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Abstract

Many vehicle state parameters such as the sideslip angle, yaw rate, and §te angle
are important for the Advanced Driver Assist System hlcle S . In the
past, most methods used to estimate the vehicle state p rs wereNgaséd on models
with directly measured parameters (steering angl , € c) t is paper, we pro-
pose a method to estimate the vehicle state par S (5| e, yaw rate, and
steering angle) based on the Extended Kalman Filté KF) Th is designed to deal
with the bicycle model, linear tire model, a ering w odel with measurements
from in-vehicle sensors such as the eIeQr ability coM system. Therefore, the re-
sults show that the proposed algorith imatin vehicle state parameters, side-
slip angle, yaw rate, and steering a n effewimate the vehicle state parame-

ters when the speed of the vehi Ie@ . The resti{s¥rom this study can be evaluated and
analyzed by evaluating the rg:& squqre%or. In future, the proposed algorithm can
be used not only for the desig an auto a& ontrol system for the tracking vehicle but

also for steering system f@diagnoms\'

Keywords: Ve (’,@e Esti n, Lateral dynamics of the vehicle, Steering Angle,
Side slip angle, e Ext Iman Filter

1. Introd@n @

Intelligent vehicl %e?, automobiles that recognize and judge the surrounding envi-
ronment, generat , and drive themselves, are under development in nations with
advanced auto@ technology. In particular, Advanced Driver Assistance System

(ADASszisi’rih as*Do Not Pass Warning, Collision Avoidance System, Lane Keeping As-

sist Systen Improved Cooperative Collision Warning System [1, 2] are the subject of
active ch. In addition, vehicle safety systems such as the electronic stability control
stem, antilock braking system, and traction control system are also under re-
@. These systems function by obtaining the vehicle state data (velocity, acceleration,
yaw rate, sideslip angle, steering wheel angle, etc.). In particular, ADASs and vehicle
safety systems require the sideslip angle, yaw rate, and steering wheel angle information
to be supplied accurately and continuously in different driving environments to ensure
their stable operation.

Most of the vehicles manufactured these days are equipped with ESC systems. ESC
systems pre-vent the vehicle from under-steering and over-steering when it corners. A
sensor inside the ESC module measures the longitudinal and lateral accelerations and the
yaw rate [3]. Therefore, accurate values of the yaw rate can be obtained directly from the
ESC module attached to the vehicle. The sideslip angle can be measured directly as well,
but the sensor required for the measurement is very expensive. Thus, different methods
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for estimating the model-based sideslip angle using in-vehicle sensors (accelerometers,
gyroscope, and steering angle sensor) or Global Positioning System (GPS) were pro-
posed.

Most model-based sideslip angle-estimation methods are based on nonlinear tire mod-
els such as Pacejka’s Magic Formula model [4] and Dugoff’s tire model [5]. Nonlinear
tire models provide the advantage of measuring the sideslip angle with high precision,
even on low-friction road surfaces or during high-speed driving, which is a driving condi-
tion in which the sideslip angle is high. In this regard, N. Ding and S. Taheri [6] proposed
a method for estimating the sideslip angle and road friction using a recursive least square
algorithm. M. Doumiati, A. Victorino, A. Charara, and D. Lechner [7] proposed a method
to estimate the lateral force and sideslip angle of a vehicle using the EKF. H. Du, J. Lam,
K.C. Cheung, W. Li, and N. Zhang [8] designed a controller with immeasurable premise
variables and suggested a method to estimate the sideslip angle and steering wheel angle
using a Takagi-Sugeno fuzzy observer capable of measuring the sideslip angle. Ifzaddj-*
tion, a method to estimate the sideslip angle and tire-road force using an intera
tiple model filter, which is a model in which both the linear and nonlinearti odels
were applied to an Unscented Kalman Filter (UKF), was proposed to im (@ estima-
tion accuracy [9]. The nonlinear tire model provides a vﬁ@ﬁ‘perfo@ under vari-
ous driving conditions, but its nonlinearity and complexi ighgit requifes a high-end
processor, and involves the calculation of various ters. e%v!, D.M. Bevly, J.
Ryu and J.C. Gerdes [10], and C. Ahn and J. Yoo ropos hod to estimate the
sideslip angle, roll, and tire stiffness [10], al with a metho estimate the sideslip
angle and tire-road friction coefficient [11] ba na Iim& model in which the EKF
is applied using in-vehicle sensors ang 5 data. Furthermore, B.L. Boada, M.J.L.

