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Abstract 

This paper presents a RST (rotation, scaling and translation) invariant reversible 

watermarking method for 2D vector maps.  Firstly, the proposed algorithm selects two 

reference vertices to calculate the normalized quantization step. Then, for each vertex, 

the Euclidean distance between a reference vertex and the vertex is divided into equal 

segments using the normalized quantization step. According to the segment which the 

vertex is divided into, a watermark is embedded by moving the vertex within its 

corresponding segment in a revertible manner. This algorithm not only recovers the 

original content after watermark extraction, but also correctly extracts the embedded 

watermarks after RST transformations. In addition, to control the distortions introduced 

by watermark embedding, the embedding parameter is carefully selected. Theoretical 

analysis and experimental results show that the proposed scheme provides RST 

invariance property, and good reversibility, invisibility, computational complexity and 

data capacity. 

 

Keywords: reversible watermarking, RST invariance property, 2D vector map, 

quantization, distortion control 

 

1. Introduction 

With the rapid development of public networks, transferring 2D vector maps via 

internet becomes more and more popular in recent years. However, using powerful 

available tools and equipment, it is very easy even for an amateur to illegally 

modify and copy these valuable data. It is desirable to develop a strong method to 

protect the copyright and the integrity of the 2D vector map content. 

In the past few years, many new techniques and concepts based on 

watermarking have been introduced to protect the copyright [1-12] and verify the 

integrity [13-14] of the vector map content. In most cases of watermarking, the 

original content is distorted in an irreversible way. However, due to the required 

high-precision nature of vector maps, modifications to vector maps are generally 

undesired. To satisfy this requirement, reversible (also referred to as invertible, 

lossless, or distortion-free) watermarking techniques [4-12], which allow the 

decoder to recover the original content upon extraction of the embedded data, have 

been proposed. 

In 2D vector map reversible watermarking, Voigt et al. [7] embed data by 

modifying the frequency coefficient in the integer discrete cosine transform (DCT) 

domain. Due to the realization in the frequency domain, controlling the embedding 

distortion in the spatial domain seems complex. In [8], two reversible data hiding 

schemes based on the idea of difference expansion [6] were proposed: one hides 

data by modifying the differences between adjacent coordinates, and the second by 

manipulating the manhattan distances between neighboring vertices. The two 

approaches have good invisibility in the maps with dense vertices whereas the 

performance could be seriously decreased for the maps whose coordinates exhibit 
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low correlation. Zhou et al. [9] offered an algorithm that embeds secret bits by 

modifying the difference histogram which is established by the differences of 

neighboring vertices. In [10], the nonlinear scrambling approach is used in a 

reversible watermarking scheme for 2D vector maps. Although it can avoid the 

vector map from being illegally used by unauthorized users, the embedding 

distortion may be greater than the vector map’s precision tolerance. Cao et al. [11] 

proposed a method that embeds data by recursively modifying the mean coordinate 

value of each coordinate group. Despite the high capacity and the robustness 

against simplified attacks, the reversibility may be decreased as the recursive 

iterations are increased. Another scheme was proposed by Wang et al. [12], where 

the virtual coordinates are exploited for obtaining high capacity, low 

computational complexity and good invisibility. However, it is not robust against 

RST attacks, which is also a drawback of the afore-mentioned schemes for 2D 

vector maps [7-12]. RST attacks may introduce great distortions to the embedded 

watermarks without greatly decreasing the usability of the watermarked vector 

maps in some applications. The lack of RST invariance property may limit these 

schemes’ application scope.  

To resist against RST attacks, and simultaneously embed large amount of data 

without introducing significant visual distortions, we propose a reversible 

watermarking method for 2D vector maps based on Wang and Wang’s scheme [5]. 

Rather than embedding data into the coordinates of each sorted axis in the PCA 

(principal component analysis) -coordinate system, we select two reference 

vertices to calculate the normalized quantization step, divide the Euclidean 

distance between each vertex and a reference vertex into equal segments, and 

embed data into each vertex by moving it within its corresponding segment in a 

reversible manner. For controlling the distortions introduced by watermark 

embedding, the embedding parameter is carefully selected. The advantages of the 

proposed method include the following: (1) RST attacks can be resisted; (2) the 

invisibility, reversibility, computational complexity and data capacity are good.  

