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Abstract 

Many vehicle state parameters such as the sideslip angle, yaw rate, and steering angle 

are important for the Advanced Driver Assist System and vehicle safety system. In the 

past, most methods used to estimate the vehicle state parameters were based on models 

with directly measured parameters (steering angle, yaw rate, etc.). In this paper, we pro-

pose a method to estimate the vehicle state parameters (sideslip angle, yaw rate, and 

steering angle) based on the Extended Kalman Filter (EKF). The EKF is designed to deal 

with the bicycle model, linear tire model, and steering wheel model with measurements 

from in-vehicle sensors such as the electronic stability control system. Therefore, the re-

sults show that the proposed algorithm for estimating the vehicle state parameters, side-

slip angle, yaw rate, and steering angle can effectively estimate the vehicle state parame-

ters when the speed of the vehicle varies. The results from this study can be evaluated and 

analyzed by evaluating the root mean square error. In future, the proposed algorithm can 

be used not only for the design of an automatic control system for the tracking vehicle but 

also for steering system fault diagnosis. 

 

Keywords: Vehicle State Estimation, Lateral dynamics of the vehicle, Steering Angle, 

Side slip angle, Yaw rate, Extended Kalman Filter 

 

1. Introduction 

Intelligent vehicles, i.e., automobiles that recognize and judge the surrounding envi-

ronment, generate paths, and drive themselves, are under development in nations with 

advanced automobile technology. In particular, Advanced Driver Assistance System 

(ADASs) such as Do Not Pass Warning, Collision Avoidance System, Lane Keeping As-

sist System, and Improved Cooperative Collision Warning System [1, 2] are the subject of 

active research. In addition, vehicle safety systems such as the electronic stability control 

(ESC) system, antilock braking system, and traction control system are also under re-

search. These systems function by obtaining the vehicle state data (velocity, acceleration, 

yaw rate, sideslip angle, steering wheel angle, etc.). In particular, ADASs and vehicle 

safety systems require the sideslip angle, yaw rate, and steering wheel angle information 

to be supplied accurately and continuously in different driving environments to ensure 

their stable operation.  

Most of the vehicles manufactured these days are equipped with ESC systems. ESC 

systems pre-vent the vehicle from under-steering and over-steering when it corners. A 

sensor inside the ESC module measures the longitudinal and lateral accelerations and the 

yaw rate [3]. Therefore, accurate values of the yaw rate can be obtained directly from the 

ESC module attached to the vehicle. The sideslip angle can be measured directly as well, 

but the sensor required for the measurement is very expensive. Thus, different methods 
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for estimating the model-based sideslip angle using in-vehicle sensors (accelerometers, 

gyroscope, and steering angle sensor) or Global Positioning System (GPS) were pro-

posed. 

Most model-based sideslip angle-estimation methods are based on nonlinear tire mod-

els such as Pacejka’s Magic Formula model [4] and Dugoff’s tire model [5]. Nonlinear 

tire models provide the advantage of measuring the sideslip angle with high precision, 

even on low-friction road surfaces or during high-speed driving, which is a driving condi-

tion in which the sideslip angle is high. In this regard, N. Ding and S. Taheri [6] proposed 

a method for estimating the sideslip angle and road friction using a recursive least square 

algorithm. M. Doumiati, A. Victorino, A. Charara, and D. Lechner [7] proposed a method 

to estimate the lateral force and sideslip angle of a vehicle using the EKF. H. Du, J. Lam, 

K.C. Cheung, W. Li, and N. Zhang [8] designed a controller with immeasurable premise 

variables and suggested a method to estimate the sideslip angle and steering wheel angle 

using a Takagi-Sugeno fuzzy observer capable of measuring the sideslip angle. In addi-

tion, a method to estimate the sideslip angle and tire-road force using an interacting mul-

tiple model filter, which is a model in which both the linear and nonlinear tire models 

were applied to an Unscented Kalman Filter (UKF), was proposed to improve the estima-

tion accuracy [9]. The nonlinear tire model provides a very high performance under vari-

ous driving conditions, but its nonlinearity and complexity are high, it requires a high-end 

processor, and involves the calculation of various parameters. Therefore, D.M. Bevly, J. 

Ryu and J.C. Gerdes [10], and C. Ahn and J. Yoon [11] proposed a method to estimate the 

sideslip angle, roll, and tire stiffness [10], along with a method to estimate the sideslip 

angle and tire-road friction coefficient [11] based on a linear tire model in which the EKF 

is applied using in-vehicle sensors and GPS data. Furthermore, B.L. Boada, M.J.L. 

Boada, and V. Diaz [12] proposed a method to estimate the sideslip angle using an artifi-

cial intelligence algorithm-based adaptive neuro-fuzzy inference system and the UKF. 

