International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016), pp. 159-172
http://dx.doi.org/10.14257/ijmue.2016.11.2.17

Implementing Innovative Routing Using Software Defined
Networking (SDN)

Adnan Shahid, Jinan Fiaidhi and Sabah Mohammed

Department of Computer Science, Lakehead University,
Thunder Bay, Ontario P7B 5E1, Canada
{ashahid, jfiaidhi, Sabah.mohammed}@lakeheadu.ca

Abstract ¢

Software Defined Networking (SDN) is an open source networkin f%mwork
recently introduced. It allows developers to program and reprogram the@r so that
intelligence and new features can be mtegrated tlmize ance the
performance of the network. This paper is focu i the routing
implementation of SDN (i.e. SDN Controller). We he d the t Open Source
SDN Controller* in our experimentation. The Fld h con ovide source Java

any source and any destination within work, However, the default routing

implementation of Floodlight Controlle uch that e calculating any path, it

ignores the actual bandwidth of the s |t nit value for each link. The

resultant calculated path becomes st h% his least hop path may be an
a

9
libraries and APIs.. It uses Dijkstra’s aIgon& alculat ortest path between

optimal path where all the I netw e equal bandwidth and may not be
optimal where the netWOrks uneqwzl ndwidth. However, today’s networks

are mostly consisting of equal link |dth The goal of this paper is to re-
structure the Floodll oller s can collect the actual bandwidth of all the
links in the netwo se this | ation to calculate optimal path which is the

highest bandW|dth stead default least hop path.

Keywords‘l FIo%dl® utlng Network Efficiency, Optimal Path

1. Introduction

As said, Sof@ Defined Network (SDN) architecture decouples the control

e underlying network infrastructure as shown in Figure 1.1. This is
al network infrastructure’ where both control and forwarding
are tightly integrated within all network elements. The control goes to
a entity formally known as Controller. This decoupling allows new
p%ﬂ to be added or existing program to be customized in control program and
hence allow innovation to the network. The main focus areas of SDN architecture
are, 1) Achieving centralized control through the use of controller, 2) Open
interface (OpenFlow ?) between network devices (data plane) and controller
(control plane) and 3) Bring innovation and intelligence through program the
network (API’s) [6].

! http://www.projectfloodlight.org/floodlight/
2 https://www.opennetworking.org/sdn-resources/openflow

ISSN: 1975-0080 IJMUE
Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

OpenFlow Protocol
- 7(307njr70|7 Elfrlei — Control Plane Data Plane
Data Plane

Firewall Switch Router Controller Switch

(a): Traditional Network (b): SDN
Figure 1.1. Control Plane & Data Plane in Traditional Network vs SDN

SDN architecture has been adopted by many prominent vendors like Cisco, HP, Big
Switch Networks, etc. It is been implemented in few enterprises as well as in some
university networks. There have been many open source projects ongoing on different
components of SDN framework and researches have mostly flourished in last 5 to 6
years. .

In the traditional network, all network nodes (such as, Switches in this network d
to take part is control decision. This adds a certain amount of delay bo v&'packet
controlling and forwarding functions, while the packets travel throug@ etwork
device. However over the period of time, delay in ne ode pa essing has
reduced considerably. On the other hand, in SDN fram A rk ades do not even
participate in packet control functions other tha om d|n ition to this, in
today’s network data transfer speed is more imp se easons, calculating
shortest path with least hop is less demanded and requwed C e to the shortest path
with highest bandwidth. '6

2. Recent Works on SDN

There have been many resea h ng on %D . Many researchers have proposed
architectures, frameworks, etc base N targeting various network aspects
such as virtualization, sc ablllty, net management programmability, service

assurance, optical netwo anspor tc
One of the major ges of S er traditional network is the management of

the network [3]. This¥include anglng multiple network elements in traditional
network vs ¢ NQQ char@ﬂa gement in SDN, event-driven network operation
management@; igh-level fumctional language (Procera), etc.

Several reséarches g@n to make an abstraction layer so that the operators can
extract the low level om underlying network elements as needed without dealing
on how the low SV data are generated and managed. One such project is the

development of ic language [5].
There have beeh several concerns regarding SDN, some of which are scalability and

resiliency controller (based on NOX controller) has max 30k flow initiation limit
with 1 r flow installation capacity. Researchers have argued and conclude that this
i are not platform specific rather limitation of both SDN and traditional

li 1
n [7]. However, implementing network virtualization with SDN has ruled out the
scala |I|ty concern. One such research is FlowN over SDN [2].

