International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016), pp.309-322
http://dx.doi.org/10.14257/ijmue.2016.11.2.30

Agent Based Performance Analysis of Strategic Algorithms in
Prisoner’s Dilemma

Aastha Yadav, Chandini Bhambhani, Pronay Peddiraju
Ronnie D. Caytiles* and N.Ch. S.N. lyengar

SCSE, Vellore Institute of Technology University, Vellore-632014, TN, India
*Department of Multimedia Engineering, Hannam University, Korea,
{aasthay1705, chandini.ohambhani, pronay.y2k, rdcaytiles}@gmail.com,
nchsniyr@vit.ac.in -

Abstract

To create a system that provides a comparison of mu e.alg t may be
tested in the Prisoner’s Dilemma decision problem usi subjec a dual agent
environment. As an addition to understanding the effeets varlo |thms and logic
that helps influence a single agent’s deczszov* syste at analysing the
performance of the same algorithms in iterative and uIt| a% tems. The results are
obtained by using concepts of Swarm Intelli e, Multi ent Systems and Super
Agents within the testing system. The s of th earch are to expose the
advantages and disadvantages of e Nc ema p plan investments, predict
outcomes and for real world ap on of t isoner’s Dilemma in fields of
Environmental Sciences, Psym conomi many more such fields.

Keywords: Swarm Intell'@jnce, Super—'/h@, Multiple Agents

1. Introduction,” ‘Q ®
The well-kno \oner @a game has become the classic economic example

to demonstr’ cooperativeNbehavior: Two contestants face a “’dilemma’’ in which,
independent ach s actlon each player is better off by defecting than by
cooperating. However utcome obtained when both defect, is worse for each player
than the outcome b ould have obtained if they would cooperate. Thus, self-interest
oriented behaviq& not lead to a globally optimal solution in all cases. A common
view is that this pbzzle illustrates a connection between individual and group rationality.
Two play&o both pursue rational self-interest may end up worse off than if both act
contra t onal self-interest.
per analyzes choice of outcome done among one of the four possible

p@l}tlons in the canonical Prisoner’s Dilemma payoff matrix.

Analysis of the strategy depends on the following factors of the strategy:

“Nice” nature of strategy

2. Retaliation factors

3. Forgiving Nature

4. Non-envious quality

Players can communicate with each other and hence have the possibility to play with
each other, and thereby get to know each other in two stages of pre-play. In order to
make the best choice, each player would have to know what the other player might do,
but the structure of prisoner's dilemma prohibits players from having such knowledge,
unless the situation or game is iterated. The prisoner's dilemma problems lack a single
optimal strategy and both parties rely on each other to achieve most favorable results.
When understood properly, this dilemma can multiply into hundreds of other more
complex dilemmas.

ISSN: 1975-0080 IJMUE
Copyright © 2016 SERSC

mailto:rdcaytiles%7D@gmail.com

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

The mechanisms that drive the prisoner's dilemma are the same as those faced by
marketers, military strategists, poker players, and many other types of competitors. The
simple models used in the prisoner's dilemma afford insights on how competitors will
react to different styles of play, and these reactions will reveal suggestions on how those
competitors will probably act in the future. Plethora of disciplines have studied the
game, including artificial intelligence, biology, business, mathematics, philosophy,
sociology, and political science.

2. Prisoner’s Dilemma Problem

The Prisoner’s dilemma relies on the existence of two extremes in terms of
conditions. The entity or agent in our case may choose to betray or cooperate. A model
based on rationality where entities forecast how the game would be played | y
formed a coalition and then their ability to maximize their forecast, has been to
make better predictions of the rate of cooperation in this and similar gterarjos. The

prisoner’s dilemma, of course, is one of the most studied games in iterdture. The
rich background of prisoner’s dilemma research allows %%contra%esults, about
behavior of human subjects playing quantum g h belw n the classical
version of the game, which is widely known. ner’s dilemma is
also a simple version of the public goods m guantum mechanics
performs efficiently for large groups. Sp%‘lcally, players with equal

preferences and endowments, the publi ds pr bl% reduces to the prisoner’s
r

dilemma. The prisoner’s dilemma |II tder problem in the simplest
context of a two-person game, |n eac %%as the choice to “cooperate” or
“defect”. Payoffs for both pla r 1gher th of them choose to cooperate
instead of both defecting. ver each dual is better off by defecting. The
prisoner’s dilemma 1nvolV the possmlr altrwstlc behaviors in which participants
can either select actlo ost be selves or those that benefit the group as a
whole but at some | \f@l loss.