The remaining sections are organized as follows. Section 2 briefly reviews the 

reversible watermarking method by Wang and Wang [5]. Section 3 explains our 

RST invariant reversible watermarking algorithm in detail. We present our 

experimental results and an analysis of the algorithm in Section 4. Conclusions are 

summarized in Section 5. 

 

2. Wang and Wang’s Reversible Watermarking Scheme 

The basic idea of Wang and Wang’s algorithm [5] is as follows. Given a list of 

vertices, the coordinates of each axis are first sorted to produce sorted coordinate 

lists; then every sorted coordinate list is divided into intervals, each of which 

contains three adjacent coordinates. Finally, c (c ≥1) secret bits are embedded into 

an interval by modifying the interval’s state value.  

The state value of an interval is defined as follows. Suppose x1, x2 and x3 

(x1≤x2<x3) are three adjacent x coordinates in the sorted X-axis. The interval 

between x1 and x3 can be divided into P (P ≥2) equal subintervals. The index of the 

subinterval which the coordinate x2 is located on indicates the interval’s state 

value.  

Denote the interval which contains the three adjacent x coordinates (x1, x2 and 

x3) in the sorted X-axis as Q(x1, x2, x3), and the data to be embedded as w (w ∈
{0,1,…, 2

c
 – 1}).  

The embedding process is described as follows. 

Step 1. Calculate the r state of the interval Q, 
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Step 2. Divide the interval Q into 2
c+1

 equal subintervals, and calculate the 

length of each subinterval ls by 
1

13 2)(  c
s xxl .                                                                                  

(2) 

Step 3. Compute the state value s (s ∈{0,1,…, 2
c+1

 – 1}) of the embedded 

interval Q'(x1', x2', x3'), i.e., the index of the subinterval which the embedded 

coordinate x2' should be located on, 

wrs c  2 .                                                                             

(3) 

Step 4. Obtain the embedded x2' by moving x2 to the s-th subinterval, 
c

slsxx 2/' 12  ,                                                                            

(4) 

Where 

2/)()1( 3112 xxrxrx  .                                             

(5) 

Since the data w is embedded by moving x2 between x1 and x3, x2' remains 

within the range [x1, x3) (x1= x1', x3= x3'). Besides, the following can be obtained 



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2/)(),2)(['

2/)()2)(,['
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xxxifxxxx

xxxifxxxx
.                 

(6) 

That is, assuming the distance between x1 and x3 (i.e., the length of Q) is lQ, x2 

moves less than 2Ql  for embedding w. 

The process of data extraction and data recovery goes as follows. 

Step 1. Calculate the r state of the embedded interval Q'(x1', x2', x3') with Eq. (1).  

Step 2. Divide the embedded interval Q' into 2
c+1

 equal subintervals, and 

calculate the length of each subinterval ls with Eq. (2). 

Step 3. Calculate the state value s of the embedded interval Q', 

 slxxs /)''( 12  .                                                         

(7) 

Step 4. Obtain the embedded data w, 
crsw 2 .                                                                     

(8) 

Step 5. Restore the original coordinate x2, 

'22/)''(')1('' 1312  cxxrxrx ,                             

(9) 

Where 
1

1312 2/)''('''  cxxsxx .                                         

(10) 

The above is Wang and Wang’s approach. 
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3. The Proposed Reversible Scheme 
 

3.1 Watermark Embedding Procedure 

Let M be the vector map to be watermarked. We embed data into M using the 

following steps: 

Step 1. Scan the vertices of M to get a vertex list V = {vj(xj, yj)| j∈{1,2,…, n}}, 

where vj represents the j-th vertex of V, xj and yj are the x coordinate and the y 

coordinate of vj , respectively, and n is the total number of vertices of V. 