Meridian is a prototype framework built on top of SDN to bring flexibility and agility
to cloud infrastructure [4] in terms of managing virtual network in cloud environment.
Many cloud providers allow the users/tenants to configure their own network within
cloud infrastructure. But most of these network configurations are network or device
centric such as switches, VLANSs, subnets, ACLs, etc. Additionally, users/tenants are
exposed to low level network configurations. Meridian is a framework based on SDN
and it integrates along with cloud infrastructure (OpenStack with Quantum plug-in)
where it built network applications, APl and network orchestration layer. This way
tenants only work with API & applications & these convert high level user information
to low level network configuration. This way any application provisioning becomes
seamless and easily manageable. However several key areas are still needs to be

160 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

considered and developed as mentioned by authors such as effective network
configuration conflict resolution between multiple tenants, network updates mechanism,
topology discovery, recovery from failure, etc.

SDN Application SDN Application ' SDN Application '

SDN App Logic

SDN App Logic

SDN App Logic Contracts

SLAs
NBI Driver* NBI Driver*

SDN NorthboundInterfaces(NBls)

————— Hmu it
3ryin mr»w
and | ngitudes

SDN Controller

NBI Agent*
SDN Control Logic
Configure Policy

CDP| Driver Monitor Performance

Application Plane

Apps explicit
requirements

Expose Instrumentation,
statistics and events up
Translate req's down

Control Plane

Enforce Behavior

Management & Admin
7

scovery ’ (Y

)

% SDNCun(roI Data P!anelntcrface(CDP\)

Network Element* Network Element\
W
5| [sDNDatapath * 3 SDN Datapath ' 5 a y e
= CDPI Agent CDF Age *
=
a

Forwarding Engine* / Foi arding Engine* /
Processing Function* Processing Function*®
—_—
*indicates one or more instances | * indicates zero or mmnwml ¢"

Figure 1.2. Architecture of o@re De nﬁetworklng (SDN)

It may be some times but not,0 'gossmle \blish network with SDN approach.
Most organization has to ado n increme baS|s Operation and performance of
the overall network is always beéh a conc rlng this incremental integration of SDN
with traditional network. (Phjs [8] i the early researches not on incremental
adaptation of SDN.b the per&ce of SDN network segment compare to

traditional networlé%qj nt duri incremental deployment of SDN on traditional
network.

3. Format@You

ation (ONF), which is a non-profit user driven organization,
is responsible for rdizing, promoting and adopting Software Defined Networking
(SDN) through Open standard development, while the major focus is the wide spread
commerci aptation of SDN. Figure 1.2 shows the architecture of SDN, which has the

Open Networking

compone DN Application (SDN App), 2) SDN Controller, 3) SDN Data-path and
4) Ma ent and Administration.
4. efits

Traditional networks have many limitations, such as restrictive configuration (vendor
specified configuration set), complexity in managing network elements, static nature of
the network, inability to scale, vendor dependency & its resistance towards change,
skill workforce requirement for network management, etc. On the other hand SDN
brings several overall benefits to today’s network some of these but not all, including
management simplification, increase innovation through programmability, automation,
speeding-up service provisioning, increased network reliability and security, cost
advantage in both Capex and Opex, increased uptime, etc.

Copyright © 2016 SERSC 161

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

5. The Required Components

In this research we have used several technologies, applications, tools, languages, etc.
The three major components that we have used in this project were; 1) SDN OpenFlow
Controller (Floodlight), 2) OpenFlow Protocol and 3) OpenFlow based Network
Elements (OVS).

In addition to this, we have used some other applications and tools like, a) Eclipse
(Compiler for floodlight controller code), b) Mininet (Virtual network simulator for test-
bed), c) Oracle Virtual Box (Virtual machine container), d) Ubuntu (Operating System),
e) Cacti (Monitoring tool for interface utilization of the virtual network).

The languages that we have used for this project development were, i) Java (as the
language of the floodlight controller development) ii) JSON (as the RESTful APl
revocation & parsing), and iii) Python (as the script to create a virtual netv‘\%%)n
Mininet).