3. Literat \&

Prisoner’s ma i current research area with nearly 15000 papers published
over the last two years rce: Google Scholar]. New strategies are developed and old
ones revised for i entation in new areas. Research reveals plenty of existing

classical econo@mechanisms that solve the free-rider problem in different
environments [5]:MAnother conclusion drawn was that cooperation is not the outcome in

the infinite ated Prisoner’s Dilemma [13].
New aches upgrade known ideas through genetic algorithms and heuristic
ap and successfully recognize opponents, to anticipate their moves and try to

tter results. These approaches have analyzed cooperative behavior in a
prisorier's dilemma game in the presence of high stakes, communication, and two rounds
of pre-play, involving two voting decisions. It is observed that stake size,
communication as well as pre-play have a significant impact on cooperation [4].
Cooperative play in prisoner’s dilemma games by designing an experiment to
evaluate the ability of two leading theories of observed cooperation namely, reputation
building and altruism have been studied. They analyze both one-time and finitely
repeated games to gauge the importance of these theories. We can conclude that neither
altruism nor reputation building alone can explain our observations [9]. Complex
adaptive systems to find the optimal approach do not aggregate strategies in hope of
demonstrating the “Wisdom of crowd” phenomenon [6].
There is always a problem of possibility to misjudge the opponent, which will bring
worse results in the end. However, the information carries the key role in any sort of
intelligent activities and strategies. Individuals with more information will have

310 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

advantage in most situations as the strategies that learn about the opponents and adjust
their own responses will certainly have an increasingly important role in the future.
Hence, our project aims at bringing in a new viewpoint using software instead of
hardware in optimizing the strategies or moves in a prisoner’s dilemma, with the help of
performance analysis of various algorithms on a set of agents.

4. Derivation of Optimal Strategy

1. Bayesian Nash Equilibrium: If the statistical distribution of opposing strategies
can be determined, an optimal counter strategy can be derived analytically.

2. Monte Carlo Simulation: Simulation of large population of entities where entities
with low scores die out and those with high scores reproduce (induce the
instantiation of more such entities). Mix of algorithms in final oé&q}iﬁn
generally depend on the mix in the initial population. %&

5. Architecture Q)Cﬁ

There are a lot of different architectures we can @; ing’social dilemma
games, or in an actual social dilemma with iterativve ptoCesses: In o roject, our aim is
to achieve a general case involvement of single age to ag action or multi-agent

interaction, which runs through a set of algori to produce a optlmlzed result, which
leads to the benefit of either single or bo-th i€s as reqm@by the user.

"Team B

Table 1. Represe@)n ok ers’ Dilemma

e ﬁnuperate Defect
f’ AN
. AS| cooperate | RR ST
A T@A DefectY | TS P,P

AN r
51 General@ Q)

The general case i

agent-to-agent interactions taking place simultaneously, as in, at a time there can be ‘n’
number of&%r'ac ions between only 2 agents. The architecture of the general case is
explaine following Figure 1.
If b d@ayers cooperate, they both receive the reward R for cooperating. If both
fect, they both receive the punishment payoff P. If say agent A defects while B
cooperates, then A will receive the temptation payoff T, while B receives the non-
beneficial payoff S. If agent B defects while A cooperates, then B will receive the

temptation payoff S, while B receives the non-beneficial payoff T.