Step 2. Select two vertices from V as the reference vertices under the control of 

a private key k. Denote the two reference vertices as vr1(xr1, yr1) and vr2(xr2, yr2) 

(1  r1, r2  n). 

Step 3. Calculate the normalized quantization step Qw according to the Euclidean 

distance 21 rr vv  between vr1 and vr2 and the vector map’s precision tolerance τ, 

w

rr
w

N

vv
Q

21
 ,                                                                                 

(11) 

Where 














2

21 rr
w

vv
N .                                                                     

(12) 

The parameter Nw obtained here will be directly used as an input parameter in 

the watermark extraction and data extraction phase. 

Step 4. For any vertex vj (j∈{1,2,…, n}, vj   vr1, vj   vr2) of  V, embed a 

watermark wj (wj ∈{0,1,…, 2
c
 – 1}) into it by going through the following 5 parts:  

P1. Partition the straight line passing through vj  and vr1 into equal segments by the 

normalized quantization step Qw  starting from  vr1.  

P2. According to the  Euclidean distance jr vv 1  between  vr1 and vj, obtain the index 

j
~

( j
~
∈{0,1,…}) of the j

~
-th segment 

j
S~  which vj is located on, 
















w

jr

Q

vv
j

1~
.                                                                                 

(13) 

P3. Calculate the two endpoints that define the range of 
j

S~ [ l
j

S~ , r
j

S~ ],  













)1
~

(

~

~

~

jQS

jQS

w
r

j

w
l

j .                                                                           

(14) 

Figure 1 shows the segment which vj is located on. Since the straight line passing 

through vj  and vr1 is not really exist in the vector map, it is illustrated using a dash line.  

P4. Regard l

j
S~ , jr vv 1 and r

j
S~ as an interval Qj (

l

j
S~ , jr vv 1 , r

j
S~ ), and embed wj into 

it using Eqs. (1-5). Denote the watermarked jr vv 1 as '1 jr vv . 
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Figure 1. The Segment which Vj Is Located On 

P5. Move vj along the straight line passing through vj  and vr1 to a new location vj'(xj', 

yj') so that the  Euclidean distance  between  vr1 and vj' is equal to '1 jr vv , 
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(15) 

After embedding data into each vertex, a watermarked vector map M' can be 

obtained. 

In the above procedure, the watermark wj is embedded into the interval Qj(
l
j

S~ , 

jr vv 1 , r
j

S~ ) by moving jr vv 1  between l

j
S~  and  r

j
S~ using Eqs. (1-5). According to 

Eq. (6), the difference between jr vv 1  and '1 jr vv  is less than 
2

wQ
. Since the 

location of vj' is obtained by moving vj along the straight line passing through vj  

and vr1, the distance between vj and vj' is less than 
2

wQ
. According to Eqs. (11-

12), we can get that 





2

2
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2121
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
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w

vv

vv

N

vv
Q .                                       

(16) 

Therefore, the distance between vj and vj' is no greater than τ, and the validity of 

the map data can be ensured. 

 

3.2 Watermark Extraction and Data Recovery 

During watermark extraction and data recovery, similar steps are followed. 

Step 1. Scan the vertices of M' to get a vertex list V' = {vj'(xj', yj')| j∈{1,2,…, 

n}}, where  vj'  is the j-th vertex of V', xj' and yj' are the x coordinate and the y 

coordinate of vj', respectively, and n represents the total number of vertices of V. 

Step 2. Select two reference vertices, i.e., vr1 and vr2 from V' under the control of 

the private key k.  

Step 3. According to Nw and the Euclidean distance 21 rr vv  between vr1 and vr2, 

calculate the normalized quantization step Qw  using Eq. (11). 

Step 4. For any vertex vj' (j∈{1,2,…, n}, vj'   vr1, vj'   vr2) of  V', extract the 

watermark wj  from it and recover the original content of vj' by going through the 

following 5 parts:  
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P1. Partition the straight line passing through vj'  and vr1 into equal segments by the 

normalized quantization step Qw  starting from  vr1.  