5.1. SDN OpenFlow Controller (Floodlight Controller) 1 6
Floodlight is an OpenFlow protocol based SDN Co to

etwork traffic
in SDN. It is a java based and an Apache license J%,én the work done
by David Erickson in the Beacon controller [1]. ne o \%Yt -in-class controller
platforms that are in use in commercial ucts nam ig Switch Networks
products.

5.2 Open Flow Specification @
OpenFlow is an open star;é:&) '{lged b@ Networking Foundation, is one of
nic

the first and most widely u en com ions protocol for SDN. It allows the
SDN Controller to speak to the forw% plane (switches, routers, etc.) of the

underlying network e &s 0 make){@ to the network.
e

5.3. Open Flow En tworlﬁlfments
In this re have u n vSwitch (OVS) which has the support for Open

Flow protoc 2

6. Implementati

The diagram i0 %igure 1.3 shows our network which was used as a sample case to
find the p en any source and destination host in the network based on highest
bandwidt ompare the result with the default least hop shortest path.

700,",,‘7 AONP® h2

h1 s1 o2 S5

S3

Figure 1.3. Sample Network Diagram

162 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

In our project test lab (Figure 1.4), we have used virtual machines to install all the
project components. The first virtual machine (VM1) was used for Floodlight Controller
and the second virtual machine (VM2) was used for network simulator (in this case,
Mininet) to create a virtual network. Both the virtual machines were on the same LAN,
but the virtual network elements (switches and hosts) created by Mininet network
simulator, were on different LAN. In VM1 we have installed Eclipse. We also download
Floodlight Controller & run it from Eclipse. In VM2, in addition to Mininet, we have
also installed Cacti. This is a monitoring tool to monitor the bandwidth of the switch
interfaces created from Mininet.

/ Oracle Virtual Box
°

/ Virtual Machine 1 (Ubuntu)

Virtual Machine 2 (Ubuntu)

)4

& A ~
Fi urQ')g.éTes@gtup
According to the diagramﬁie 1.3, the%tw rk contains two hosts (namely, h1 and

h2) and five switches (namely, s1, s and s5). The specific interfaces (namely,
ethl, eth2, eth3, etc) Witchqk he hosts are also connected accordingly as

shown in the diagr
Floodlight Con %use di'l&s’s algorithm to calculate the shortest path between
any source %naﬁon. kes the nodes and their associate links within the

network to ate t test path between any source host and destination host.
However, the default i entation does not consider the actual link bandwidth (i.e.
cost or weight) duri rtest path calculation; instead it takes a unit (1) value as the
bandwidth for al 7 For this reason, the default behavior of the calculated shortest
path is always ast hop path. According to the diagram in Figure 1.3 the shortest
path betw mgst h1 and host h2 is “host h1 -> Switch 1 -> Switch 3 -> Switch 5 ->
host h2” @t Cost = 2) instead of “host hl -> Switch 1 -> Switch 2 -> Switch 4 ->
Switc == host h2” (Total Cost = 3). In our sample network, all the links have

bandwidth, except the link between Switch 3 & Switch 5 is 10Mbps. For this
reasen, the bandwidth of the default calculated shortest path (least hop) between host hl
and h2 would always be 10Mbps.

In Figure 1.3, the highest bandwidth path is “host h1 -> Switch 1 -> Switch 2 ->
Switch 4 -> Switch 5 -> host h2” which is 100Mbps instead of “host h1 -> Switch 1 ->
Switch 3 -> Switch 5 -> host h2” which is 10Mbps. Our implementation is exactly this
i.e. to optimize the controller in such a way so that it can calculate the path with highest
bandwidth instead of least hops.

Copyright © 2016 SERSC 163

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

7. Code Development

7.1. Floodlight Controller

For our implementation we have worked mainly with two files in Floodlight
Controller, namely Topologylnstance.java and TopologyManager.java, both are under
Topology package (net.floodlight.topology).

7.1.1. TopologyManager.Java

We made the following changes in this file.

We first imported the libraries java IOException, MalformedURLEXxception, and

javax swing JOptionPlane.

