
International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.2 (2016), pp.1-8 

http://dx.doi.org/10.14257/ijmue.2016.11.2.01 

 

 

ISSN: 1975-0080 IJMUE 

Copyright ⓒ 2016 SERSC 

Joint Replenishment and Delivery Problem with Resource 

Constraint for Deteriorating Item 

 

 

Chengyan Li, Jun Gao and Chuang Wang 

School of Computer Science and Technology 

Harbin University of Science and Technology, Harbin 150080, China 

chengyan@hrbust.edu.cn 

Abstract 

The joint replenishment and delivery model with deterministic resource restriction for 

deteriorating item is developed. The model is formulated as cost minimization problem, 

including the ordering cost, the inventory holding cost, the transportation cost, the 

customer waiting cost and the deterioration cost. Differential evolution (DE) algorithm is 

proposed to solve the model. Numerical illustrations of the model and algorithm are 

presented and the sensitivity analysis with respect to deterioration rate of item is 

performed. The comparison between DE and genetic algorithm (GA) for solving the 

model are also made. 
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1. Introduction 

For the past few decades, the supply chain management (SCM) has received much 

attention from the business community. Many companies have realized that significant 

cost saving can be achieved by integrating inventory control and delivery policies 

throughout their supply chains, that is, the joint replenishment and delivery scheduling 

(JRD) policy. In JRD, cost can be saved when replenishment of several items are 

coordinated in a multi-item inventory system. Replenishment of a group of item takes 

place after a fixed interval of time, called the basic cycle time. Time between two 

consecutive orders of an item is assumed to be an integer multiple of the basic cycle time. 

The objective of the JRD is to minimize the total costs incurred per unit time. 

Moon et al. [1] developed joint replenishment and consolidated freight delivery 

policies for a third party warehouse with deterministic demand rates in a supply chain. 

Cha et al. [2] dealt with the JRD model of the one-warehouse n-retailer system and 

suggested a flexible policy for a warehouse. Wang et al. [3] studied a joint replenishment 

and delivery scheduling in which a central warehouse serves n-retailers in the presence of 

vague operational conditions such as ordering cost and inventory holding cost, and the 

membership function is approximated using piecewise linear functions based on alpha 

level sets. 

The deteriorating items are subject to a continuous loss in their masses or utility 

throughout their lifetime due to decay, damage, spoilage, and penalty of other reasons, 

and most of the physical goods undergo decay or deterioration over time [4]. Considering 

to this fact, controlling and maintaining the inventory of deteriorating items becomes a 

challenging problem for decision makers. Chaman developed two-warehouse supply 

chain model with power form stock-dependent demand under the assumption that the 

deterioration rate per unit items are different due to different preservation environments 

[5]. XU et al. considered production-inventory models for a deteriorating item in a single 

vendor-buyer system with constant production and demand rate, and developed Ant 

Colony algorithm to solve the problem [6]. Debasis et al. considered two-warehouse 
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inventory model for a deteriorating item with time-varying demand and fully backlogged 

shortages, and using GA with vary population size to solve the model [7]. 

The differential evolution (DE) algorithm is one of the latest evolutionary optimization 

methods proposed by Storn and Price [8] for complex continuous non-linear functions. 

DE is a stochastic population-based optimization method which uses mutation, crossover, 

and selection operators at each generation to move its population toward the global 

optimum. Over the past ten years, many research indicated that the DE algorithm can 

solve the problem more effectively. Kazemipoor et al. [9] considered the multiskilled 

project portfolio scheduling problem and presented an efficient metaheuristic algorithm 

based on DE, the comparison between the results of DE and Tabu search confirms the 

effectiveness of the DE algorithm. Wang et al. developed an approach based on DE to 

find a close to optimum for the basic JRP [10]. Das and Suganthan [11] surveyed the 

state-of-the-art of the differential evolution and its application. 

The aim of this paper is to develop a practical constraint JRD model with deteriorating 

item based on the early work. Secondly, for solving the problem, a DE algorithm is 

applied. Thirdly, to illustrate the effectiveness and efficiency of the algorithms, extensive 

computational experiments are performed. 