Although different sideslip angle-estimating fusion algorithms based on the tire model 

were pro-posed, the steering wheel angle is always required to estimate the sideslip angle 

of a vehicle. Several methods estimate the steering wheel angle of a vehicle directly. The-

se methods include attaching an absolute rotary encoder that prints out the revolution 

count [13], or attaching sensors such as gyro-scopes [15] or potentiometers that print out 

analog voltage signals [14]. In addition, recent vehicles are equipped with electric power 

steering systems that use electric motors as a result of the electrification/digitalization of 

vehicles [3]. However, ADASs and vehicle safety systems stop functioning normally if a 

fault occurs in the steering wheel angle-estimating sensor. Therefore, new technologies 

that can estimate the steering wheel angle indirectly by combining in-vehicle sensor data 

are required. Moreover, this can be used for troubleshooting sensors that directly estimate 

the steering wheel angles, which is expected to contribute to increase the safety. 

This study proposes a vehicle state data (side-slip angle and steering wheel angle) es-

timating algorithm, which is essential for the stable operation of ADASs and vehicle safe-

ty systems. The EKF algorithm was used to combine nonlinear vehicle models with dif-

ferent sensor data. Furthermore, the ability to estimate vehicle state data for varying 

speeds was evaluated through simulations.  

 

2. Estimation of the Steering Angle 
 

2.1. System Configuration  

The proposed vehicle state data-estimating algorithm uses the lateral acceleration and 

yaw rate data measured by the in-vehicle sensors of the ESC as shown in Figure 1. The 

data obtained from the in-vehicle sensors is used to estimate the steering angle using the 

EKF based on the bicycle model, linear tire model, and steering wheel angle model. 
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Figure 1. System Architecture 

 

2.2. Vehicle Dynamic Model 

In this paper, the three degrees of freedom (DOF) vehicle model, which expresses the 

lateral vehicle dynamics including roll and yaw, was used to analyze/predict the vehicle’s 

lateral motion. Here, the sideslip angle and yaw rate can be expressed as shown in Eq. (1) 

and (2) through a simple model called the bicycle model, provided the roll motion is ne-

glected [16]. 

                              (1) 

                                              (2) 

Assuming that the sideslip and steering angles have low values, the tire lateral force of 

the linear tire model is proportional to the tire sideslip angle as shown in Eq. (3). In addi-

tion, the tire sideslip angle can be approximated by a kinematic relation as shown in Eq. 

(4). 

                                  (3) 

                                     (4) 

                                                  (5) 

                                                       (6) 

Calculating the three DOF vehicle model as a differential equation after substituting 

Eq. (3) and (4) into Eq. (1) and (2) provides Eq. (7) and (8) as the result. The state-space 

representation of this is shown in Eq. (9) [19]. 

                 (7) 

                     (8) 

              (9) 

The steering wheel angle model can be approximated as shown in Eq. (10) assuming 

that the sideslip angle is low. Here,  is the radius of the curve, which is calculated using 

Eq. (11). 
 

                                                 (10) 
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                                                              (11) 

 

 

Figure 2. Bicycle Model 

: vehicle velocity on x-axis, : side slip angle,  :  yaw rate,  : vehicle moment of 

inertia on z-axis, : tire front slip angle, : tire rear slip angle 

 

2.3. Extended Kalman Filter (EKF) 

In this paper, the three degrees of freedom (DOF) vehicle model, which expresses the 

lateral vehicle dynamics including roll and yaw, was used to analyze/predict the vehicle’s 

lateral motion. Here, the sideslip angle and yaw rate can be expressed as shown in Eq. (1) 

and (2) through a simple This study aims to predict the state variables of vehicles in the 

lateral direction (sideslip angle, yaw rate, and steering angle). The EKF is widely used as 

a vehicle state predicting method that combines various sensor data [17]. It has the ad-

vantage of being directly applicable to nonlinear systems without requiring any lineariza-

tion processes. The EKF can be divided into time update and measurement update, as 

shown in Figure 3.  

The EKF is a state space model-based algorithm.  The system model  and meas-

urement model  can be calculated directly from the discrete state-space model of a non-

linear system.  and  represent the system noise and measurement noise, respectively. 

Assuming that they feature a Zero Mean White Gaussian distribution, this can be ex-

pressed as shown in Eq. (12) and Eq. (13) [18]. 

                                         (12) 

                                                    (13) 

The discrete time state-space equation of the actual system can be expressed in terms 

of the sampling time as shown below. It can be separated through the approximation pro-

cess of Euler’s method as follows. 
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Figure 3. Extended Kalman Filter 

 

                                                        (14) 

                                                     (15) 

The predictive values of the system state vector and the error covariance are calculated 

in the time update part. The system state vector was defined as shown in Eq. (16). In addi-

tion, the system model can be defined using the vehicle dynamic model from Eq. (9) and 

(15) as shown in Eq. (16).  

                                                    (16) 

                                                          (17) 

 

 (18) 

Here, the matrix A_k, which is required to predict the error covariance, is separated 

and calculated as shown in Eq. (19) after partially differentiating the system model into 

state vectors. The matrices obtained through this method are called Jacobians. The matrix 

 represents the system noise. The noise was established by dispersing  , which 

are sub elements of the system state vectors, as shown in the diagonal matrix of Eq. (20). 