Boada, and V. Diaz [12] proposed a d to est @e sideslip angle using an artifi-
cial intelligence algorithm-based admﬁl euro@unference system and the UKF.
i u

Although different sideslip @s mating f algorithms based on the tire model
were pro-posed, the steeringu@‘%71 gle is zéys required to estimate the sideslip angle
of a vehicle. Several methods estfmate ng wheel angle of a vehicle directly. The-
se methods include atta an abs tary encoder that prints out the revolution

4]. 1

count [13], or attachi ors such as gyro-scopes [15] or potentiometers that print out
analog voltage si n, recent vehicles are equipped with electric power
steering system se elect otors as a result of the electrification/digitalization of
vehicles [3 ver, A s and vehicle safety systems stop functioning normally if a
fault occur e StEE@’\EH angle-estimating sensor. Therefore, new technologies
that can estimate the g wheel angle indirectly by combining in-vehicle sensor data
are required. Mor his can be used for troubleshooting sensors that directly estimate
the steering wh@gles, which is expected to contribute to increase the safety.

This study preposes a vehicle state data (side-slip angle and steering wheel angle) es-
timating EN%Ahm, which is essential for the stable operation of ADASSs and vehicle safe-
ty syst e EKF algorithm was used to combine nonlinear vehicle models with dif-

fere or data. Furthermore, the ability to estimate vehicle state data for varying
as evaluated through simulations.

2. Estimation of the Steering Angle

2.1. System Configuration

The proposed vehicle state data-estimating algorithm uses the lateral acceleration and
yaw rate data measured by the in-vehicle sensors of the ESC as shown in Figure 1. The
data obtained from the in-vehicle sensors is used to estimate the steering angle using the
EKF based on the bicycle model, linear tire model, and steering wheel angle model.
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Figure 1. System Architecture

2.2. Vehicle Dynamic Model .
In this paper, the three degrees of freedom (DOF) vehicle model, which expw

lateral vehicle dynamics including roll and yaw, was used to analyze/predi hicle’s
lateral motion. Here, the sideslip angle and yaw rate can be e ressed Eqg. (1)
and (2) through a simple model called the bicycle mode ided thg% motion is ne-
glected [16].

ZF-“ — Mt (Z_E-l_ '?] = Mm% (E@ W (1)
g~ }rt 6 (2)

Assuming that the sideslip and steerj values the tire lateral force of
the linear tire model is proportlonal ire si gle as shown in Eq. (3). In addi-

tion, the tire sideslip angle can,b Ximated mematlc relation as shown in Eq.

@ A
By = c,r e;«z(zsa?’ Cor (G = S—“—j ©

= Car(- 5’+—]
: ) ©
\\Q\ ﬁ@%e =5-pg-L
v (5)
OQ @ar = E+£LTT ©)

Calculating the t
Eq. (3) and (4) i
representation

OF vehicle model as a differential equation after substituting
. (1) and (2) provides Eq. (7) and (8) as the result. The state-space
tMis is shown in Eq. (9) [19].

1 C
_{Er:,r' + ':r:r}l'-? {1 +— I[':'_r:,r lf = Corl r}}?’ + ot &

v
d]r’ l . . Cc;'[; R ()
O { Cn‘;'[; + Cr.'r"[r}'g - _“{Cn‘f'[f‘ + En’r'[r"}y +——6
1’1 Iz c (8)
-7 {cw #C) —frt 5 (Carty - )] .[° m‘j;; 5
1
n‘,r '[,r + Cr:r'[r} - va I[':'_r.*‘,r '[,r + Cr:r"[r‘} *rx ,r (9)

The steering wheel angle model can be approximated as shown in Eg. (10) assuming
that the sideslip angle is low. Here, Ris the radius of the curve, which is calculated using
Eq. (11).
le+ 1y L+ iy