P2. According to the Euclidean distance '1 jr vv  between vr1 and vj', obtain the index 

j
~

of the segment 
j

S~  which vj' is located on using Eq. (13). 

P3. Calculate the two endpoints that define the range of 
j

S~ [ l

j
S~ , r

j
S ~ ] with Eq. (14) 

P4. Regard l

j
S~ , '1 jr vv and r

j
S~ as an interval Qj'(

l

j
S~ , '1 jr vv , r

j
S~ ), and extract the 

watermark wj from it using Eqs. (1-2) and Eqs. (7-10), to get the recovered '1 jr vv , i.e., 

jr vv 1 . 

P5. Move vj' along the straight line passing through vj' and vr1 to its original location vj 

(xj, yj) using Eq. (15).  

After extracting the embedded data from each vertex, the original content of the 

watermarked vector map M' can be recovered. 

 

4. Results and Analysis 

We ran experiments on a PC with CPU 2.0 GHz, RAM 3G, Windows 7, Map 

Objects 2.4 and Microsoft Visual C++6.0. In the experiments, four different 2D 

vector maps in shapefile format of Environmental Systems Research Institute, Inc. 

(ESRI) [15] were used as the covers. As shown in Figure2, the four vector maps 

are a spot heights map of Taylor Rookery [16] (M1), a traffic routes map [17] (M2), 

a river map [17] (M3) and a lake map of SR41-42 Northern Prince Charles 

Mountains [18] (M4). Table 1 lists some basic properties of the four vector maps, 

including the feature type, the number of features/vertices, the scale, the precision 

tolerance τ and the density. The term “density” is the average number of vertices 

within a map patch with the unit area m
2
. It measures the density of map vertices. 

Higher density means that the vertices of a map are located closer to each other 

and their coordinates may have a higher correlation. During embedding, the 

watermark message used in our experiments was a bit stream generated by using a 

Gaussian random sequence, and the number of watermark bits each vertex carries c 

was 1. 

Experiment on invisibility: The vector maps in Figure 2 were embedded by the 

proposed scheme yielding the embedded versions seen in Figure 3. It can be seen 

that the perceived quality is acceptable.  

For evaluating the objective quality of the embedded vector maps, the average 

distortion d(M, M') and the maximum distortion Maxd(M, M') [14] were calculated, 

),,2,1(),'max()',(

'
1

)',(

1

nivvMMMaxd

vv
n

MMd

ii

n

i

ii



 
 ,                         

(17) 

Where vi and vi' are the corresponding vertices in the original vector map M and 

the embedded vector map M', respectively, and n denotes the total number of 

vertices in the vector map M.  

Table 2 lists the Maxd and d values of the proposed method and the methods 

described in [5, 12]. During embedding, the three schemes were performed by 

taking c = 1. From this table, we can see that because of the configuration of the 

embedding parameter Qw using Eq. (11), the Maxd and d values of each vector map 

do not exceed the precision tolerance τ. The proposed scheme can guarantee the 
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validity of the embedded vector maps. Besides, the invisibility of the proposed 

method is comparable to that of Wang et al.’s method [12]. Wang and Wang’s 

approach [5] cannot guarantee the watermarked vector map quality especially for 

the 2D vector maps whose coordinates exhibit low correlation, e.g., M2, and M4. 

That’s because Wang and Wang’s approach embeds a watermark into a coordinate 

by moving it between its two neighboring two coordinates in the sorted coordinate 

list, and the distortion introduced to the coordinate may be great if the distance 

between its two neighboring two coordinates is not small. Since the proposed 

method can always guarantee the validity of the embedded vector maps, the 

invisibility of the proposed scheme is superior to that of Wang and Wang’s 

algorithm.  