       (19) 

                            (20) 

The Kalman gain, error covariance, and state-estimating value are calculated in the 

measurement update part. The estimation vector of this system is defined as shown in Eq. 
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(21). In addition, the measurement model of the system can be defined using the vehicle 

dynamics model as shown in Eq. (22).  

                                                      (21) 

  (22) 

Here, the Jacobian of matrix , which is required to calculate the Kalman gain and er-

ror covariance, is calculated by partially differentiating the system’s measurement model 

into a state vector as shown in Eq. (23). The matrix   represents the sensor noise. Each 

noise was established by dispersing the vehicle’s lateral acceleration ( ) and yaw rate 

( ), as shown in the diagonal matrix of Eq. (24).  

                   (23) 

                                        (24) 

 

3. Simulation and Results 

The Automotive Simulation Models (ASM), Vehicle Dynamic Models (dSPACE) and 

Matlab/Simulink were interworked to perform an off-line simulation to analyze the per-

formance of the proposed steering angle estimator. In addition, the vehicle parameters 

were established as shown in Table 1 using the ASM’s demo vehicle data. The noise co-

variation for in-vehicle sensor setting was established as shown in Table 2 in order to in-

corporate noise into the ideal vehicle state data.  

Table 1. Vehicle Parameters 

Vehicle Parameter Value Unit 

Vehicle Mass,  1,418  

Distance front CoG (Center of Gravity) 

to Front Wheel,  
1.064  

Distance front CoG to Rear Wheel,  1.596  

Yaw Moment of Inertia,  1,850  

Lateral(Cornering) Stiffness of Front Tire,  320,000  

Lateral(Cornering) Stiffness of Rear Tire,  290,000  

Table 2. Sensor Parameters 

Sensor Parameter Noise Unit 

Acceleration Sensor 1  

Gyro Sensor 0.1  
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Figure 4. Simulation Scenario Track 

The simulation scenario is approximately 3000[m] long and comprises curves of dif-

ferent radii as shown in Figure 4. The initial location, initial speed, initial yaw, and initial 

yaw rate were set as 0. The simulation was divided into two scenarios to analyze the per-

formance of the proposed algorithm under driving conditions with different vehicle 

speeds. In the first scenario, the operator of the demo vehicle does not exceed 40[km/h] 

while driving along the track. In the second scenario, the operator of the demo vehicle 

does not exceed 80[km/h]. 

As a result, it was confirmed that in both scenarios, i.e., low vehicle speed below 

40[km/h] and general high speed of 80[km/h], the measured sideslip angle, yaw rate, and 

steering angle values are similar to the ideal vehicle state values. 

The root mean squared error (RMSE) was calculated to analyze the estimated system 

state variables as shown in Eq. (25). The results are shown in Table 3. In Eq. (25), T is the 

total number of samples. Table 3 shows that there is no major difference between the es-

timated values and reference values. However, the estimation accuracy is higher in the 

first scenario at low speed (under 40[km/h]). In addition, the steering angle estimation 

accuracy seems to be higher in the second scenario at high speed (under 80[km/h]). How-

ever, it can be verified that the steering angle-estimation algorithm performance is satis-

factory and not greatly affected in both scenarios. 

                                                         (25) 

Table 3. Results of the Estimation Parameters 

Estimation Parameter 
RMSE 

Unit 
under 40[km/h] under 80[km/h] 

Side slip angle 0.054 0.063  

Yaw rate 0.046 0.046  

Steering angle 0.017 0.016  
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(a) Vehicle Speed 

 

(b) Side Slip Angle 

 

(c) Yaw Rate 

 

(d) Steering Angle 

Figure 5. Simulation Results (for Vehicle Speed Below 40[Km/H]) 
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(a) Vehicle Speed 

 

(b) Side Slip Angle 

 

(c) Yaw Rate 

 

(d) Steering Angle 

Figure 6. Simulation Results (for Vehicle Speed Below 80[Km/H]) 
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4. Conclusion 

This paper proposed an algorithm to estimate the vehicle state data (sideslip angle, yaw 

rate, and steering angle), which is essential in ADASs and vehicle safety systems. The 

proposed algorithm can combine different sensor data and uses the EKF, which is based 

on a highly nonlinear vehicle dynamic model, tire model, and steering angle model.  

The vehicle state estimation performance of the proposed algorithm was analyzed at 

different speeds (low speed of 40[km/h] and high speed 80[km/h]). The simulation results 

revealed that in both scenarios, the state variables (sideslip angle, yaw rate, and steering 

angle) were calculated accurately. The steering angle-estimation performance indicator 

was verified from the RMSE values. 

These results suggest that the proposed algorithm assures effective performance under 

different driving conditions with various speeds despite using the bicycle and linear tire 

models that are simpler than the Four Wheel Vehicle Model, which is complex in the ve-

hicle state variables estimation field. Therefore, the proposed algorithm, which combines 

the in-vehicle sensor data to estimate the steering wheel angle indirectly, is expected to 

troubleshoot sensors that estimate the steering angle directly and contribute to the im-

provement of safety. 
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