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Abstract Y\/

Launch Vehicle software has played an important role in Launch V@ ystem.
However, the reliability assessment of Launch Vehicle software is stj problem
due to the complexity of Launch Vehicle software. Fail Sﬂ iction ¢ an effective
approach of Launch Vehicle reliability evaluation, ) a dietion of software
has not yet been fully explored. In this paper, @ ov B
Launch Vehicle software failure prediction (MBNG) is pr?p%se . In MBNG, unique
features of Launch Vehicle software is consi@ as an i@tant part in the modeling
process, which improves the effectiveness iS’novel model™Experiments are conducted
to verify the effectiveness of MBNG ﬁg nd or@'e its performance with classic
models. ’\

Keywords: Failure predlﬂ&ch Vel@ software, Bayesian network, Markov
1. Introduction \Q

With the rapi meent computer hardware and Internet, Launch Vehicle
software has beep ed w aunch Vehicle systems. In order to guarantee the
experience 0 nch Vehicle software, it is necessary to design test
and rlg(% However the defects in some software are usually hard to

S

eliminate. |
remaining defects. |
software failure i

Regarding s re failure predlctlon a number of models have been proposed [1-4].

In partitégge opular models are based on classic probability theory [1-3], and there

nomical to pay too much effort on detect and remove the
ituation, it is important for testing engineering to predict the

do exist ther models which improves these popular models. The underlying hinders
of thei ication in practice is their restrictive assumptions, for example, mathematical
actability, data completeness and perfect defect removal. These restrictive assumptions
Iimited the development and applications of these probability models and thus
reSéarchers have investigated other approaches to predict software failure. One method is
to release the assumptions by making no distribution assumptions on the failure process
[5], but this advantage is offset by the additional noise.

In addition to the probability models, some non-probability models, i.g., neural
network, have been applied [3,6-8].Recent researches have shown some advantages of
neural network in predictive capabilities than the traditional NHPP model [9]. However,
there are still some drawbacks by using this approach. Firstly, due to the randomness of
the network structure, it is difficult to represent the interrelationships between the input
variables. Secondly, it is necessary to ensure the integrality of the neural network. The
neural network cannot process effectively with absent data of some input nodes. In this
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situation, Bai et al. proposed a Markov Bayesian network approach for software failure
prediction [4]. In this model, the restrictive assumptions are released because the
rationality and accuracy of these assumptions are hard to verify. As prediction of software
failures need to take into account of both previous failure data and the structure &status of
software under test, Bayesian network is utilized to capture the underlying relationships
between the identified factors and the potential ones.

Bayesian network can deal with such complex problems, such as software failure
predictions in large avionics systems, by using Bayesian network to consider both prior
information and available expert experience. Bayesian networks can explore many
relative factors of the system and express their relationships efficiently. The combination
of precise probability distributions and expert prior information also make it suitable for
uncertain environment. Due to these valuable properties, Bayesian networks have been
increasingly applied in many fields [10-14]. In particular, it has been found to use in
reliability only in the last seven years [15]. A framework combining the diverse souwggz}fo

evidence is provided by [16-17] to assess system dependability. It has also been n
software reliability research. It has been used to predict software rellabll rIy
phases of the development by incorporating mformatlon ahead of testj and to
develop a causal model for software defect rates pr n‘[19] t Iso been

rtification of

combined with fault trees for reliability analysis [20] u d f\/

COTS (Commercial Off-The-Shelf) software relia

However, there are several challenges when a@xg the %y Bayesian network
model for Launch Vehicle software failure predi Launch/ehicle software has a
specific feature, that is, the test results a@lated h the external hardware
environment. In previous Markov Bayesia ork mode y the interactions between
the specific software and its external men n3|dered and software status is
excluded. Therefore, how to impro reV| ov Bayesian network model for
software failure prediction sho Idée major re ch question in this paper. Secondly,

in our previous work, onIy am is ugechto validate the effectiveness of proposed
Markov Bayesian network mo The ity of the model to more Launch Vehicle

software is another resear, roblem
In this paper, a Bay etwork model for Launch Vehicle software

