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Abstract °

The joint replenishment and delivery model with deterministic resource res jon for
deteriorating item is developed. The model is formulated as cost m|n|m atignyproblem,
including the ordering cost, the inventory holding cost, “the. tran cost, the
customer waiting cost and the deterioration cost. lefere }Afvoluu@) algorithm is
proposed to solve the model. Numerical illustratiQ he mdédel and algorithm are
presented and the sensitivity analysis with re P 0 de |or n rate of item is

performed. The comparison between DE and g efic algﬁx (GA) for solving the
model are also made.

Keywords: Supply chain manage ﬁ&)mt r@m ment and delivery problem
tion

Resource constraint deterloratlng Ite GFEVQ\v
1. Introduction 4 . %

For the past few decac@) the sup ﬁam management (SCM) has received much
attention from the bus communityyMany companies have realized that significant

cost saving can ved byAintegrating inventory control and delivery policies
throughout thelr cha is, the joint replenishment and delivery scheduling

(JRD) polic D cost e saved when replenishment of several items are
coordinated multi4 ventory system. Replenishment of a group of item takes
place after a fixed int of time, called the basic cycle time. Time between two

consecutive orders K@»ltem is assumed to be an integer multiple of the basic cycle time.
The objective of@RD is to minimize the total costs incurred per unit time.

Moon developed joint replenishment and consolidated freight delivery
policies fo}\} ird party warehouse with deterministic demand rates in a supply chain.
Cha et a dealt with the JRD model of the one-warehouse n-retailer system and

a flexible policy for a warehouse. Wang et al. [3] studied a joint replenishment
a@lvery scheduling in which a central warehouse serves n-retailers in the presence of
vagu¥ operational conditions such as ordering cost and inventory holding cost, and the
membership function is approximated using piecewise linear functions based on alpha
level sets.

The deteriorating items are subject to a continuous loss in their masses or utility
throughout their lifetime due to decay, damage, spoilage, and penalty of other reasons,
and most of the physical goods undergo decay or deterioration over time [4]. Considering
to this fact, controlling and maintaining the inventory of deteriorating items becomes a
challenging problem for decision makers. Chaman developed two-warehouse supply
chain model with power form stock-dependent demand under the assumption that the
deterioration rate per unit items are different due to different preservation environments
[5]. XU et al. considered production-inventory models for a deteriorating item in a single
vendor-buyer system with constant production and demand rate, and developed Ant
Colony algorithm to solve the problem [6]. Debasis et al. considered two-warehouse
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inventory model for a deteriorating item with time-varying demand and fully backlogged
shortages, and using GA with vary population size to solve the model [7].

The differential evolution (DE) algorithm is one of the latest evolutionary optimization
methods proposed by Storn and Price [8] for complex continuous non-linear functions.
DE is a stochastic population-based optimization method which uses mutation, crossover,
and selection operators at each generation to move its population toward the global
optimum. Over the past ten years, many research indicated that the DE algorithm can
solve the problem more effectively. Kazemipoor et al. [9] considered the multiskilled
project portfolio scheduling problem and presented an efficient metaheuristic algorithm
based on DE, the comparison between the results of DE and Tabu search confirms the
effectiveness of the DE algorithm. Wang et al. developed an approach based on DE to
find a close to optimum for the basic JRP [10]. Das and Suganthan [11] surveyed the
state-of-the-art of the differential evolution and its application. K)

The aim of this paper is to develop a practical constraint JRD model wi
item based on the early work. Secondly, for solving thugroblem, a DE

applied. Thirdly, to illustrate the effectiveness and efficiency\ of the , extensive
computational experiments are performed.