Copyright © 2016 SERSC 311

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

. =

> <>m+
w <>mH

Figure 1. General Architecture

agent interaction is 4. Our implementation of code will include vari ithms

o
Here n = 4, i.e., the number of interactions between two agents in the ab?}#t'-
0

wherein, the agents are designed to carry out one of the st tegles as tiohed in the
list of strategies explained below. Once the above mt«ﬁ%r:s hav place, only
those interacting agents in a relationship, who have fitted qvill on. Say for
example, Agent 1 benefits over Agent 8 ensures stays,on, nt 2 and Agent 6
benefit via cooperation ensuring both Agent 2 andhAgent 6 »}ment 3 and Agent 5
get non-beneficial results which eliminated Agent 3 a gent 5, and Agent 7
benefits over Agent 4 which results in eLim' Agent e non-benefitted agents are
eliminated to serve their time or deal eir punlsh nt but, the other agents are

paired with remaining agents on & ide m\o e or both teams emerge with
beneficial payoffs. 46 %\
5.1.1 Case 1
If the user requwes 0 0 parti % agents, a single agent-to-agent interaction
will entail where isap r case of the general case stated above, which
%e
ai

has a faster compij e and ¢ specified by the user to eradicate multiple agent
interaction com ies. On strategies are implemented with both interacting

Agents and both E @ r ceive beneficial payoffs.

A B
2

\Lr Figure 2. n=2 Agents
O

O
S@ase 2

MASTER MASTER

A4 B8

Figure 3. Master Slave Implementation

312 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

This has the same as the general case, consisting of ‘n’ interactions, which is reduced
to an optimal solution, but here, we have a master agent. The master agent in each team
is the agent that all other subordinate agents try to protect. When involved in interactions
with opposing agents, they sacrifice themselves by settling for non-beneficial payoffs so
that the master agent always receives the reward payoff. By following this mechanism,
the master agent earns enough reward payoffs to benefit the entire team.

6. Working Implementation

In this project, primarily agents will be made using the agent capabilities of the C#
programming language using Visual C++ programming and the Visual Studio software.
The agents were made using the available agent classes under the header file #include
<agents.h> and concurrency class in the VC++ system32 console application f'Ie)s.ngée
the agents were created, we applied the existing strategic algorithms on the t%ﬁve at
the most optimized and efficient algorithm as seen in the following two m@

Flow Diagram 4% . @

Cooperation or
defection

Q % g ;Ewperatur Defection
Strategy of eg ecided by Defect sirategy of Agent 2 is decided by
/| P

carrying out following algorithms

Tit for Tat §fin - Stay, Zose - Generous Zero Determinant Tit for Tat Win - Stay, Lose - Generous Zero Determinant
Algorithm L' g Algarithm Tit-For-Tat GTFT Algorithm Switch Algorithm Tit-For-Tat GTFT
’ T i) T T T T
Q O
Agent 1- Non Agent 1- Tempation
Both Agents beneficial payoff payoff Both Agentts receive
cooperate Agent 2 - Temptation Agent 1- Non punishment payoff
payoff beneficial payoff
1 T T)
/,/J 7’\\\
{ Result)
~—

Diagram 1. Model 1 of Case 1 under 5.1.1

Copyright © 2016 SERSC 313

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

choice of Model

Mode! 2: Simulation between teams of
n agents

Strategy of one Agent in Group Tis

decided V °
s the agent a 6 E

Master Agent? °
Yes, then cooperate Ng, ihN
N T I

Strategy of Agent 2 Is decided by @' Defect strgjggy of AgMemced by

carrying out following algorithms cag(ing Mg folloghng algorithms
| A D, 4

J v v y QL S Y y

Tit for Tat Win - Stay, Lose - Generous Zero Deterrginant ~> it for Tat r‘—@ Lose - Generous Zero Determinant

Algorithm Switch Algorithm Tit-For-Tat GTF;\ \ Algorithm % Igorithm TitFor-Tat GTFT

T T T o) Q‘Q g) 7T T T

gent 1- Nor® C’genﬂ - Ternpation
Both Agents beneficiajpaygft A\\ payoff Both Agents receive
coopergte) Agent 2 - Tegatichy, Agent1- Non punishment payoff
° beneficial payoff
¥ 0)

[o

e TN
‘b‘ (" Result)
N e

-

\&, Diagram 2. Model 2 of Case 2 under 5.1.2

7. s@f Strategies/Algorithms [16]

list consists of those strategies, which already exist. Using these algorithms, we
repeatedly carried out execution on the two models and arrived at out most optimized
algorithm with efficient runtime.