We have modified the startUp() function and implemented Java Dialog ®pti n

that allowed the user to choose between default & optimized routing alg

We have also modified the createNewlnstance() function. T}ﬁ} re two
0

modifications. One was the addition of try-catch structure allowed the
program to catch exception of URL and I/0. An %cond o% the addition
of function parameter “input” to topology insta put ion. This input
is a String variable which holds the user’s * f the gor as stated above.
This choice is then passed to the compute nctlo ologylnstance Class

by the TopologyManager Class WheneQa new instanc of Topologylnstance is
created from TopologyManager Cla@ \

7.1.2. Topologylnstance.Java

We have made the followi (@&es in t@!’
= We have first added M&a Jack les (jackson-core-2.5.1.jar, Jackson-
and

S

annotations-2.5.1.jar cksoni- g:@md—Z.S.l.jar) as our external Reference
libraries in Eclipse.%Topolo ce.java, we have used Floodlight RESTful
API to quer °§@ port inf ion from the underlying OpenFlow switches.
Once we getthisyinformation, we have then parsed the information using JSON
Jackson.toayigld only Ngn ata (in this case, link bandwidth).
We porte N Jakson library files to the code which are
core.Json actoryé’ sonParser, core.JsonToken.
In the comput ction, we have added a function parameter which is used to
carry the us ice from TopologyManager.java while it creates an instance of
Topology@ce java class. We assigned this value to a global String parameter
i
We made several optimizations to calculateShortestPathTreelnClusters()

n code. The main purpose of this modification is to gather link bandwidth

hecks whether any port is Tunnel port or not. Instead we have created another

@ rmation of any link in the network. First we have removed the loop that
I

164

oop which will first check whether any port is Tunnel port or not and if the port
is not Tunnel port then it checks whether this port is any interface port or not. As
per OpenFlow Specification version 1.3, Tunnel port indicates any virtual
interface or port such as VLAN Interface, Ether-channel Interface, VPN Interface,
etc. The implementation of the user choice between default and optimized
algorithm was our second change. If the user choose default algorithm then all the
link bandwidth will be assigned to 1 (default behavior of Floodlight Controller)
and if the user choose optimized algorithm then another function getLinkCost()
will be called which will find the actual cost of the link in the network (Detail
explanation is in the following sub-section). A linkCost HashMap is used to store
all the link bandwidth information along with its associated link.

| method calculateShortestPathTreelnClusters(): |

Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

tempCost <- 0
linkCost = HashMap<L.ink, Integer>();
for all NodePort in switchPortLinks
if switchPortLinks = null then exit loop
for all Link in switchPortLinks
if Links = null then exit loop
nodelnPathTree = NodePort.getNodeld()
portOfNodelnPathTree = NodePort.getPortld()
tempCost = getLinkCost(nodelnPathTree,
portOfNodelnPathTree)
linkCost <- <link, tempCost>
for all clusters «
for all node in clusters
tree = dijkstra(clusters, node, linkCost, true) Y’
destinationRootedTrees <- <node, tree> 6

L

end method

V / Y)
= We have implemented another function ca./ st() function. It took two
function parameters namely, Nodeld (ak itch iCh is unique in the
network) and NodePort (Port of any witch) ve used JSON Jackson
library and created a JSON facto parser. ;$ JSON we have gathered
port-desc information (as defi d@ OpenElpw Yersion 1.3) in JSON string
format for each port of the un&[ng % e have used the following URL

to gather the port-ge nform from the underlying switch
““http://localhost:808 core/sw1t /” $sw+"/port-desc/json””. In Floodlight

Controller we have Rest Web servi ich makes possible to query any network
information using L@ Ther@ne pre-defined URL, however any one can
create or implen ny new ervice as required. Once we have gathered
ashahid@ub-fI%=Mtcodligh
; st:80 re/switch/00:00:00:00:00:00:00:01/port-desc/json

{"versionOF 1% tDesc'":
[{"port "1 "hardwareAddress™: " 7a:63:fc:fe:49:1f",

e":"sl-
ethl","conf)@" "state":"0","currentFeatures™:"2112",
‘advertisedFeatures":"0","supportedFeatures™:"0",

\LV "peerFeatures™:"0",""currSpeed":**10000000","maxSpeed™:"0"},

"name":"s1","config":"0","state":"0","currentFeatures™:"0",
"advertisedFeatures":"0","supportedFeatures™:"0",
"peerFeatures™:"0",""currSpeed™:"'0","maxSpeed":"0"}

<b® {"portNumber" "local™,"hardwareAddress":"0a:1b:cb:25:ce:4a",

1}

The port-desk information we then parsed the JSON string with the provided Node
(aka Switch) and Port of the node for “currSpeed” parameter. This currSpeed
parameter contains the advertised speed (aka bandwidth) information of the link.
This link bandwidth information was then sent back to the parent function
calculateShortestPathTreelnClusters() and stored in linkCost HashMap for later
use. Thirdly we have used try-catch format while doing the port-desk JSON string
parsing and use URL and 1/O exception because of the use of URL and Parser.