prediction (MBN roposed th|s new model, both the software status and the
external hardwa ronme cansidered in the software failure prediction. In this
case, this el can Jetterreflect the characteristics of Launch Vehicle software
testing and make @asonable predictions. Specifically, the software status is a
mutable structure th?& to provide a more flexible description of the Launch Vehicle

software. Since ther large variety of the testing environment, operational profile, and
test suite partiti@n,\the adoption of such a mutable structure could be useful when
applying to different Launch Vehicle software. In order to validate the effectiveness of
MBNG, iments with real life software subjects are conducted and the results are
sess the model.

of this paper is structured as follows. Section 2 describes the model of MBNG.
n 3, detailed modeling and deduction process is introduced. Experiments are

cted to validate the MBNG model in Section 4. The discussion and future work are
concluded in Section 5.

2. Bayesian Network Model

The basic form of a Bayesian network is stated as follows: a Bayesian network is a
directed probability graph, connecting the relative variables with arcs, and this kind of
connection expresses the conditional dependence between the variables. A Bayesian
network is defined as the set of {D, S, P}, where

(1) Dis aset of variables (or nodes).
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(2) Sis aset of conditional probability distributions (CPD).
S = {p(D), ..., p(D, / Parents(D,))}.Parents(D) < D

nodes of D,

p(D, / Parents(D,) is the conditional distribution of D;.
(3) P is aset of marginal probability distributions.

P =1{n[D) . p, (D, )}. h @) is the probability distribution of D;.

In a Bayesian network, variables are used to express the events or objects. The problem
could be modeled as the behavior of these variables. In general, we first determine the
probability distribution of each variable and the conditional probability distribution
between them based on expert experience. Then the joint distributions of these variables
can be derived from these distributions. Finally, deductions can be developed for some

stands for all the parent

variables of interest using some other known variables. 0
A Bayesian network is generally based on Bayesian statistical theory. Com
other traditional data analysis methods, a Bayesian network has the followin ?ﬂ‘es
(1) A Bayesian network can increase the precision of the a alysis by ¢ Il the
variables of interest. A typical example is a problem Wo |n ne output
variables, in which the two input variables mlght be ted of the input
variables can be observed, most of the models are p edlc the ut. However, if
one of the inputs cannot be observed, a preC|s iction %F/oe a wild wish. A
Bayesian network provides a novel way by sing” the cor ns between the two
variables.

the interdependence of the variables ¢ tud d rder to improve prediction. For

example, for a market analyst, a str rwar n is whether it is worthwhile to

increase the intensity of s Sk smg cam to gain more sales of a certain
fitsi

(2) A Bayesian network can model % sal reIauon@N s between variables. Thus,

product.. Bayesian networks elp « ine whether the advertisement is an
influencing factor and the ext
A Bayesian network (Wi

tatistical methods can combine the relative
available data effectively. It is useful for the
situations with the\pnow informati specially in which little or no data are available or
data collection i

3. Model@nd D on

Let Xi(1<=i<n) 6& i(1= i=n) respectively denote the remaining defect numbers
after the ith fai the time between the (i-1)th and ith failure. During the defects
removal process, I¥is possible to both remove and introduce defects, and hence Xi:1 is
dependen\%i. he time interval between software failures is influenced by the number
of remajri efects. Assuming that the next failure is independent of time, then the
Mar a@/esian network can be used to model this problem, and the network graph is

Figurel. In this paper, we will denote this as the MBN model.
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Figure 1. Model of Failure Prediction for Launch Vehicle
*

3.1. Determine the Distributions

In order to use the Markov Bayesian netwoerl top tware failure, the
following three distributions are essential: one I1S=the initial x ribution of software

defects, another is the distribution of softwar re tlme% respect to the number of
defects, and the third is distribution of.t ber of r al defects under software

failure.
The initial distribution of softw ects &ﬂd be estimated using software
metrics from the development r re produ