7.1 TFT (Tit-for-Tat) Strategy

This is an old strategy and still consistently one of the best Prisoner's Dilemma (or
any social dilemma game) strategies in existence. The rules are very simple:

- Your first move is always to cooperate.

- You choose what your partner's last choice was.

The advantage with this strategy is that it inevitably evens out to everyone having
even T and S outcomes.

314 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

7.2 Win-Stay, Lose-Switch (WSLS) Strategy

This strategy was one of the first to "counter" TFT. The rules for this strategy are also
very simple:

- Your first move is to cooperate.

- If you encounter a T or R payoff, stay with your previous choice ("win-stay").

- If you encounter a P or S payoff, switch your choice ("lose-switch™).

7.3 The Generous Tit-for-Tat (GTFT) Strategy

This is a very simple update to the traditional TFT. The GTFT implements a simple
forgiveness factor. GTFT is best when a player has a fuzzy strategy.

- Always cooperate first. x) ¢
- Choose what your partner chose previously. g,
- In the case of S payoff, cooperate X% of the time (in most repor@ erating
10% of the time is enough). s 1 o @
7.4 Zero Determinant GTFT (ZD-GTFT) Strat AQ\
The rules for this strategy are almost identical mGTF@p} or one rule:

- Always cooperate first.

- Choose what your partner chose pre % °

- In the case of S payoff, cooper?é@ of theénb(in most reports, cooperating
10% of the time is enough). ,&X

- In the case of T payoff; d@t % ol%»t e (in the perfect ZD-GTFT, you
would defect 10% o&%time if you ar& cooperating 10% of the time for S

payoffs).
This strategy compen ou foWnerosity by being more extortionate for the
temptation payoff. I'—'(& ple, sa encounter an S payoff and defect next turn.
Your partner chooN cooper nd you end up with a T payoff. TFT would say to
return to a coone¥ative choi@%\/ s, with psychological hopes that you are going to
return to grea ive chidices. ZD-GTFT says you can exploit the potentially
cooperative environme aking some off the top" and defecting again one out of 10
times. Although, you so generously giving away points at the same rate when the
tables are turned. T y difference is that in the case of ZD-GTFT versus GTFT, ZD-
GTFT will Winn$ecause GTFT is impervious to anything but cooperating if the

partner coo%ates reviously.

7.5 All tion (ALLD) Strategy

%? an imagine the rules for ALLD being probably what they exactly are: Always
defest.

This strategy generally comes into play if a player defects initially and finds
themselves in a position where they would rather keep what they have (particularly in a
T payoff) rather than gain anymore. It only ever works in that specific situation. In
games where there is a global variable of competing against not just the one opponent
but all other players, ALLD fails because you are up against other strategies with greater
payoffs.

7.6 All Cooperation (ALLC) Strategy

The opposite of ALLD: Always cooperate.
This strategy is chosen if people believe themselves to be on a team as opposed to
competing against each other. That notion is preceded by focusing more on the idea of a

Copyright © 2016 SERSC 315

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

"global" competition. Another reason why this strategy is sometimes chosen is when the
initial choice is a R payoff. Sometimes people believe that R is the most common
choice, and therefore choose cooperation to increase that opportunity.

ALLC again fails against almost all other strategies, just like ALLD. Any single
defection against ALLC guarantees you winning, regardless of the amount of iterations.