Copyright © 2016 SERSC 165

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

method getLinkCost(nodelnPathTree, portOfNodelnPathTree):
sw <- nodelnPathTree, portNumber <- oprtOfNodelnPathTree
tempBWValue <- 0, inverseBWValue <- 0, maxBWValue <- 10000001
try
url <- "http://localhost:8080/wm/core/switch/"+sw+"/port-desc/json”
parser <- url
while the parser is not end
token <- parser.nexttoken()
if token = null exit loop
if token = portDesk then
token <- parser.nexttoken()
if the token is not the start of an array exit loop o
while the parser is not end x)

token <- parser.nexttoken() YY
if token = null exit loop 6
if token = portNumber 4%

while the token is not the stiﬁxga ar%

token <- parser.ne
if token = null exit4o x)
if token = currSpeed x
tempBWVaI rrSpeed
@alue = Value - tempBWValue

mverse%
catch exception of URL @
return mverseBWValé i’\

end method N
In order to test our im entati uired multiple links from any source to
destination with in Ihe rk. Fi .3 is a sample network with multiple links

between source h 4* destinatior*host h2. We have used Mininet custom script
using python to b is cystorf=hetwork. We run the script in such a way so that it
build the wrt@ ork and also)contact Floodlight Controller to be its SDN Controller.

8. Test-Bed Testin cedure

Following are t %of steps that we used to test the default and optimized routing
implementation i test-bed for the project.
= Startboth the VMs, VM1 (Floodlight Controller) and VM2 (Mininet).

= Lo M1 and start Eclipse.
. @Eclipse run the Floodlight Controller. Once the Floodlight Controller is
ing it will listen for any OpenFlow enable switch request or any other packets
@n the network. A dialog box will appear and ask to choose between “Default
(Least Hop)” and “Optimized (Highest Bandwidth)” algorithm. For now we will
choose Default Algorithm.
= Login to VM2. From the terminal window, go the Mininet custom folder and run
the custom script. The Mininet console will show that the virtual devices (hosts
and switches) are created. It will also show whether it has properly able to contact
Floodlight Controller or not. We assume that it has properly communicated with
the controller.
= Now, switch back to VML1. From the Eclipse console we will be able to see that
the controller is getting the request of switches and links. At this stage the
Floodlight Controller will create a Topology based on the Default Algorithm.
= Switch back to VM2, Mininet terminal. Establish ping between host hl to host
h2. We will able to see the ping responses.

166 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

= At VM2, we will open a browser to access Cacti. We will create a profile for local
host (i.e. VML) and create a graph for the virtual interfaces it creates for switches
in the Mininet custom script. We will wait for 10 minutes or more, so that the
graph gets populated with ping data between host h1l and host h2 and also the
necessary switches in the path.

= After waiting for sometimes, we will able to see that only the switches of the path
(host h1 -> Switch 1 -> Switch 3 -> Switch 5 -> host h2) has utilization and other
switches has no utilization. This means that the default algorithm works and
chooses the path with least hop between source host hl and destination host h2.

= At this stage, we will stop the ping between host hl and host h2 at VM2
(Mininet). This will flash the flows in the relevant switches. This step is
mandatory in order to go to the next step of the test. o

= |f we wait for long and check the Cacti page, we will find out that t No
utilization in any of the switches. This is due to the fact that there i nc%’ﬂc in
the network.

= At this stage we will switch to VM1 (Floodli Controlder stop the

Floodlight Controller from Eclipse. This step isJmandatory, in to go to the
st<thid\other roufylvhqfalgorithm.
@ er fropi'gclipse. The same dialog

next step of the test. This will allow us to t
= Now, we will again start the Floodlight Cc

box will appear and this time we willechoose “Optirhi Algorithm (Highest
Bandwidth)”.

= Switch back to VM2, Mininet tef@ Again e ish ping between host hl to
host h2. We will able to see the

esponse
= Wait for 10 or more minute at th@&&raph gets populated with data at

VM2.
= Finally to verify the s@s of owr ifications we need to wait for sometimes,

to see that only the-switches of th (host hl -> Switch 1 -> Switch 2 ->
Switch 4 -> Swj -=> h has utilization and other switches has no
utilization. Whi ves that theMaptimized algorithm works and chooses the path

with highestb idth b en source host h1 and destination host h2.
Following ttresenabiove step ere able to test the different routing algorithms and

effectively fc he difference between the default and optimized algorithm, where the
latter is the one that we mplemented in our project.