When a software failure occuks, twar rammers should try to detect and remove
the defect. Sometimes it |s omm e to remove the defect together with
introducing a new one. aII the t of the number of defects is decreasing. In
this regard, the dlstrl f X+ ca assumed normal with a mean of E[p(zi)xi]
(p(zi)>0) and a st V|at|0n z)). Note that, here the p(z;) denotes the status of
defect removm G the skill level differences between the defect-
removing pregganier. D compIeX|ty of Launch Vehicle software, these two
Id relate e status of the Launch Vehicle software under test. In
general, the software r'Iity is increasing during the defect removal process, that is,
p(zi)< 1. Thus, the @wnship between xi+1 and xi follows Xi+1= p(zi)xitw where w is a
normal distributj om variable with mean 0.

We can now'gonsider the failure of software with x; defects inside. Assuming that the
number G%@cutable code line is N, then the average defects per line is xi/N. By
assumi the number of the executive code line per time unit, its failure probability is
p w@defect is executed, then the software failure probability per unit time is

@ 1-@-p)™™ =1—exp{—hxi |n|511_ p)}

=1-exp{-Bx} (1)
p= —ﬂln(l— p) >0
where N

It can be assumed that When the number of the remaining defects is xi, the software
failure is of exponential distribution as following

p(Y; %) =(@—e ") et @
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In addition, the distribution of software status should be related to its previous status

and the defect removal process, i.e., P(z.) =Pz, '). Note that, the initial
distribution of software status relates to the test suite and its partition, that

is, p(z,) = f (suite, partition), which can be expressed with a beta distribution beta(a;,b;).

Besides, the number of remaining defects should be related to the distribution of software

Status Wthh means p(ZHl) p(zl+l | ZI' |) beta(a|+l’ +1) .

3.2. Software Failure Prediction when Parameters in Distributions are Known

As in standard Markov Bayesian network, the joint probability density of Xi,...,Xn,
Yl,...,Yn |S

(X Xy X Vi Yoo Vo) = P(X,) Hp(y.IX) HD(X.+1|X)

and the marginal probability den5|ty is ?y

p(X1iX21"'vXn) = p(Xl) H p(xi+1 | Xi)
i=1
The conditional probability density is @
P X X Vi Yo \/
PO Xgreen X | Y10 Yoo ¥y ) = SR \
1 Y211 Jn

According to this equation, the estim odes ncan be estimated as

X1, X2, Xn and therefore, Xn+ can be %@thr (Xn+1|Xn) . In a similar way, Y«

can be obtained by P(Yiua [ Xni2)

In fact, the density is hard pute ra tlce Therefore, the Gibbs sampling
approach can be adopted to ximate t tions. According to the Gibbs sampling
theory the key point is to@samples distribution.

POX X100 X s Yareens Vi)

p( | X, 1" 1n’ ’” 'yn)_
e X'Q“l * LICTR TR ORI R R R /)

k=2, Lg} ®3)
Where t in
=], p(x1 Xy & Y, 0,
=], PO [ ] ply, Mo,
= p(XD{&my. |X)|1:£ p(y; IX)H |0(><.+1Ix)|]:[1 PO 1%) [, PO 1) PO% 1% ) POK o 1 %)X, @
a umerator is

= POX X0 X0u Y1y Yoo Vi)
= p(><1)1_[ p(y, | xi)H P(%i %)

i=k+1 i=k+1

= p(xl)l_[ (Y % )H p(Y; %, )H P %, )H P(%a 1) - PO %) POG X ) PR 1) -

Therefore, the distribution PO X X s Xy X X Y Yoo Vi) can be sampled.
As for the Launch Vehicle software status, the initial status should be beta(as,b:). And

according to P(.1) = P(z.12.%) =beta(a.,.b.1) the values of @+1:Piican be calculated
as
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a,=3+trXx+f
b.,=b+n—f (6)

Where f denotes the number of failures during testing, and " is the number of tests
between the ith and (i+1)th failure. In fact, the coefficient ;i can be estimated by the test
suite and partition, which should be determined by the test engineers and will not be
discussed in this paper.