=—
R Uy (10)
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Figure 2. Bicycle e V
v, vehicle velocity on x-axis, £: side slip angle}s yaw r&(vehicle moment of

inertia on z-axis, . tire front slip angle ar tife vear sllp,ar%

2.3. Extended Kalman Filter (EKF)

In this paper, the three degrees o [‘\@ icle model, which expresses the
lateral vehicle dynamics inclu nd yaw, used to analyze/predict the vehicle’s
lateral motion. Here, the sidesli e and ate can be expressed as shown in Eq. (1)

and (2) through a simple This s dy ai edict the state variables of vehicles in the
lateral direction (sideslip e, yaw ri%ﬂn steering angle). The EKF is widely used as
t

a vehicle state predi ethod t bines various sensor data [17]. It has the ad-
vantage of being i applic nonlinear systems without requiring any lineariza-
tion processes.? KF can ivided into time update and measurement update, as
shown in Fj

The EK state odel-based algorithm. The system model £ _;and meas-

urement model h; c Iculated directly from the discrete state-space model of a non-
. represent the system noise and measurement noise, respectively.

linear system
Assuming tha\@feature a Zero Mean White Gaussian distribution, this can be ex-
pressed as showmnin Eg. (12) and Eq. (13) [18].

% % = frooa O g 1), @0 ~(0, Q) (12)

z = hy Cep vy, v~ (0, Ry (13)

T@iscrete time state-space equation of the actual system can be expressed in terms

@ sampling time as shown below. It can be separated through the approximation pro-
of Euler’s method as follows.
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Measurement
. . 20, 21,
llmtlal estimates for
%, B / Measurement Update \
Time Update Compute the Kalman Gain K
— p—HT - T -1
Project the system state ahead —! Kie = PcH (HPHY + R)
Roer = f&D Update the State-estimate using the latest measurement
Project the error covariance ahead | €@ R, =%+ [(k(zk - h(fc};))
- _ T
Fevs = AR A"+ Q Update the error covariance matrix

P, = Py — K HP;

Estimate
Ror Byy

Figure 3. Extended Kalman Filter ?\
e O
(14)
(15)

g = xh. 1 +x
The predictive values of the system state vecto‘ err ce are calculated
in the time update part. The system state vector wa - ned as s in Eq. (16). In addi-
tion, the system model can be defined using t@hlcle dy@c model from Eq. (9) and
(15) as shown in Eq. (16).

@

S s o
N\ B -
AN
Bi- 1+[ 4‘%; ar B, %R+L[Cq.!f—cﬂz ]'}ﬁ_lgt—iﬁ}_l]-r

@ l“-’f'[f-l_ C }ﬂh— (Cc‘f'[f + Corly }']"h— ] T + g _y
S
o Vi1
Y (18)
Here, the ma “k, which is required to predict the error covariance, is separated
and calculated own in Eq. (19) after partially differentiating the system model into

Q' repr e system noise. The noise was established by dispersing .¥.and &, which
are sb ents of the system state vectors, as shown in the diagonal matrix of Eq (20).

c
% {1 -— (caf + r:cr}} { 1- {r:&,f.sf Carly }} T mf T
X
_3f) Corly -

state vectgrs. The"matrices obtained through this method are called Jacobians. The matrix

Ay = Bl ey = g{_cr-“f'[f + Cc‘r'[r} T {1 - {Cn'f'[f + Car'[rz]} 1,
I +1,
0 —_— 0
T . - (19
r.rﬁ? o 0
Qy =diagle; o ¢i]=|0 &} 0O (20)
0 0 g7

The Kalman gain, error covariance, and state-estimating value are calculated in the
measurement update part. The estimation vector of this system is defined as shown in Eqg.
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(21). In addition, the measurement model of the system can be defined using the vehicle
dynamics model as shown in Eq. (22).