8. Experimentation and Performance Evaluation

8.1 Output

From the performance test on algorithms performed taking into consideration the
runtime and most optimized result, we find that when the first move is Cooperation, the
Generous Tit-For-Tat Algorithm has the least runtime and most optimized result.&)

W " LUsersh prona DN Deskbop' AES Code'unBIS,_ Code exe" -

Pleace enter your choice From the optionz -~
1. Model 1z Himdlation betusen 2 agents L]
2. Ewidt
Enter wour choice here = 1
Creating Sdnulation Q

Inplenenting Strategy 1: Tit For Tat<IFT}

Flawer 1 BStpategy - 1

F'I;ur!r 2 Etwategy = 1 x

Both Players hawve chosen to Cooperate
Execution Tine @ B.08Z882
[Frezz any hey Lo continue . . .
[
Inplenenting Stratemy 2: Win-Staw, I.':E cHCWELE Y %
Player 1 Strategy = :I.
Plapewr £ Brwrategy =
Hntfl"la_;mr! haue Ehnﬂl":ﬂ to Cnvupr.-ra
Execution Tine * B.
[Frezsz any haw to l.-i.llﬂ-].l'll.l.li -
Inplenent ing Btru.teuu :-l t —Por—T
l‘lﬂ,yvur 1 Strategy =

r 2 Btralegy o
rﬂ Playewra haun r'hrmr- nprrafr

E:ﬂ:cutinn Tine = B.B0
[Fress any keg to cvurrt:.nu.u - X
Inplenenting Btratey i) Eero—Dets GITFPT
Plaper 1 Strategqy

Player I Strategy

Flagar 1 mec J.u- Haneficial P F
Execution '.[:l.ne BZBE!I

Frezs any nkin

iy V5 A :tra:m:uh defection as [irst moue

ami Flawer ¥ peceives: Tenptation PagoFF)

.
'Ir g BEtea :)\Tit Fowr Tat<{TRT3

plm_gr atrateqy

Flmr z Strntug’y

Hoth AywEE rag wizhmant pawoFF

F:-mﬂl.l:'.lnn Tine I?ﬁ

Press any ey tinuwe -

I e et i B gy 2: Win—Stay. Lose-Switch(WELE}

Plaper 1 T qy = 5

FMlawer 2 & CEO

Pl 2 reveives Hon—Beneficial PayofF and Flawer 1 receives Tenptation PagoFF|

Exec Tine : B._@EL
g kew to continwe . . .
ent ing Rtvm:r-gg s Genevoug Tic-For—Tat{CTFT>
‘ per 1 Etwatequ
P r 2 Strategy * 2
nth Flagpars ruuulvang mishmant pawofF

Execution Tine
[Fress any heyw to continue . o o

I i bement: ing Etmt-uug 4: Eero—Determinant GIFT
Plager 1 Stwategqy :

Mlaper 2 Strateqy @ 2

Both Flayers receive a punizhmont pawofF
Execution Tine : H_HA1YYH

Plesase enter your choice From the options

1. Model 1 Simulation betusen 2 agents

£. Exit

Entewe yoiir chodice heee s

Figure 4. Sample Output Code with Runtime

When the first move is Defection, the Win-Stay Lose-Switch Algorithm is the most
optimized with least runtime as shown in the output analysis given below.

First Move — Cooperation: Win- Stay Lose-Switch Algorithm = 0.002904333s

First Move — Defection: Generous Tit-For-Tat Algorithm = 0.003101533s

316 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

Table 2. Representation of Prisoners’ Dilemma

First Move Algorithm Runtime
Cooperation | Tit-for-Tat 0.002002s
Win-Stay Lose-Switch 0.002s
Generous Tit-for-Tat 0.001s
Zero-Determinant GTFT 0.002029s
Defection Tit-for-Tat 0.001999s
Win-Stay Lose-Switch 0.001s
Generous Tit-for-Tat 0.002002s
Zero-Determinant GTFT 0.001998s