The rest of this paper is organized as follows,-Se % 2 introﬁ? he mathematical
model of constraint JRD with deteriorating item. %‘: 3d ps)the DE algorithm and
presents the procedure to solve the probleS Section 4 INustrates the procedure of

proposed algorithms with a numerical exa ection arize the conclusions of
the present work and provide directions f re researd\

2. Mathematical Model of J@&epl% ent and Delivery Problem

with Deteriorating Ite
|shment and ;%ery problem with deteriorating item (which

The constraint joint repl
is abbreviated as Deter, for of the paper) is the multi-item inventory

problem of coordinali replenis t and delivery of a group of deteriorating items
that may be jointly, d from ﬁgle supplier under resource restrictions.
Some co umpti Ily made for the constrained joint replenishment
problem:
e Thedémand r gﬂéach item is deterministic and constant.
e The unit holdifg-Cost of each item is known and constant.

e Themaj ring cost incurred for an order is known and constant.
e The ordering cost incurred for a specific ordered item is known and

wn and constant.
he customer waiting cost is known and constant.
No guantity discount.

e Stock replenishment is complete when it occurs.

e The budget constraint on the amount of an order is known and constant.

*  The deterioration rate of item follows exponential distribution.
The following notation is defmed
i index of item, i=1,2,..
D; demand rate of item i
S major ordering cost
s;° minor ordering cost when item i is included in a group replenishment
h" inventory holding cost of item i, per unit per unit time
si~ outbound transportation cost for item i
w;~ customer waiting cost for item i per unit, per unit time
T  basic cycle time (decision variable)

ceqitant.
. @ utbound transportations cost incurred for a specific delivered item is
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ki integer number that decides the replenishment schedule of item i (decision
variable)

K nXx1 vector that consists of k;, i=1,2,...,n

fi  integer number that determines the outbound delivery schedule of item i (decision

variable)

F nXx1 vector that consists of f;, i=1,2,...,n

TC total annual cost for all items, objective function that is to be minimized

b; unit cost of item i

B limit on capital that can be invested

r;  unit deterioration cost of item i

0, deterioration rate of item i.

The initial inventory level is I, at time 0. From t=0 to T, the inventory IeveI%J?es,
owing to both demand and deterioration, until it reaches zero level. At this ti age
is accumulated and backlogged. At the end of the cycle, the inventory eRishes and
again raises the level to Iy, as shown in Figure 1. @

Inventory level

lo

\Qj Time
Figure 1. Grapbk@epre %ﬂon of Inventory Level

The inventory level z@dt iS go *@y the Eq. (1).

dl(tl%lll(t) ~D,1(T)=0 (1)
Then QQ
I.(t)%@(e“‘“” -1) )

The inventory g cost and deterioration cost of item i in basic replenishment cycle
is

Dh'k (f -1)T

&Vu (tydt=h" j D guer 1)dt—1( ‘f‘ +D,orkT) (3)
0 2 .

% del for constraint jomt replenlshment and delivery problem with deteriorating
(

given by
eter-CJRD)
SW+Z"‘4L w C C
TC(T.K,F)= o K +Zﬂ Dbk (F Z DT +2ﬂ i +Z": kTD v, *Zﬂ D,0,rkT (4)
o T 21, ookT oo oef o
Subject to
> DkTb <B (%)
i=1
kez  fezZz ' TeRi=12.n (6)

Eq. (4) is the total cost to be minimized, that is the sum of the ordering cost (major and
minor), the inventory holding cost, the outbound transportation cost, the customer waiting
cost and the deterioration cost. The resource constraint is the limit on capital that can be
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invested, as given by Eq. (5). Eq. (6) indicates that ki's and f;'s are positive integer number
and T is positive real number.

To solve the unconstrained JRD, Moon et al. used Eq. (7) as the optimal T in their
algorithm.

1/2

T*={2(SW+ZS' vl 3 kD, (h" T )} @)
i=1 ki i=1 fi
The optimality condition of k; is:
k,(k, 1) < 205, + f‘:i ) — <k, (k, +1) (8)
2 w W, —h
T°D,(h + —-)
f
Similarly, the optimality condition of f; is : x)
kT 2D (W' —h") @Z
f(f < f,(f,

EE \‘%

3. Differential Evolution Algorithm Q
I ment

In order to solve the constraint joint I|very problem with

deteriorating item, in this section, we pr dn‘fere ial évolution (DE) algorithm
approach for the Deter-CJRD mode1 algorlth fferlng from conventional
evolutionary optimization methods, gorlthm (GA), relies on the
mutation operations as the main op %lthm introduces a novel mutation
operation which is S|mpl tlve W%ﬁ utation operation is based on the
differences of randomly sa pairs of solution in the population. Furthermore, the

algorithm.