9. Test Result Output Screenshots

port utilizatidg Teport from Cacti monitoring tool. We have started both the VM’s and
started@e applications & tools (Eclipse & Floodlight Controller in VM1) in those
\Y test procedure was divided into two phases. In first phase we have tested &
v% the output of the default algorithm in the sample network followed by the
optimized algorithm on the same network in second phase.

We havxtg) d the given test bed steps in previous section and have captured the

RS s RN

2 ’_“_(\3:{

5 Jg
N

}/
2

4 \$_>

|-

0

Figure 1.5. Green Dots Showing Path of Default Algorithm

Copyright © 2016 SERSC 167

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

[ub-mn2 [Running] - Oracle VM VirtualBox - ol

DD NNDER DD D 0N

Figure 1.6. Interface U@ron @9 Default Algorithm

9.1. Phasel: Testing and Véﬁ';\g Defau Ig rlthm Output

When we use the default routi ementatlon we have observed that the
interfaces S1-ethl, 9 S3-ethl, h2, S5-eth2 and S5-eth3 (Figure 4.2 and 4.3
with green dots) o e ne%%k were utilized whereas interfaces such as S1-eth2,

th1

S2-ethl, S2-e nd S5-ethl were not utilized (Figure 1.5 and 1.6
with red dot:

Q

%‘lre 1.7. Green Dots Showing Path of Optimized Algorithm

168 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

ub-mn2 [Running] - Oracle VM VirtualBox - olEN

)

d-.)# e 0| @ Groncst

Figure 1.8. Sample Networ gﬁ een Q& owing Optimized Algorithm
Pat

9.2. Phase2: Testing a&lfymg @ilzed Algorithm Output

However using timize uting implementation, we have observed that the
interfaces S1- %&-ethz 32@11 S2-eth2, S4-ethl, S4-eth2, S5-ethl and S5-eth2 (as
shown gree re 4.5 @(\j gure 4.6) of the sample network were utilized whereas
interfaces suc S1-e ethl, S3-eth2 and S5-eth3 were not utilized (as shown red

in Figure 1.7 and 1.8}b‘

10. Experim on Prerequisites

. We%%bensure that all the switches flow-tables are flushed out (i.e. empty) each
tin@ change our routing algorithm.
@)ur implementation, we invoke “currSpeed” parameter (aka Advertised Port
t d

peed) from the underlying OpenFlow switches and input this information to the
ijkstra algorithm using RESTful API call. As long as any underlying OpenFlow
switches can properly provide us this information which is synchronized with port
bandwidth information, our algorithm can effectively find out the highest
bandwidth path in any SDN network.
= |f we choose default algorithm or none than the Floodlight Controller will
proceed to calculate route between any source and destination with least hop.
= If we choose optimize algorithm than the Floodlight Controller will proceed to
calculate route between any source and destination with highest bandwidth
regardless of that being least hop or not.

Copyright © 2016 SERSC 169

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

11. Conclusion

Our research work attempt to restructure the open-source network (SDN Controller).
In this direction we have optimized the Floodlight Controller so that now it can yield
highest bandwidth path. However, there are so many other improvements that we are
planning to do in our future work including the followings:

e In our implementation we have considered only link bandwidth while calculating
any path. However we can also consider some other parameters such as history of
link flapping of any particulate link, etc. while calculating any path.

= Another good idea is to keep a record of backup route alongside primary route
between any source and destination in the network. Once the main route fails due
to any fault, the backup route would automatically take over and avoid any packet
drop. &)

References Z
[1] D. Erickson, “The Beacon Ope
http://yuba.stanford.edu/~derickso/docs/hotsdn15-erickson.pd

Idv% : 2010,

[2] E. Keller, “University of Colorado; Dmitry Drutskoy”, & Digital; W exford, Princeton
University - Scalable Network Virtualization in Softwa efined Netwigrks, (2013).