The rest of this paper is organized as follows. Section 2 introduces the mathematical 

model of constraint JRD with deteriorating item. Section 3 develops the DE algorithm and 

presents the procedure to solve the problem. Section 4 illustrates the procedure of 

proposed algorithms with a numerical example. Section 5 summarize the conclusions of 

the present work and provide directions for future research. 

 

2. Mathematical Model of Joint Replenishment and Delivery Problem 

with Deteriorating Item 

The constraint joint replenishment and delivery problem with deteriorating item (which 

is abbreviated as Deter-CJRD for the rest of the paper) is the multi-item inventory 

problem of coordinating the replenishment and delivery of a group of deteriorating items 

that may be jointly ordered from a single supplier under resource restrictions. 

Some common assumptions usually made for the constrained joint replenishment 

problem: 

 The demand rate of each item is deterministic and constant. 

 The unit holding cost of each item is known and constant. 

 The major ordering cost incurred for an order is known and constant. 

 The minor ordering cost incurred for a specific ordered item is known and 

constant. 

 The outbound transportations cost incurred for a specific delivered item is 

known and constant. 

 The customer waiting cost is known and constant. 

 No quantity discount. 

 Stock replenishment is complete when it occurs. 

 The budget constraint on the amount of an order is known and constant. 

 The deterioration rate of item follows exponential distribution. 

The following notation is defined: 

i index of item, i=1,2,...,n 

Di demand rate of item i 

S
W

 major ordering cost 

si
W

 minor ordering cost when item i is included in a group replenishment 

hi
W

 inventory holding cost of item i, per unit per unit time 

si
C
 outbound transportation cost for item i 

wi
C
 customer waiting cost for item i per unit, per unit time 

T basic cycle time (decision variable) 
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ki integer number that decides the replenishment schedule of item i (decision 

variable) 

K n×1 vector that consists of ki, i=1,2,…,n 

fi integer number that determines the outbound delivery schedule of item i (decision 

variable) 

F n×1 vector that consists of fi, i=1,2,…,n 

TC total annual cost for all items, objective function that is to be minimized  

bi unit cost of item i 

B limit on capital that can be invested 

ri unit deterioration cost of item i 

θi deterioration rate of item i. 

The initial inventory level is I0 at time 0. From t=0 to T, the inventory level reduces, 

owing to both demand and deterioration, until it reaches zero level. At this time, shortage 

is accumulated and backlogged. At the end of the cycle, the inventory replenishes and 

again raises the level to I0, as shown in Figure 1. 

 
Inventory level

Time0 T

I0

 

Figure 1. Graphical Representation of Inventory Level 

The inventory level at time t is governed by the Eq. (1). 
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The model for constraint joint replenishment and delivery problem with deteriorating 

item is given by  

(Deter-CJRD) 
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Subject to  

1

n

i i i
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D k T b B



      (5) 

, , , 1, 2 , ...
i i

k Z f Z T R i n
  

       (6) 

Eq. (4) is the total cost to be minimized, that is the sum of the ordering cost (major and 

minor), the inventory holding cost, the outbound transportation cost, the customer waiting 

cost and the deterioration cost. The resource constraint is the limit on capital that can be 
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invested, as given by Eq. (5). Eq. (6) indicates that ki's and fi's are positive integer number 

and T is positive real number. 

To solve the unconstrained JRD, Moon et al. used Eq. (7) as the optimal T in their 

algorithm. 
1 / 2

*

1 1

2 ( ) ( )

W C C Wn n

W Wi i i i i

i i i

i ii i

s f s w h
T S k D h

k f 

  
   
 

              (7) 

The optimality condition of ki is: 

2

2 ( )
( 1) ( 1)
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Similarly, the optimality condition of fi is : 
2 2

( )
( 1) ( 1)

2

C W

i i i i

i i i iC

i

k T D w h
f f f f

s


                     (9) 

 

3. Differential Evolution Algorithm 

In order to solve the constraint joint replenishment and delivery problem with 

deteriorating item, in this section, we present a differential evolution (DE) algorithm 

approach for the Deter-CJRD model. DE algorithm, differing from conventional 

evolutionary optimization methods, such as genetic algorithm (GA), relies on the 

mutation operations as the main operator. The DE algorithm introduces a novel mutation 

operation which is simple and effective. The mutation operation is based on the 

differences of randomly sampled pairs of solution in the population. Furthermore, the 

fitness of an offspring is one-to-one competed with that of the corresponding parent in DE 

algorithm.  