O

8.2 Tables and Graph
Table 3. Output when Always Starting Wit‘h Co-Oper tidsz
. A

Tit for Win-Stay, Lose-Switch Z terminant
tat(TFT) (WSLS) Generous T, A, GTPT(ZDGTFT)
0.002004 0.001006 Q/ .oozp% Y 0.006
0.001002 0.002001 ~ 000194} 0.002
0.001005 0.002003 | ~\> ©.a08007 0.008006
0.010014 0.009007 LAN _0.098004 0.007999
0.010012 0.00750¢ 2 "\, 'Cb.o08505 0.00699
0.000997 40027 XN 0.002002 0.002007
0.001002 0002009 [« (.. = 0.003002 0.002002
0.002001 @.oozoox\Q\" 0.002001 0.002001
0.003001 o ALN 0002000 0.002008 0.002001

0.00199 N\ 0.003011 0.002 0.002982

0.001 Q 002015 0.002017 0.002004
0.003023 (.002996 0.002003 0.003029
0.002998 _ (v 0.002013 0.003008 0.003005
0.003029 | A'(Y 0.002996 0.002002 0.002006
0.002001 | ALY 0.001002 0.003013 0.002996

=
S

Q Co-operation first policy
@ 0.012
0.01
0.008 j :\\
0.006 L

0.004

Execution Time

0.002

0]
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15

Iterations performed

—@—Tit for tat(TFT) —&— Win-Stay, Lose-Switch(WSLS)
Generous TFT(GTFT) Zero Determinant GTFT(ZDGTFT)

Graph 1. Co-Operation First Policy with Execution Time vs Iterations
Performed

Copyright © 2016 SERSC 317

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.2 (2016)
Table 4. Average Execution Times when Starting with Co-Operation
. Win-Stay, Lose-Switch
Tit for tat(TFT) (WSLS) Generous TFT(GTFT) | Zero Determinant GTFT(ZDGTFT)
0.003005267 0.002904333 0.0034378 0.003668533
Average execution time in cooperation case
0.004
0.0035
o 0.003
£
= 0.0025
=
S 0002
5
S 0.0015
kS
% 0.001
0
Tit for tat(TFT) Win-Stay, Lo Genero& Zero Determinant
Switch TET(GTFT(ZDGTFT)
@hms mvol\ﬁ*
Graph 2. Average Execu o@ e of thms vs. Type of Algorithm
Per in C% ation Case
After running a num r of ite of different algorithms in a two-agent
environment of the con5|d y'we found out that on an average Win-Stay
Lose-Switch (W the I execution time when the either one of the agent
decides to co- rst.
The trend from ts on different iterations but the on an average WSLS
Algorithm ta 002 secs which is the least when compared to other algorithms

Win stay lose switch ‘%E ies stay with an action if it leads to a satisfactory outcome.

Hence, they do

essarily maximize their payoff. This strategy has been very

n
successful in the@'xt of the iterated Prisoner’s Dilemma.

(&ble 5. Output when Always Starting with Defection

Tit o~ Win-Stay, Lose-Switch Zero Determinant
) (WSLS) Generous TFT(GTFT) GTFT(ZDGTFT)

0.006975 0.005004 0.004004 0.004976
0.001998 0.002002 0.001002 0.000994
0.011994 0.008005 0.008006 0.009051
0.014011 0.007005 0.008006 0.007047
0.011512 0.007 0.006504 0.008006
0.001992 0.002 0.001 0.002

0.002 0.001 0.002007 0.001994
0.002001 0.002005 0.002001 0.002008

0.002 0.002005 0.002007 0.002001
0.003035 0.003003 0.003007 0.00298

318

Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

0.001997 0.003008 0.002006 0.002002
0.003009 0.002006 0.001996 0.001996
0.000972 0.001999 0.001996 0.002001
0.002999 0.002001 0.001001 0.002
0.002006 0.002002 0.00198 0.002007

Defection first policy

0.016
0.014
0.012

0.01
0.008

NV O\ %Agég

1 2
Iterations med x

—&—Tit for tat(TFT) Win-5t% % Switch(WSLS)