[3] N. Feamster and H. Kim, “Georgia Institute of Technleg i twork management with

software defined networking”, (2013).
[4] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tr: G. Wang(JIBM T. J. Watson Research Center

- Meridian: an SDN platform for cloud netw ices”, (201
[5] N. Foster, A. Guha, M. Reitblatt and , “Carne, ersity, Michael J. Freedman, Naga
Praveen Katta, Christopher Monsan w Rexford, Cole Schlesinger, and David
S. Military Academy - Languages for

Walker, Princeton University, Maj
software-defined networks”, Qﬁh

[6] S. Sezer, S.S. Hayward, P. K an, B. Era J. Finnegan, N. Viljoen. M. Miller, D. Lake and N.
Rao, “Are we ready for SDN? Imple enta& hallenges for software-defined networks”, IEEE

communications Magazi (2013)
[7] S.H. Yeganeh, A. T@iﬁlfm and Y Gapjali, “University of Toronto - On Scalability of Software-

Defined Network

[8] S. Agarwal an dlala Lakshman, Bell Labs,Alcatel-Lucent, Holmdel, NJ, USA. -
Traffic en softwa etworks”, (2013).

Authors

(b(dnan Shahid, He have completed Masters in Computer
SCience from Lakehead University, Canada, in April, 2015. He has
completed his B.Sc. in CSE from CUET, Bangladesh. He has 8+
years of experience in IT Network and Security design,
implementation and operation, including 6+ years of working
experience in leading telecom organizations (Banglalink & Warid

Kq"l\l\wl,m‘ Telecom) in Bangladesh. He is a Cisco Certified CCNA and CCSP.

Dr. Jinan Fiaidhi, He is a full Professor and the Graduate
Coordinator with the Department of Computer Science,
Lakehead University, Ontario, Canada since late 2001. She is
also an Adjunct Research Professor with the University of
Western Ontario. She received her graduate degrees in
Computer Science from Essex University (PgD 1983) and
Brunel University (PhD, 1986). During the period (1986-2001),
Dr. Fiaidhi served at many academic positions (e.g. University
of Technology (Asso. Prof and Chairperson), Philadelphia
University (Asso. Prof), Applied Science University
(Professor), Sultan Qaboos University (Asso. Prof.). Dr. Fiaidhi

170 Copyright © 2016 SERSC

http://yuba.stanford.edu/~derickso/docs/hotsdn15-erickson.pdf
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Scott-Hayward,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chouhan,%20P.K..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Fraser,%20B..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Finnegan,%20J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Viljoen,%20N..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Miller,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lake,%20D..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Rao,%20N..QT.&newsearch=true

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

research is focused on mobile and ubiquitous and collaborative
learning utilizing the emerging technologies (e.g. Data Mining,
Cloud Computing, Calm Computing, Mobile Learning,
Learning Analytics, Data Science, Social Networking,
Croudsourcing, Enterprise Mashups, and Semantic Web). Dr.
Fiaidhi research is supported by the major research granting
associations in Canada (e.g. NSERC, CFI).

Dr. Sabah Mohammed, He started his career during 1977 as a
Multimedia Maintenance Engineer working for Canon and Sony
following his hobby in Electronics, although he completed his
bachelor degree in Mathematics (HBSc 1977). From July 9 hé
started his graduate studies where he received his ey’ in
Computer Science from Glasgow University-UK (P% Phil

1981) and from Brunel University-UK hD 1986)..Since jate 2001,

Dr. Mohammed is a full Professor puter i at Lakehead

University. Formerly, from 198%5 Drg Mohahmed was an

Assistant/Associate Profess mputer ‘Sgience at various

universities including (B n@érsity, Philadelphia

University, Applied ch?e Universityyyand HCT). Sabah is
t

interested in mtelu ems 1;% ave to operate in large,
rv

nondeterministic, ative, able, adaptive or partially
known domalns rch is inspired by his PhD work
on the e t of %& Brain Activity-Structures based
technlq cision ma (planning and learning) that enable
processes (e agent bile objects) and collaborative processes
to act elllgen e|r environments to timely achieve the
goals abah extended his research vision to include
UCtIVI focus more on the nature of knowledge. Since
wle ated by people and influenced by their values and

cu ture esearch stated to shift more towards net centric

.g. Cloud Computing, Social Networking and Enterprise
S , Web-Based Systems, Big Data, Data Analytics and Data
ﬁ@nce)

O\j‘

Q)Q

Copyright © 2016 SERSC 171

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.2 (2016)

172 Copyright © 2016 SERSC