 

3.1. Representation and Initialization 

The DE algorithm for the Deter-CJRD is to find an optimal schedule which can 

get a close to minimum total cost. The appropriate representation of a solution plays 

an important role in the development of DE algorithm. In the Deter-CJRD model, 

the basic cycle T and n integer ki’s and fi’s have to be decided for solving the 

problem. In the DE, ki’s and fi’s are searched through the operations of DE and the 

basic cycle T is determined through the optimality condition of T. For the given ki’s 

and fi’s , the optimal T
*
 can be easily obtained by the Eq. (7). So, in our study, we 

use 2n random number representation for n ki’s and n fi’s, because it is very easy to 

decode our chromosome to a feasible solution. As shown in Figure 2, the decoding 

individual contains two parts. One is for the replenishment schedule and the other is 

for the outbound schedule of each item.  

 

1 1 1 2 2 4 4 3 2 3 2 2

Replenishment 

schedule ki’s

Outbound

schedule fi’s
 

Figure 2. Decoding Individual 

The initial population is created by assigning random integer values of the 

decision variable. Each individual is generated by Eq. (10). 

() , 1, 2 , ..., , 1, 2 , ...,
i j

x ra n d i P O P S IZ E j D     (10) 

Where POPSIZE is the number of individuals; D is the dimension of each 

individuals; rand() is a function which generates a uniform distribution rand number 
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in range [ki
LB

,ki
UB

] or [fi
LB

,fi
UB

].  ki
LB

 and ki
UB

 are the lower and upper bound of ki, 

respectively, and can be defined from the following equations. 

m in

2 ( )
1,

W W W

i i iL B U B

i i

S s D h
k k

T

 
  

 
 

    (11) 

fi
LB

 and fi
UB

 is the lower and upper bound of fi, respectively, and can be defined 

from the following equations. 
2 2
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Tmax and Tmin are defined as follows  
1 / 2
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For a given particular set of ki’s and fi’s, eqs. (4) and (5) can be written as  

1

2
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3

1

n

i i i

i

C D k b



   are constants. 

We take the first order derivative with respect to T, and set it to zero. Then we 

obtain 
0

1 2
/T C C . And for a constraint, we obtain 

1 3
/T B C . According to 

Moon et al. [1], the optimal basic cycle time T follows 
* 0 1

m in ( , )T T T . 

 

3.2. Mutation 

For each target individual Xi={xi1,xi2,…,xiD}, i=1,2,…,POPSIZE, a mutant new 

individual Vi is generated according to  

1 2 3 1 2 3
( ),

i r r r
V X F X X r r r i         (16) 

With randomly chosen integer indexes; [0 , 2 ]F   is a real number called 

mutation factor used to control the amplification of the differential variation.  

 

3.3. Crossover 

To complement the differential mutation search strategy, DE employs uniform 

crossover, which also known as binomial method, to enhance the potential diversity 

of the population. The crossover operator implements a discrete recombination of 

the trial individual Vi and the parent individual Xi to produce the offspring Xi
new

. 

The trial vector will be found using the following rules: 

 i f  ( 0 ,1)  o r  ( )

 o th e rw is e  1, 2 , . . . ,

i j jn e w

ij

i j

v r a n d C R j r n b i

x
x j D

 
 



    (17) 
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Where D is the dimension of Xi; xij refers to the jth element of the individual; vij 

is similarly defined; randj(0,1) is the jth evaluation of a uniform random number 

generator between [0,1]; rnb(i) is a randomly chosen integer in the set {1,2,…,D} 

which ensures the trail vector gets at least one parameter from the mutated vector; 

[ 0 ,1]C R   is a crossover constant. 