Execution Time

=@ Generous TFT(GTFT) q\ Zer terfninant GTFT(ZDGTFT)

Graph 3. Defection FQI@}Ey Wlt@utlon Time vs. Iterations

Perf%
Table 6. Ave'\m@xecuti‘o&es When Starting with Defection

Tit for Ngtay, o) Generous Zero Determinant
tat(TFT, itch (WS TFT(GTFT) GTFT(ZDGTFT)
0.004566ﬁ3/ : 6333 0.003101533 0.0034042

@erage execution time in defection case

004

0.0035

~ 0.003

& 0.0025
=

S 0002

£ 0.0015
[¥E}

0.001

0.0005

0

Tit for tat(TFT) Win-Stay, Lose- Generous Zero Determinant
Switch(WSLS) TFT(GTFT) GTFT(ZDGTFT)

Algorithms involved

Graph 4. Average Execution Time of Algorithms vs. Type of Algorithm
Performed in Defection Case

Copyright © 2016 SERSC 319

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

Considering the second case where one of the agent decides to defect in the first
place. After running the existing algorithms discussed above on the second agent, it is
found out that on an average Generous tit-for-tat algorithm runs with the least execution
time i.e. 0.003101533. Based on this algorithm, agent 2 recognizes the move made by
agent 1 and decides the move to perform. According to the Generous tit-for-tat
algorithm, the agent chooses to imitate the opponent’s previous actions. The results of
execution times show lot of variations in the initial iterations but gradually becomes
constant with in increasing iterations performed.

9. Applications of this Research in Real World Scenarios

1. Environmental Sciences: Prisoner’s Dilemma is evident in crisis predictign such
as climate changes and natural disaster prediction.

2. Economics: Prisoner’s Dilemma is used to predict the profits and lgss co-
corporates and their competitors upon implementation of mutual p@/ The PD
problem is implemented in all decision problems snvolving een two
entities. K

3. Psychology: The Prisoner’s Dilemma problegr*hebps und arious rational

approaches to finite choices and how mutug isions m
4. Zoology: To understand the mental capabifities o N Is to make mutual
choices. Understand the sciences belf artn.er the lives of different

species.
%\Q
References '&

[1] R. Axelrod and W. Hamllto evolutlon 0 c&raﬂon” Science, vol. 211, (1981), pp. 1390-
1396.

[2] F. Herold and Nick Net%z%obablht M as Evolutionary Second-best”, July (2010), pp.32.

[3] “Higher Intelligence ave hig odperation rates in the Repeated Prisoner’s Dilemma”,

Eugenio Proto, A ini, Andi s, (2014), pp. 2-4.
[4] D. Durai and S “Golden E%s A Pnsoner s Dilemma Experiment” University of Zurich,

(2010), pp. 1- 5

[5] H.P. Lab@ hen and T g9, “How well do people play a quantum Prisoner’s Dilemma?”
(2006) Q

[6] M. Hadzikadic and M. Complex Adaptive System for finding the best strategy for Prisoner’s
Dilemma”, College uting and Informatics, University of North Carolina, (2004).

[71 A.J. Stewart and otkin, “Extortion and cooperation in the Prisoner’s Dilemma”, Department of
Biology, Univ Pennsylvania.

[8] J. Andreoni anthJ” H. Miller, “Rational Cooperation in the Finitely Repeated Prisoner’s Dilemma:
Experi ﬁgvidence”, published by Blackwell Publishing for the Royal Economic Society, (1993).

[99 R. C . V. D. Jong, R. Forsythe and T. W. Ross, “Cooperation without Reputation:
EX| tal Evidence from Prisoner’s Dilemma Games”, (1992).

[1 . iller, “The coevolution of Automata in the Repeated Prisoner’s Dilemma”, published by Santa

nstitute and Carnegie-Mellon University, (1989).

[11] "R/ Axelrod, “The Evolution of Strategies in the Iterated Prisoner’s Dilemma”, (1987), pp. 4.