 

 

Figure 2. Test 2D Vector Maps: (a) M1, (b) M2, (c) M3 and (d) M4 

According to the data embedding procedure described in Section 3.1, the 

invisibility of our proposed scheme is closely related to the number of watermark 

bits each vertex carries c. For embedding c watermark bits into a vertex, the vertex 

is moved within its corresponding segment range using Wang and Wang’s method 

[5]. Since the embedding distortion introduced to a coordinate may be neither 

monotonic decreasing nor monotonic increasing with the watermark it carries in 

[5], the embedding distortion may be neither monotonic decreasing nor monotonic 

increasing with c in the proposed method.  

Table 1. Properties of Original Vector Maps 

Vector maps Feature type Features/vertices Scale 
τ 

(m) 

Density 

(vertex/m
2
) 
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M1 Point 355/355 1:5000 0.5 1.3014×10
-4

 

M2 Point 2058/2058 1:100000 10 2.6491×10
-8

 

M3 Polyline 1084/23854 1:25000 2.5 4.7461×10
-4

 

M4 Polygon 55/3138 1:1000000 100 5.1888×10
-7

 

 

 

Figure 3. The Watermarked 2D Vector Maps of Figure 2 

Experiments have been conducted on M1 in Figure 2(a) to demonstrate the 

relationship between average embedding distortion d and c. From the experimental 

results illustrated in Figure 4, we can see that the average embedding distortion is 

neither monotonic decreasing nor monotonic increasing with c. This verifies our 

analysis above. 

Experiment on RST invariance:  Experiments have been done to demonstrate the 

robustness against rotation, uniform scaling and translation transformations of the 

proposed algorithm. We rotated the watermarked M3 shown in Figure 3(c) by 

different angles, scaled it with different factors and translated it with different △x 

and △y in the x and y axes, respectively. From the experimental results shown in 

Table 3, Table 4 and Table 5, we can see that the BER (bit error rate) of the 

extracted watermarks is zero. That is, the embedded watermarks can be correctly 

extracted after RST transformations, and the proposed scheme is invariant to 

rotation, uniform scaling and translation operations. 

 

Table 2. The Maxd and D Values of Different Methods 
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Vector maps 
Wang et al.[12] Wand and Wang [5] Proposed 

Maxd (m) d (m) Maxd (m) d (m) Maxd (m) d (m) 

M1 0.2381 0.1377 19.5486 1.1246 0.2492 0.1299 

M2 4.9334 2.7395 1672.9117 31.8115 4.9951 2.5040 

M3 1.2478 0.6155 1.3866 0.0677 1.2498 0.6266 

M4 26.1374 49.4026 514.1794 5.5363 49.6307 24.7573 

 

 

Figure 4. Relationship between Average Embedding Distortion d and c 

Table 3. Experiment Results of Rotation 

Rotation angle 

(degree) 30 60 90 150 180 240 300 

BER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 4. Experiment Results of Uniform Scaling 

Scale factor 0.25 0.5 2.5 5.5 7.5 9.5 

BER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 5. Experiment Results of Translation 

Distance (△x m, △y m) (– 1.2, 2.3) (4.2, 5.6) (2.6, – 7.9) (– 6.5, – 4.8) 

BER 0.0000 0.0000 0.0000 0.0000 

 

Experiment on reversibility: To demonstrate the reversibility of the proposed 

algorithm, the hidden data were extracted from the embedded vector maps in 

Figure 3 using the proposed method. The Maxd and d values between the original 

vector maps and the recovered ones were computed for evaluating the objective 

quality of the recovered vector maps. Table 6 shows that the Maxd values and the d 

values of the four vector maps are all less than 10
-8

m. Generally, the storage 

precision for the coordinates of a 2D vector map is about 0.1mm. In other words, 

as long as the differences between the original coordinates and the recovered ones 

are less than 10
-4 

m, the data hiding scheme can be seen as reversible. Therefore, 

the precision requirements of most situations can be met. 
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Table 6. The Maxd and D Values between the Original Vector Maps and the 
Recovered Ones 

Vector maps Maxd (m) d (m) 

M1 2.8015×10
-9

 6.1142×10
-10

 

M2 2.6494×10
-9

 3.3050×10
-10

 

M3 2.7209×10
-9

 3.3401×10
-10

 

M4 3.5477×10
-9

 7.5546×10
-10

 

 

Experiment on data capacity: According to the watermark embedding procedure 

described in Section 3.1, the watermarks can be embedded into nearly all vertices 

except the vertices that coincide with one of the reference vertices. As a result, 

nearly every vertex can carry c bits, and the data capacity is about c bit/vertex.  