7= [yal, [uy]; 1)
= hy ey vy) = [a'.}']_. [ {'fc,r + Car )it o { Coply + Carl W+ Carbi-s + 1, (22)
Yh 1

Here, the Jacobian of matrix Hy, which is required to calculate the Kalman gain and er-
ror covariance, is calculated by partially differentiating the system’s measurement model
into a state vector as shown in Eq. (23). The matrix R; represents the sensor noise. Each
noise was established by dispersing the vehicle’s lateral acceleration (a,) and yaw rate
(&), as shown in the diagonal matrix of Eq. (24)

L= — h — __{Cr:; + Cr:r'} { I:'_r:lr'[_,r +Cor } I:'_r.*‘f
dx 0 1

ik [I

ENca
3. Simulation and Results \% @

The Automotive Simulation Models (ASM), V! nam M S (dSPACE) and
Matlab/Simulink were interworked to perform an ne sim to analyze the per-
formance of the proposed steering angle estigagtor. In ad he vehicle parameters
were established as shown in Table 1 usin M’s J%ehicle data. The noise co-
variation for in-vehicle sensor setting w. @) nin Table 2 in order to in-

lished
corporate noise into the ideal vehch{/ @
3 ehlclg‘ meters
Veh|c Pararw Value Unit

Wehucle n(azs\. 1,418 kg

x=xp

RR = d;’_gg [GI'EJ. I'J'::.'!] =

T@e fron nter of Gravity)
to Frapt el, Iy 1.064 m
istalx@ CoG to Rear Wheel, [, 1.596 m
Moment of Inertia, I, 1,850 | kg -m?

)~ 4
I@Cornering) Stiffness of Front Tire, C¢ | 320,000 | N/rad

)
LLateral(Cornering) Stiffness of Rear Tire, Cg, | 290,000 | N/rad

Table 2. Sensor Parameters

% Sensor Parameter Noise | Unit

Acceleration Sensor 1 mjs?

Gyro Sensor 0.1 rad /s
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Figure 4. Simulation Scenario Track ?‘
The simulation scenario is approximately 3000[m] Io d &ompr @s of dif-
ferent radii as shown in Figure 4. The initial Iocatlon |n , and initial
yaw rate were set as 0. The simulation was divided_i scenar nalyze the per-
formance of the proposed algorithm under dri d|t| itft” different vehicle
speeds. In the first scenario, the operator of the deme’vehicle ot exceed 40[km/h]

while driving along the track. In the second.$ceqario, tbe rator of the demo vehicle
does not exceed 80[km/h].
As a result, it was confirmed that ji

e., low vehicle speed below

40[km/h] and general high speed of ed sideslip angle, yaw rate, and
steering angle values are similar t ideal vehg e values.

The root mean squared erro ( E) w Iculated to analyze the estimated system
state variables as shown in Ther re shown in Table 3. In Eq. (25), T is the
total number of samples. Ie 3 sho ere is no major difference between the es-
timated values and r value ver, the estimation accuracy is higher in the
first scenario at IV\' (unde%okm/h]) In addition, the steering angle estimation
accuracy seems tebg Righer i egond scenario at high speed (under 80[km/h]). How-

ifted that ermg angle-estimation algorithm performance is satis-

eatly 6 in both scenarios.
RMSE = | Z{xt )P
@ . (25)

O$ Table 3. Results of the Estimation Parameters

O RMSE
% Estimation Parameter Unit

under 40[km/h] | under 80[km/h]
Side slip angle 0.054 0.063 rad
Yaw rate 0.046 0.046 rod /s
Steering angle 0.017 0.016 rad
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Figure 5. Simulation Results (for Vehicle Speed Below 40[Km/H])
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4. Conclusion

This paper proposed an algorithm to estimate the vehicle state data (sideslip angle, yaw
rate, and steering angle), which is essential in ADASs and vehicle safety systems. The
proposed algorithm can combine different sensor data and uses the EKF, which is based
on a highly nonlinear vehicle dynamic model, tire model, and steering angle model.

The vehicle state estimation performance of the proposed algorithm was analyzed at
different speeds (low speed of 40[km/h] and high speed 80[km/h]). The simulation results
revealed that in both scenarios, the state variables (sideslip angle, yaw rate, and steering
angle) were calculated accurately. The steering angle-estimation performance indicator
was verified from the RMSE values.

These results suggest that the proposed algorithm assures effective performance under
different driving conditions with various speeds despite using the bicycle and linear tire
models that are simpler than the Four Wheel Vehicle Model, which is complex in e Ve-,
hicle state variables estimation field. Therefore, the proposed algorithm, which
the in-vehicle sensor data to estimate the steering wheel angle indirectly,
troubleshoot sensors that estimate the steering angle directly and contnb@ he im-
provement of safety. 4
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