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Abstract 

To improve the accuracy of model predictive control, this paper presents an 

improved multiple cell linear parameter varying model predictive control method for 

carrier-based aircraft. After establishing the lateral dynamic model of carrier-based 

aircraft for multiple cell predictive controller, the output-feedback linear parameter 

varying control based on states observation should be implemented. The model 

simulation results indicate the better performance of the new method in comparison 

with the traditional controller with more accuracy and practicability. 
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1. Introduction 

For the difficulty of lateral dynamic control of carrier-based aircraft, there are a 

lot of improve control method should be impressed, including fuzzy control, 

neural network control, robust control [1-9]. Linear parameter varying model 

predictive control is the better one for lateral coupling of force and moment with 

carrier-based aircraft, and it has been widely applied [10-12].  

It’s circumscribed of traditional linear parameter varying model predictive 

control with the difficulty to forecast, and we wish to design a universe 

forecasting way for   predictive precision in accordance with demand, and it ’s the 

work this article will accomplish. 

The rest of this paper is structured as follows: next section we first model the 

structure of Lateral dynamic modeling of carrier-based aircraft. Section 3 designs 

the output-feedback LPV control way based on states observation. The simulation 

results reflecting the comparison between new method and the traditional one will 

be discussed in Section 4. 

 

2. Lateral Dynamic Modeling of Carrier-Based Aircraft 

With the research object of F/A 18 carrier-based aircraft, we suppose that the 

aircraft is balanced in longitudinal direction, the angle of pitching is 4.9°, and 

landing on -3.5° ideal glideslope [13-16]. The dynamic modeling of carrier-based 

aircraft is shown as (1). 
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Where β is the angle of sideslip, Ixx is the rotational inertia of roll axis; Iyy is the 

rotational inertia of pitching axis; Izz is the rotational inertia of yaw axis; Ixz is the 

inertia product of y axis; l is the rolling moment; n is the yawing moment. 

The yawing force and moment of carrier-based aircraft is represented as (4). 
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Where q  is the air dynamic pressure, S is the area of wing, b is the wingspan, 

CY(α,β,δail,δrud), Cl(α,β,δail,δrud,p,r,V)and Cn(α,β,δail,δrud,p,r,V) are the coefficients 

of lateral force, rolling force and  yawing force respectively.  δail is the input of 

aileron, and δrud is the input of rudder.  

The aerodynamic coefficient should be described in polynomial form as shown 

in (5): 
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functions of angle of attack  . 

Nonlinear dynamic function based on error states is: 
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Simplifying: 
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Where the lateral moment, rolling moment and  yawing moment are expressed 

as (8). 
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Where ( )
pnC   is the coefficient of sympathetic moment. 

Using triangle functions, we will get the functions as shown in (9). 
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The conditions of function are shown as (10)-(11). 
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We utilize yawing angle β as output, and obtain the linear matrix of output 

function as shown in (17). 
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Finally, the affinity form of factor σ should be obtained: 
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Where λ(k) is the function of σ. 

 

3. Output-Feedback LPV Control Based on States Observation 

The conditions of multiple-constraints LPV control based on variable weight 

matrix is that suppose some moment tk, the lateral position and velocity are yd(tk) 

and vd(tk), the roll angle and yawing velocity are pd and rd respectively.  

With a known of yd(tk), vd(tk), ( )d kt , pd(tk) and rd(tk), ( )d kt , δrud_trim(tk) and 

δail_trim(tk) are iterative solving with balancing function trim of Matlab.  

min  ( , )fx x u                                                     (21) 

(21) expresses the relationship between actual input and ideal input: 
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Where xd(k) is the ideal state, aircraft’s state function at k moment is expressed 

in (23), the state function of ideal following aircraft is expressed in (24). 

Suppose the estimating error state is ˆ
xe , and 
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For the system as shown in (27): 
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We use (28) forecast future. 

ˆ ˆ( 1 | ) ( ( )) ( | ) ( ( )) ( | ), 1x xk i k k k i k k k i k i      ue A λ e B λ e              (28) 

 

4. Model Simulation 

To improve the tracking precision of aircraft’s trajectory, it designs a landing 

control method. Figure6-10 are the response curves of flight path, height deviation, 

longitudinal sick, gliding angle and velocity for the improve way and traditional 

control patterns.  

From Figure 6-10, the approximation error of system is 0.2  m at the 

moment 3.8s under the asymmetric variable universe adaptive fuzzy landing 

control system, and it achieves the same error at the moment 12.3s under the 

traditional landing control system. It has the superiority complex on 
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approximation error for the asymmetric variable universe adaptive fuzzy landing 

control system we designed. 
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Figure 6. Response Curve of Flight Path 
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Figure 7. Response Curve of Deviation 
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Figure 8. Response Curve of Stick 
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Figure 9. Response Curve of Gliding Angle 
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Figure 10. Response Curve of Velocity 

6. Conclusion 

This paper has presented an improved multiple cell linear parameter varying 

model predictive control manner for carrier-based aircraft. The output-feedback 

linear parameter varying control based on states observation should be adapted for 

lateral dynamic model. The simulation results show that comparing with the 

traditional model predictive control manner, the multiple cell LPV one has better 

evaluation result for pilots.  
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