001006 0.002001 0.006

0.001002 0.002001 0.001994 0.002

0.001005 0.002003 0.008007 0.008006

0.010014 0.009007 0.008004 0.007999

0.010012 0.007504 0.008505 0.00699

0.000997 0.002 0.002002 0.002007

0.001002 0.002009 0.003002 0.002002

0.002001 0.002001 0.002001 0.002001

0.003001 0.002001 0.002008 0.002001

0.00199 0.003011 0.002 0.002982

0.001 0.002015 0.002017 0.002004

0.003023 0.002996 0.002003 0.003029

0.002998 0.002013 0.003008 0.003005

0.003029 0.002996 0.002002 0.002006

0.002001 0.001002 0.003013 0.002996

Graph 1. Co-Operation First Policy with Execution Time vs Iterations
Performed

First Move Algorithm Runtime

Cooperation Tit-for-Tat 0.002002s

Win-Stay Lose-Switch 0.002s

Generous Tit-for-Tat 0.001s

Zero-Determinant GTFT 0.002029s

Defection Tit-for-Tat 0.001999s

Win-Stay Lose-Switch 0.001s

Generous Tit-for-Tat 0.002002s

Zero-Determinant GTFT 0.001998s

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)

318 Copyright ⓒ 2016 SERSC

Table 4. Average Execution Times when Starting with Co-Operation

Tit for tat(TFT)
Win-Stay, Lose-Switch

(WSLS) Generous TFT(GTFT) Zero Determinant GTFT(ZDGTFT)

0.003005267 0.002904333 0.0034378 0.003668533

Graph 2. Average Execution Time of Algorithms vs. Type of Algorithm
Performed in Cooperation Case

After running a number of iterations of different algorithms in a two-agent

environment of the problem considered, we found out that on an average Win-Stay

Lose-Switch (WSLS) has the least execution time when the either one of the agent

decides to co-operate first.

The trend differs from the results on different iterations but the on an average WSLS

Algorithm takes 0.002904333 secs which is the least when compared to other algorithms

Win stay lose switch strategies stay with an action if it leads to a satisfactory outcome.

Hence, they do not necessarily maximize their payoff. This strategy has been very

successful in the context of the iterated Prisoner‟s Dilemma.

Table 5. Output when Always Starting with Defection

Tit for
tat(TFT)

Win-Stay, Lose-Switch
(WSLS) Generous TFT(GTFT)

Zero Determinant
GTFT(ZDGTFT)

0.006975 0.005004 0.004004 0.004976

0.001998 0.002002 0.001002 0.000994

0.011994 0.008005 0.008006 0.009051

0.014011 0.007005 0.008006 0.007047

0.011512 0.007 0.006504 0.008006

0.001992 0.002 0.001 0.002

0.002 0.001 0.002007 0.001994

0.002001 0.002005 0.002001 0.002008

0.002 0.002005 0.002007 0.002001

0.003035 0.003003 0.003007 0.00298

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)

Copyright ⓒ 2016 SERSC 319

0.001997 0.003008 0.002006 0.002002

0.003009 0.002006 0.001996 0.001996

0.000972 0.001999 0.001996 0.002001

0.002999 0.002001 0.001001 0.002

0.002006 0.002002 0.00198 0.002007

Graph 3. Defection First Policy with Execution Time vs. Iterations
Performed

Table 6. Average Execution Times When Starting with Defection

Tit for
tat(TFT)

Win-Stay, Lose
Switch (WSLS)

Generous
TFT(GTFT)

Zero Determinant
GTFT(ZDGTFT)

0.004566733 0.003336333 0.003101533 0.0034042

Graph 4. Average Execution Time of Algorithms vs. Type of Algorithm
Performed in Defection Case

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)

320 Copyright ⓒ 2016 SERSC

Considering the second case where one of the agent decides to defect in the first

place. After running the existing algorithms discussed above on the second agent, it is

found out that on an average Generous tit-for-tat algorithm runs with the least execution

time i.e. 0.003101533. Based on this algorithm, agent 2 recognizes the move made by

agent 1 and decides the move to perform. According to the Generous tit-for-tat

algorithm, the agent chooses to imitate the opponent‟s previous actions. The results of

execution times show lot of variations in the initial iterations but gradually becomes

constant with in increasing iterations performed.

9. Applications of this Research in Real World Scenarios

1. Environmental Sciences: Prisoner‟s Dilemma is evident in crisis prediction such

as climate changes and natural disaster prediction.

2. Economics: Prisoner‟s Dilemma is used to predict the profits and losses for co-

corporates and their competitors upon implementation of mutual policies. The PD

problem is implemented in all decision problems involving trust between two

entities.

3. Psychology: The Prisoner‟s Dilemma problem helps understand various rational

approaches to finite choices and how mutual decisions are made.

4. Zoology: To understand the mental capabilities of animals to make mutual

choices. Understand the sciences behind partnerships in the lives of different

species.

References

[1] R. Axelrod and W. Hamilton, “The evolution of cooperation”, Science, vol. 211, (1981), pp. 1390–

1396.

[2] F. Herold and Nick Netzer, “Probability Weighting as Evolutionary Second-best”, July (2010), pp.32.

[3] “Higher Intelligence Groups have higher cooperation rates in the Repeated Prisoner‟s Dilemma”,

Eugenio Proto, Aldo Rustichini, Andis Sofianos, (2014), pp. 2-4.