3.1. Representati \}dlmtlal

The DE 'n for th te$ CJRD is to find an optimal schedule which can
get a close tOuminimum,tQtal cost. The appropriate representation of a solution plays
an important role in theYdevelopment of DE algorithm. In the Deter-CJRD model,

the basic cycle T n integer k;’s and f;’s have to be decided for solving the
problem. In the, BEYK;’s and f;’s are searched through the operations of DE and the

fitness of an offspring is or@o one cg&‘g ith that of the corresponding parent in DE

basic cycle T is tetermined through the optimality condition of T. For the given k;’s
and f;’s , '&N timal T" can be easily obtained by the Eq. (7). So, in our study, we
use 2n r number representation for n k;’s and n f;’s, because it is very easy to

i
f

ual contains two parts. One is for the replenishment schedule and the other is

@ ur chromosome to a feasible solution. As shown in Figure 2, the decoding
or the outbound schedule of each item.

1l1]1]2]2]4a]a]3]2]3]2]2
Replenishment Outbound
schedule k;’s schedule f’s

Figure 2. Decoding Individual

The initial population is created by assigning random integer values of the
decision variable. Each individual is generated by Eq. (10).

x, =rand(),i=12,.,POPSIZE, j=1,2,..,D (10)

Where POPSIZE is the number of individuals; D is the dimension of each
individuals; rand() is a function which generates a uniform distribution rand number
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in range [ki"® k"®] or [fi"®,fi"®]. k"® and k;"® are the lower and upper bound of k;,
respectively, and can be defined from the following equations.

e _r\/z(s +s")/p, hW—|
\ T \

min

LB

k.

=1,k

(11)

f,"® and f;"® is the lower and upper bound of f;, respectively, and can be defined
from the following equations.

(kiUB)szzaxDi(Wic — huw)
1) < ~: < £7°(,

LB uUB

£,5° =1, 175 (1,

uB

+1) (12)

Tmax and Tmin are defined as follows

me:[z(SW+izn“lsiW) ZD }

6?” (13)

T, = Min(2s, /D v
For a given particular set of k;’s and f;’s, egs. (4) an b&/ﬁ en as
Temy-ZaeT, O A\l)\) (14)
T
Subject to x
C,T<B. . (15)
Where

- +Z —+Z LS, CQ > (f%%§ - kD, W +Zn D.0,rk, and
I i=1 i |4\ Il i=1
z D kb afe&nts ®

We take rder e with respect to T, and set it to zero. Then we
obtain T° /C for a constraint, we obtain T =B /C,. According to
Moon et al. [1], t @& I basic cycle time T follows T~ = min(T°,T") .

3.2. Mutation '&

For eac%%eget individual Xi={Xi1,Xio,...,Xip}, i1=1,2,...,POPSIZE, a mutant new
individu s generated according to

V=X, +F(X,, =X ) =101 #i (16)
% randomly chosen integer indexes; F <[0,2] is a real number called
mutation factor used to control the amplification of the differential variation.

3.3. Crossover

To complement the differential mutation search strategy, DE employs uniform
crossover, which also known as binomial method, to enhance the potential diversity
of the population. The crossover operator implements a discrete recombination of
the trial individual V; and the parent individual X; to produce the offspring X;"".

The trial vector will be found using the following rules:

Vi if rand j(0,1) <CR orj=rnb(i)

X\ = (17)
[Xi,- otherwise j=1,2,..., D
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Where D is the dimension of X;; x;; refers to the jth element of the individual; v;;
is similarly defined; rand;(0,1) is the jth evaluation of a uniform random number
generator between [0,1]; rnb(i) is a randomly chosen integer in the set {1,2,...,D}
which ensures the trail vector gets at least one parameter from the mutated vector;
CR < [0,1] is a crossover constant.