Experiments have been conducted on the vector maps in Figure 2 to compare the 

data capacity among the proposed scheme and the schemes reported in [5, 12]. 

During embedding, the three schemes were performed by taking c = 1. The 

experimental results are listed in Table 7. Since nearly every coordinate can carry c 

watermark bits in Wang et al.’s scheme [12] (close to 2c bit/vertex), it provides 

higher data capacity than the proposed scheme. In Wang and Wang’s scheme [5], 

nearly every three adjacent three coordinates in each sorted axis can carry c 

watermark bits, resulting in c bit/vertex. Hence, the data capacity of the proposed 

scheme is approximately the same as that of Wang and Wang’s scheme [5]. 

Experiment on computational complexity: Table 8 presents the data embedding 

and data extraction execution time comparisons among the proposed method and 

the approaches reported in [5, 12]. During embedding, the three schemes were 

performed by taking c = 1.  

Let’s assume n is the number of vertices of the vector map M and NF be the total 

number of M’s Polylines and Polygons. For Wang et al.’s algorithm [12], the 

computational complexity is O(n) + O(NFlogNF). Because the computational complexity 

of our proposed approach is O(n), the execution time of the proposed method is lower 

than that of Wang et al.’s method when they are applied to a vector map composed of 

Polylines/Polygons. For a vector map composed of Points, the execution time of the 

proposed method and Wang et al.’s method are approximately the same, which can be 

seen from Table 8.  

Table 7. Data Capacity of Different Methods (Bit/Vertex) 

Vector maps Wang et al.[12] Wand and Wang [5] Proposed 

M1 1.9887 0.9972 0.9944 

M2 1.9981 0.9558 0.9990 

M3 1.8182 0.9770 0.9999 

M4 1.9165 0.9758 0.9758 

Table 8. Data Embedding and Extraction Execution Time of Different 
Methods (Seconds) 

Vector 

maps 

Wang et al.[12] Wand and Wang [5] Proposed 

Embedding Extraction Embedding Extraction Embedding Extraction 

M1 0.016 0.016 0.025 0.020 0.018 0.018 

M2 0.073 0.073 0.162 0.126 0.089 0.089 

M3 3.139 3.139 3.700 2.228 2.137 2.137 

M4 0.182 0.182 0.193 0.1595 0.125 0.125 
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In Wang and Wang’s method [5], the main cost which derives from sorting the 

coordinates during data embedding is O(nlogn). The data embedding execution time of 

this algorithm is longer than that of the proposed algorithm. Because the coordinates do 

not need to be sorted during data extraction, the data extraction time of this approach is 

comparable to that of the proposed algorithm. 

 

5. Conclusions 

In this paper, we describe a RST invariant reversible watermarking method for 

2D vector maps based on the reversible watermarking scheme by Wang and Wang 

[5]. By dividing the Euclidean distance between a reference vertex and each vertex 

into equal segments using the normalized quantization step, and embedding data by 

moving each vertex within its corresponding segment in a revertible manner, the 

proposed method not only recovers the original content after watermark extraction, 

but also correctly extracts the embedded watermarks after RST transformations. 

Besides, the embedding distortions can be controlled by carefully selecting the 

embedding parameter. Moreover, the proposed method provides low computational 

complexity, and good reversibility and data capacity. 

One drawback of our scheme is that the data capacity is not very high. Our future 

research will focus on developing RST invariant reversible watermarking schemes for 

2D vector maps with high data capacity. 
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KeywordSearch/Metadata.do?Portal=amd_au&MetadataView=Full&MetadataType=0&KeywordPath

=&OrigMetadataNode=AADC&EntryId=SR41-42.  
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