[4] D. Durai and S. Gratz, “Golden Balls: A Prisoner‟s Dilemma Experiment” University of Zurich,

(2010), pp. 1-5.

[5] H. P. Labs, K. Y. Chen and T. Hogg, “How well do people play a quantum Prisoner‟s Dilemma?”

(2006).

[6] M. Hadzikadic and M. Sun, “A Complex Adaptive System for finding the best strategy for Prisoner‟s

Dilemma”, College of Computing and Informatics, University of North Carolina, (2004).

[7] A. J. Stewart and J. B. Plotkin, “Extortion and cooperation in the Prisoner‟s Dilemma”, Department of

Biology, University of Pennsylvania.

[8] J. Andreoni and J. H. Miller, “Rational Cooperation in the Finitely Repeated Prisoner‟s Dilemma:

Experimental Evidence”, published by Blackwell Publishing for the Royal Economic Society, (1993).

[9] R. Cooper, D. V. D. Jong, R. Forsythe and T. W. Ross, “Cooperation without Reputation:

Experimental Evidence from Prisoner‟s Dilemma Games”, (1992).

[10] J. H. Miller, “The coevolution of Automata in the Repeated Prisoner‟s Dilemma”, published by Santa

Fe Institute and Carnegie-Mellon University, (1989).

[11] R. Axelrod, “The Evolution of Strategies in the Iterated Prisoner‟s Dilemma”, (1987), pp. 4.

[12] A. Rubinstein, “Finite Automata Play the Repeated Prisoner‟s Dilemma” published by the Journal of

Economic Theory, (1985), pp. 1.

[13] A. Neyman, “Bounded Complexity justifies cooperation in the Finitely Repeated Prisoner‟s Dilemma,”

published by Hebrew University of Jerusalem, (1985), pp. 10.

[14] R. Selten and R. Stoecker, “End behaviour in sequences of Finite Prisoner‟s Dilemma Supergames”

published by University of Bonn. (1985), pp. 6-8.

[15] “Replicating different strategies in regards to The Prisoner's Dilemma” published by Nick Wan.

[16] R. Axelrod, “Effective Choice in the Prisoner‟s Dilemma Problem” published by Sage Publications,

(1980), pp. 4.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)

Copyright ⓒ 2016 SERSC 321

Authors

Aastha Yadav, She is a student, pursuing a Bachelors of

Technology in Computer Science and Engineering at VIT

University, Vellore, Tamil Nadu, India. Her research interests

include Knowledge based Artificial Intelligence and Network

Security. She is a computer science enthusiast and has keen interest

in software development and management. She has a particular

aptitude to projects with real life application and scope using

computer applications.

Chandini Bhambhani, She is a student, pursuing a Bachelors of

Technology in Computer Science and Engineering at VIT

University, Vellore, Tamil Nadu, India. She is an avid reader and

computer software enthusiast. Her interests include Machine

Learning under Artificial Intelligence and Data Mining and

Warehousing. Chandini has a passion for design and enjoys working

with a group of computer enthusiasts as the Vice President of the

Computer Society of India, VIT Student Branch, Vellore.

Pronay Peddiraju, He is a student pursuing his Bachelors of

Technology in Computer Science and Engineering at the Vellore

Institute of Technology, Vellore, TN, India. His accomplishments

involve projects in the fields of Game Development, 3D Modeling

and Simulation, Content Creation, Microcontrollers, Enthusiast

Grade Computer Hardware and C++ Programming. He is involved

as an active member of the Creation Labs, VIT Vellore as a 3D

Asset Developer for the Game Development Team and is currently

the Project Director for the Computer Society of India – Student

Chapter in VIT University. He is also very involved in development

fests and hackathons by implementing his skills in 3D prototyping

and development.

Ronnie D. Caytiles, He had his Bachelor of Science in Computer

Engineering- Western Institute of Technology, Iloilo City,

Philippines, and Master of Science in Computer Science– Central

Philippine University, Iloilo City, Philippines. He finished his Ph.D.

in Multimedia Engineering, Hannam University, Daejeon, Korea.

Currently, he serves as an Assistant Professor at Multimedia

Engineering department, Hannam University, Daejeon, Korea. His

research interests include Mobile Computing, Multimedia

Communication, Information Technology Security, Ubiquitous

Computing, Control and Automation.

N. Ch. S. N. Iyengar, He is a Professor of the School of

Computer Sciences and Engineering at VIT University, Vellore,

TN, India. His research interests include Distributed Computing,

Information Security, Intelligent Computing, and Fluid Dynamics

(Porous Media). He has had teaching and research experience with a

good number of publications in reputed International Journals &

Conferences. He chaired many International Conferences delivered

Keynote lectures, served as PC Member/Reviewer. He is an

Editorial Board member for many International Journals like Int. J.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)

322 Copyright ⓒ 2016 SERSC

of Advances in Science and Technology, of SERSC, Cybernetics

and Information Technologies (CIT)-Bulgaria, Egyptian Computer

Science Journal-Egypt, IJConvC of Inderscience-China, IJCA

(USA) etc., Also Editor in Chief for International Journal of

Software Engineering and Applications(IJSEA) of AIRCC,

Advances in Computer Science (ASC) of PPH, Guest editor for

“Cloud Computing and Services” IJCNS.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