4. Case study

Experiments on three Launch Vehicle software subject programs are conducted to
validate the effectiveness of the proposed approach. In order to evaluate the effectiveness,
this novel model is compared with two traditional models: the Jelinski-Moranda model
(JM model) and the Goel-Okumoto NHPP model (GO model). These two models are.
usually taken as the benchmark in failure prediction research. In this section, the f
these three models are compared and analyzed. ?“\

4.1. Subject Programs %
In this paper, Three subject programs are adopted fo @otl n, that is, ¥aunch Vehicle
Ie

Telemetry Data Real-time Processing Software namical system

Control Software and Launch Vehicle Measurlng ntrol

Telemetry Data Real-time Processing So re is a p program alone with
Borland C++ Builder 6. This program i e with %usmg Visual Component
Library and contains about 10532 Ilnes The amtical system Control software
is a standard Win32 appllcatlon IS, d according to the Launch
VehicleDynamical system. The M and %I Software is an example program
alone with QT.

The number of seeded f e evant study seeded in these software are 116,
126, and 71, respectively._In thi stu pllcatlon should have passed a series of
testing procedures befor ase, an “obV10us” bugs should be eliminated. In this

bugs in this study indBugs.

4.2. Exper@ Res It
With the a umptlonéthe initial remaining number x; and the number of remaining

defects after th fallure xi+1 follow normal distribution, i.e. % U Nz, 07) ,

X1 1% O N (.o we could assume %1 =7% FW with WUN(.9) The gistribution
of softwaﬂ@ure time interval is determined by Eq. (1). As to the initial value of the
paramet@ the distribution, we could get them from the analysis of software and the
t ti@rocess. In this case, it is assumed that 4 =17 =1 7,=015 /=085

%. The computing process is described in Section 3. The failure prediction is a

dyMamic rolling process, which means the (i+1)th failure time is predicted with the former
i failure times available.

Figure 3(a), (b), (c) illustrate the time interval between failures (y) with the failure

order number (n) for the three models and the data. From the results, we see that the

MBNG model has good estimation and prediction capabilities.

case, a static analysi 1.e., FindBugs, is adopted to verify that none of the reported
% dete
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Figure 2. Failure Data and Prediction Data fr Methods
According to the above results, this novel M odel [)% the most accurate
failure data prediction among three predictiopamodels. With the increasing number of

failures, JM and GO models prowde ina t fallure Comparing JM and GO
models, it can also be seen that JM m VIdes re aecurate failure data than GO
model when the number of failures i mber of failures increase, GO

model provides more accurate fallur han J‘Q\ el.

4.3. Threats to Validity A

Threats to construct vahidity in thl@ dy are mainly on the measurement of the
performance of a predj odel. In study, providing accurate failure prediction is
the only target fo odels. , the prediction of Launch Vehicle software failure
using all three are rec@ a d compared with the true failure data to determine
each model.

this study, a
software. These mo ed the same failure data produced by the same Launch Vehicle
operation proces , the design bias can be avoided as far as we can.

The externa?@ty for such an empirical study is whether the obtained results can be
generalizwpt is study, the proposed MBNG model does not rely on any specific
assumptj Launch Vehicle software, thus this model should be a general one. In
addi(& four software subjects can represent a variety of Launch Vehicle software,

i ve different lines of code, defects and operational profile. Thus, we are confident
% the effectiveness of MBNG model.

5. Discussion

Applications of Launch Vehicle software have been important in Launch Vehicle
system. The reliability of such kind of software should be paid more attention to
guarantee good user experience. Due to the complexity of Launch Vehicle, failure
prediction models for common software might ignore the features of Launch Vehicle
software, which might reduce their performance. Thus, a novel MBNG model is proposed
by considering more information, including the initial distribution of software defects and
the software status. In this way, MBNG is considered more effective in failure prediction
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for Launch Vehicle software. Experiments on three Launch Vehicle software show that
MBNG model can provide more accurate failure data than JM and GO models. In the
future, more Launch Vehicle software should be considered for further validation of
MBNG model. Another direction is to reconsider the assumptions of MBNG model, such
as, the normal assumption of existing number of defects in the software.
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