3.4. Selection

The selection operator is to determine whether the target (parent) or the new
vector (offspring) survives to the next generation. If a new vector,
Xi""i=1,2,...,POPSIZE, has a smaller evaluation function value (total cost) than its
garget vector, X; , it is copied to the next generation; otherwise, it is the target
vector that passes to the next generation. The selection process can be expres :

jxi””" if fitness(X ™) < fitness(X )
X, = (18)
[Xi otherwise °

Thus the next generation of population either ge ei}er in f&;)of the fitness
function or remains constants. Q V
3.5. Stop Criterion xx)

The termination condition is to s;opé% imp‘r@ent of fitness function is
made in 50 generations. \ @

I

4. Numerical Example Q} g’
A numerical example Wﬂ'ﬁk employ%o lustrate the proposed DE algorithm,

we use the numerical ex le of Mpo 5‘ I., [1] and Wang et. al., [3]. The data for
this example are gi.ve&able L&q Iso assume S$"=200 and B=25000. Notice
bi\and

that, there are resmrx&i trictio%ei B, in our example.

Q le 1.@@ ter Values for the Example
ltem i @) 3 2 5 6

D, 10000 00 3000 1000 600 200
s 45 (b» 46 47 44 45 47

h" 1 1 1 1 1 1
s 5 5 5 5 5 5

w $’ 1.5 15 15 15 15
b, Q 75 6.25 6.25 6.25 6.25 6.25

ri 1 1 1 1 1 1
ii DE algorithm is compared to the GA algorithm for the same numerical

example. The results are reported in Table 2. It shows in Table 2 that DE obtains
better solution than GA does.
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Table 2. Computational Results under Different ©

P DE GA

ki f; T TC ki f; T TC
000 11,1224 432,322 0.1881 4831.71 1,1,1,2,2,4 432324 01818 4836.37
002 11,1224 432,322 0.1881 4911.71 1,1,1,2,25 4,322,328 0.1802 4936.51
004 111224 4372322 0.1881 4991.71 1,1,1,2,2,3 4,322,321 0.1830 4998.02
006 11,1224 432,322 0.1881 5071.15 1,1,1,2,2,3 4,322,324 0.1800 5076.10
008 111224 432,322 01881 5149.38 111224 432,325 01775 5159.95
010 111224 432,322 01881 5226.43 111225 432,329 01743 5258.59

We compare the performance of two algorithms, DE and GA, for 1600 r do Ly
generated Deter-CJRDs. The parameter values are all generated from
distribution, D;~U[500,5000], s;"~U[30,50], s;°~U[0.1s;",0.3s;"], h;"~ ]and
wiC~U[1.2hiW,2.0hi""] respectively. Every b; is consrdered as GSiQ
Moreover, 6=0.02 is constant. Four different value e°num ms, n 10
20, 30 and 50, and four different values of the m r ering ¢ SW 100, 200,
300 and 400 are considered. This results in 16-egmbinations and S", and for
each combination, 100 problems with rando mete
solved. The termination condition is to s no m&
generations.

A summary of computational results I's@/n in Tablé\%’

Table 3. y@rls ,Qs&and GA

n S"  Bestso utﬁéw prob lems DE better than GA (%)
,, \@T Num Max Avg.

10 100 100 80 52648  0.7359
%»\ 100 83 1.9952  0.5502

100 86 33217  0.7789

%& A% 100 90 44830  0.7540

20 100 86 44388  1.3800
200 bg) 1oo 100 80 46668  0.6221

300 100 100 76 30064  0.6071

100 100 71 21448  0.6581

30 100 100 82 32284 15014
0 100 100 83 46256  1.2560

\Lr 300 100 100 81 44656  0.7110
Q) 400 100 100 76 20580  0.6614
100 100 100 93 1.8431  0.9628

@ 200 100 100 98 39306  2.5099
300 100 100 100 54950  3.3884

400 100 100 99 69276  3.9919

As show in Table 3, both algorithms can solve the 1600 random generated problems.
The DE is superior to GA algorithm, especially for n=50.

5. Conclusion

This paper focuses on the constrained joint replenishment and delivery problem with
deteriorating item, and developing efficient algorithms to solving it. We introduced the
DE algorithm to handle the problem. Using comprehensive computational experiments,
we have shown the performance of the DE. Furthermore, DE is more suitable for solving
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Deter-CJRD than the GA algorithm. Future research could be the incorporation of
uncertainty issue in constrained JRD, for example demand and budget.
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