[12] A. Rubinstein, “Finite Automata Play the Repeated Prisoner’s Dilemma” published by the Journal of
Economic Theory, (1985), pp. 1.

[13] A. Neyman, “Bounded Complexity justifies cooperation in the Finitely Repeated Prisoner’s Dilemma,”
published by Hebrew University of Jerusalem, (1985), pp. 10.

[14] R. Selten and R. Stoecker, “End behaviour in sequences of Finite Prisoner’s Dilemma Supergames”
published by University of Bonn. (1985), pp. 6-8.

[15] “Replicating different strategies in regards to The Prisoner's Dilemma” published by Nick Wan.

[16] R. Axelrod, “Effective Choice in the Prisoner’s Dilemma Problem” published by Sage Publications,
(1980), pp. 4.

320 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

Authors

Aastha Yadav, She is a student, pursuing a Bachelors of
Technology in Computer Science and Engineering at VIT
University, Vellore, Tamil Nadu, India. Her research interests
include Knowledge based Artificial Intelligence and Network
Security. She is a computer science enthusiast and has keen interest
in software development and management. She has a particular
aptitude to projects with real life application and scope using
computer applications.

Chandini Bhambhani, She is a student, pursuing a Bac f

- | Technology in Computer Science and Engmeenng
University, Vellore, Tamil Nadu, India. She is an a and
computer software enthusiast. Her interests achlne
Learning under Artificial Intell%and |n|ng and

with a group of computer President of the
Computer Society of India, uden llore.

Warehousing. Chandini has a pas r &lesi q joys working
e

Pronay Peddiraju 'Qs a Sttl pursuing his Bachelors of
Technology in Co Scien Engineering at the Vellore
Institute of Tec % N India. His accomplishments
involve pr e he fléi’ ame Development, 3D Modeling
and Smﬂ@ Content eatlon, Microcontrollers, Enthusiast
Grade Comp ter Ha‘r and C++ Programming. He is involved

as an @ctive mem% the Creation Labs, VIT Vellore as a 3D
eveloper e Game Development Team and is currently

& OjeCt tor for the Computer Society of India — Student
e

apter n|ver5|ty He is also very involved in development
sts and athons by implementing his skills in 3D prototyping
e pment

%nnle D. Caytiles, He had his Bachelor of Science in Computer
Pngineering- Western Institute of Technology, lloilo City,
Philippines, and Master of Science in Computer Science— Central
Philippine University, lloilo City, Philippines. He finished his Ph.D.
in Multimedia Engineering, Hannam University, Daejeon, Korea.
Currently, he serves as an Assistant Professor at Multimedia
Engineering department, Hannam University, Daejeon, Korea. His
research interests include Mobile Computing, Multimedia
Communication, Information Technology Security, Ubiquitous
Computing, Control and Automation.

N. Ch. S. N. lyengar, He is a Professor of the School of
Computer Sciences and Engineering at VIT University, Vellore,
TN, India. His research interests include Distributed Computing,
Information Security, Intelligent Computing, and Fluid Dynamics
(Porous Media). He has had teaching and research experience with a
good number of publications in reputed International Journals &
Conferences. He chaired many International Conferences delivered
Keynote lectures, served as PC Member/Reviewer. He is an
Editorial Board member for many International Journals like Int. J.

Copyright © 2016 SERSC 321

International Journal
Vol.11, No.2 (2016)

322

of Multimedia and Ubiquitous Engineering

of Advances in Science and Technology, of SERSC, Cybernetics
and Information Technologies (CIT)-Bulgaria, Egyptian Computer
Science Journal-Egypt, 1JConvC of Inderscience-China, IJCA
(USA) etc., Also Editor in Chief for International Journal of
Software Engineering and Applications(IJSEA) of AIRCC,
Advances in Computer Science (ASC) of PPH, Guest editor for
“Cloud Computing and Services” IJCNS.

Copyright © 2016 SERSC