 

3.4. Selection 

The selection operator is to determine whether the target (parent) or the new 

vector (offspring) survives to the next generation. If a new vector, 

Xi
new

,i=1,2,…,POPSIZE, has a smaller evaluation function value (total cost) than its 

garget vector, Xi , it is copied to the next generation; otherwise, it is the target 

vector that passes to the next generation. The selection process can be expressed as: 

 
 

 i f  ( ) ( )

    o th e rw is e

n e w n e w

i i i

i

i

X fi tn e s s X fi tn e s s X
X

X

 
 


                     (18) 

Thus the next generation of population either gets better in terms of the fitness 

function or remains constants. 

 

3.5. Stop Criterion 

The termination condition is to stop if no improvement of fitness function is 

made in 50 generations.  

 

4. Numerical Example 

A numerical example will be employed to illustrate the proposed DE algorithm, 

we use the numerical example of Moon et. al., [1] and Wang et. al., [3]. The data for 

this example are given in Table 1. We also assume S
W

=200 and B=25000. Notice 

that, there are resource restriction, bi and B, in our example. 

Table 1. Parameter Values for the Example 

Item i 1 2 3 4 5 6 

Di 

si
W

 

hi
W 

si
C
 

wi
C
 

bi 

ri 

10000 

45 

1 

5 

1.5 

6.25 

1 

5000 

46 

1 

5 

1.5 

6.25 

1 

3000 

47 

1 

5 

1.5 

6.25 

1 

1000 

44 

1 

5 

1.5 

6.25 

1 

600 

45 

1 

5 

1.5 

6.25 

1 

200 

47 

1 

5 

1.5 

6.25 

1 

 

The DE algorithm is compared to the GA algorithm for the same numerical 

example. The results are reported in Table 2. It shows in Table 2 that DE obtains 

better solution than GA does. 
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Table 2. Computational Results under Different Θ 

θ 
DE  GA 

ki fi T
*
 TC ki fi T

*
 TC 

0.00 1,1,1,2,2,4 4,3,2 ,3,2,2 0.1881 4831.71 1,1,1,2,2,4 4,3,2,3,2,4 0.1818 4836.37 

0.02 1,1,1,2,2,4 4,3,2 ,3,2,2 0.1881 4911.71  1,1,1,2,2,5 4,3,2 ,3,2,8 0.1802 4936.51 

0.04 1,1,1,2,2,4 4,3,2 ,3,2,2 0.1881 4991.71  1,1,1,2,2,3 4,3,2 ,3,2,1 0.1830 4998.02 

0.06 1,1,1,2,2,4 4,3,2 ,3,2,2 0.1881 5071.15  1,1,1,2,2,3 4,3,2 ,3,2,4 0.1800 5076.10 

0.08 1,1,1,2,2,4 4,3,2 ,3,2,2 0.1881 5149.38  1,1,1,2,2,4 4,3,2 ,3,2,5 0.1775 5159.95 

0.10 1,1,1,2,2,4 4,3,2 ,3,2,2 0.1881 5226.43  1,1,1,2,2,5 4,3,2 ,3,2,9 0.1743 5258.59 

 

We compare the performance of two algorithms, DE and GA, for 1600 randomly 

generated Deter-CJRDs. The parameter values are all generated from a uniform 

distribution, Di~U[500,5000], si
W

~U[30,50], si
C
~U[0.1si

W
,0.3si

W
], hi

W
~U[0.2,3.0] and 

wi
C
~U[1.2hi

W
,2.0hi

W
] respectively. Every bi is considered as 6.25, i=1,2,…,n. 

Moreover, θ=0.02 is constant. Four different values of the number of items, n=10, 

20, 30 and 50, and four different values of the major ordering cost, S
W

=100, 200, 

300 and 400 are considered. This results in 16 combinations of n and S
W

, and for 

each combination, 100 problems with random parameter values are generated and 

solved. The termination condition is to stop if no improvement is made in 50 

generations. 

A summary of computational results is shown in Table 3.  

Table 3. Comparison of DE and GA 

n S
W

 Best solution problems  DE better than GA (%) 

  DE GA  Num Max Avg. 

10 100 100 100  80 5.2648 0.7359 

 200 100 100  83 1.9952 0.5502 

 300 100 100  86 3.3217 0.7789 

 400 100 100  90 4.4830 0.7540 

20 100 100 100  86 4.4388 1.3800 

 200 100 100  80 4.6668 0.6221 

 300 100 100  76 3.0064 0.6071 

 400 100 100  71 2.1448 0.6581 

30 100 100 100  82 3.2284 1.5014 

 200 100 100  83 4.6256 1.2560 

 300 100 100  81 4.4656  0.7110 

 400 100 100  76 2.0580 0.6614 

50 100 100 100  93 1.8431 0.9628 

 200 100 100  98 3.9306 2.5099 

 300 100 100  100 5.4950 3.3884 

 400 100 100  99 6.9276 3.9919  

 

As show in Table 3, both algorithms can solve the 1600 random generated problems. 

The DE is superior to GA algorithm, especially for n=50.  

 

5. Conclusion 

This paper focuses on the constrained joint replenishment and delivery problem with 

deteriorating item, and developing efficient algorithms to solving it. We introduced the 

DE algorithm to handle the problem. Using comprehensive computational experiments, 

we have shown the performance of the DE. Furthermore, DE is more suitable for solving 
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Deter-CJRD than the GA algorithm. Future research could be the incorporation of 

uncertainty issue in constrained JRD, for example demand and budget. 

 

Acknowledgments 

This work was supported by grant No.12541142 from the Research Program of the 

Education Department of Heilongjiang Province, China. 

 

References 

[1] K. Moon, B. C. Cha and C. U. Lee, “The joint replenishment and freight consolidation of a warehouse 

in a supply chain”, Int. J. Prod Econ. vol. 1, no. 133, (2011). 

[2] B. C. Cha, I. K. Moon and J. H. Park, “The joint replenishment and delivery scheduling of the one-

warehouse, n-retailer system”, Transport Res E-Log., vol. 5, no. 44, (2008). 

[3] L. Wang, D. CX, C. G. Lee, Q. L. F and Y. R. Z, Model and algorithm for fuzzy joint replenishment and 

delivery scheduling with explicit membership function. Int. Journal of Adv Manuf. vol. 66, (2013), pp. 

9-12. 

[4] V. K. Mishra, L. S. Singh and R. Kumar, “An inventory model for deteriorating items with time-

dependent demand and time-varying holding cost under partial backlogging”, Journal of Industrial 

Engineering Int., vol. 4, no. 9, (2013). 

[5] C. Singh and S. R. Singh, “Optimal ordering policy for deteriorating items with power-form stock 

dependent demand under two-warehouse storage facility”, OP search, vol. 2, no. 50, (2013). 

[6] H. Xu, C. Y. Li, and L. B. Zhou, “Research on order problem for perishable products based on ant 

colony algorithms”, J. Harbin University Of Science and Technology, vol. 3, no. 15 (2010). 

[7] D. Debasis, B. K. Mohuby, R Arindam and K. Samarjit, “Two-warehouse production inventory model 

for a deteriorating item with time-varying demand and shortages: a genetic algorithm with varying 

population size approach”, Optimal Engineering, vol. 15, (2014). 

[8] R. Storn and K. K. Price, “Differential evolution- a simple and efficient heuristic for global optimization 

over continuous spaces”, J. Glob Optim., vol. 4, no. 11, (1997). 

[9] H. Kazemipoor, R. T. Moghaddam, P. S. Shahrezaei and A. Azaron, “A differential evolution algorithm 

to solve multi-skilled project portfolio scheduling problems”, Int. Journal of Advance Manufacture 

Technology, vol. 5-8, no. 64, (2013). 

[10] L. Wang, J. He and Y. R. Zeng, “A differential evolution algorithm for joint replenishment problem 

using direct grouping and its application”, Expert Syst., vol. 5, no. 29, (2012). 

[11] S. Das and P. N. Suganthan, “Differential evolution: A survey of the state-of-the-art”, IEEE T Evolution 

Computer, vol. 15, (2011). 

Onli
ne

 V
ers

ion
 O

nly
. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.




