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Abstract 

Launch Vehicle software has played an important role in Launch Vehicle system. 

However, the reliability assessment of Launch Vehicle software is still a hard problem 

due to the complexity of Launch Vehicle software. Failure prediction can be an effective 

approach of Launch Vehicle reliability evaluation, whereas failure prediction of software 

has not yet been fully explored. In this paper, a Markov Bayesian Network model for 

Launch Vehicle software failure prediction (MBNG) is proposed. In MBNG, unique 

features of Launch Vehicle software is considered as an important part in the modeling 

process, which improves the effectiveness of this novel model. Experiments are conducted 

to verify the effectiveness of MBNG model and compare its performance with classic 

models. 
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1. Introduction 

With the rapid development of computer hardware and Internet, Launch Vehicle 

software has been adopted widely in Launch Vehicle systems. In order to guarantee the 

quality and user experience of Launch Vehicle software, it is necessary to design test 

plans carefully and rigorously. However, the defects in some software are usually hard to 

eliminate. It is much less economical to pay too much effort on detect and remove the 

remaining defects. In this situation, it is important for testing engineering to predict the 

software failure in a more accurate way. 

Regarding software failure prediction, a number of models have been proposed [1-4]. 

In particular, the popular models are based on classic probability theory [1-3], and there 

do exist some other models which improves these popular models. The underlying hinders 

of their application in practice is their restrictive assumptions, for example, mathematical 

tractability, data completeness and perfect defect removal. These restrictive assumptions 

have limited the development and applications of these probability models and thus 

researchers have investigated other approaches to predict software failure. One method is 

to release the assumptions by making no distribution assumptions on the failure process 

[5], but this advantage is offset by the additional noise.  

In addition to the probability models, some non-probability models, i.g., neural 

network, have been applied [3,6-8].Recent researches have shown some advantages of 

neural network in predictive capabilities than the traditional NHPP model [9]. However, 

there are still some drawbacks by using this approach. Firstly, due to the randomness of 

the network structure, it is difficult to represent the interrelationships between the input 

variables. Secondly, it is necessary to ensure the integrality of the neural network. The 

neural network cannot process effectively with absent data of some input nodes. In this 
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situation, Bai et al. proposed a Markov Bayesian network approach for software failure 

prediction [4]. In this model, the restrictive assumptions are released because the 

rationality and accuracy of these assumptions are hard to verify. As prediction of software 

failures need to take into account of both previous failure data and the structure &status of 

software under test, Bayesian network is utilized to capture the underlying relationships 

between the identified factors and the potential ones.  

Bayesian network can deal with such complex problems, such as software failure 

predictions in large avionics systems, by using Bayesian network to consider both prior 

information and available expert experience. Bayesian networks can explore many 

relative factors of the system and express their relationships efficiently. The combination 

of precise probability distributions and expert prior information also make it suitable for 

uncertain environment. Due to these valuable properties, Bayesian networks have been 

increasingly applied in many fields [10-14]. In particular, it has been found to use in 

reliability only in the last seven years [15]. A framework combining the diverse sources of 

evidence is provided by [16-17] to assess system dependability. It has also been applied in 

software reliability research. It has been used to predict software reliability in the early 

phases of the development by incorporating information ahead of testing [18] and to 

develop a causal model for software defect rates prediction [19]. It has also been 

combined with fault trees for reliability analysis [20], and used for the certification of 

COTS (Commercial Off-The-Shelf) software reliability [21]. 

However, there are several challenges when applying the Markov Bayesian network 

model for Launch Vehicle software failure prediction. Launch Vehicle software has a 

specific feature, that is, the test results are related on both the external hardware 

environment. In previous Markov Bayesian network model, only the interactions between 

the specific software and its external environment are considered and software status is 

excluded. Therefore, how to improve the previous Markov Bayesian network model for 

software failure prediction should be the major research question in this paper. Secondly, 

in our previous work, only one program is used to validate the effectiveness of proposed 

Markov Bayesian network model. The applicability of the model to more Launch Vehicle 

software is another research problem. 

In this paper, a Markov Bayesian network model for Launch Vehicle software 

prediction (MBNG) is proposed. In this new model, both the software status and the 

external hardware environment are considered in the software failure prediction. In this 

case, this new model can better reflect the characteristics of Launch Vehicle software 

testing and thus make more reasonable predictions. Specifically, the software status is a 

mutable structure that aims to provide a more flexible description of the Launch Vehicle 

software. Since there is a large variety of the testing environment, operational profile, and 

test suite partition, the adoption of such a mutable structure could be useful when 

applying to different Launch Vehicle software. In order to validate the effectiveness of 

MBNG, experiments with real life software subjects are conducted and the results are 

analyzed to assess the model. 

The rest of this paper is structured as follows. Section 2 describes the model of MBNG. 

In Section 3, detailed modeling and deduction process is introduced. Experiments are 

conducted to validate the MBNG model in Section 4. The discussion and future work are 

concluded in Section 5. 

 

2. Bayesian Network Model 

The basic form of a Bayesian network is stated as follows: a Bayesian network is a 

directed probability graph, connecting the relative variables with arcs, and this kind of 

connection expresses the conditional dependence between the variables. A Bayesian 

network is defined as the set of {D, S, P}, where 

(1)  D is a set of variables (or nodes). 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol.11, No.11 (2016) 

 

 

Copyright ⓒ 2016 SERSC      327 

(2)  S is a set of conditional probability distributions (CPD).  

S = { ( ), ..., ( / Parents( ))}.Parents( ) 
1 n n i

p D p D D D D
 stands for all the parent 

nodes of D,   

i i
(D / Parents(D )p

is the conditional distribution of Di. 

(3)  P is a set of marginal probability distributions.  

= { ( ), ..., ( )}
1 1 n n

P p D p D
. 

( )
i i

p D
is the probability distribution of Di. 

In a Bayesian network, variables are used to express the events or objects. The problem 

could be modeled as the behavior of these variables. In general, we first determine the 

probability distribution of each variable and the conditional probability distribution 

between them based on expert experience. Then the joint distributions of these variables 

can be derived from these distributions. Finally, deductions can be developed for some 

variables of interest using some other known variables.  

A Bayesian network is generally based on Bayesian statistical theory. Compared with 

other traditional data analysis methods, a Bayesian network has the following properties: 

(1) A Bayesian network can increase the precision of the analysis by considering all the 

variables of interest. A typical example is a problem with two input and one output 

variables, in which the two input variables might be correlated. If both of the input 

variables can be observed, most of the models are able to predict the output.  However, if 

one of the inputs cannot be observed, a precise prediction might be a wild wish. A 

Bayesian network provides a novel way by using the correlations between the two 

variables. 

(2) A Bayesian network can model the causal relationships between variables. Thus, 

the interdependence of the variables could be studied in order to improve prediction. For 

example, for a market analyst, a straightforward question is whether it is worthwhile to 

increase the intensity of some advertising campaign to gain more sales of a certain 

product.. Bayesian networks can help determine whether the advertisement is an 

influencing factor and the extent of its influence. 

A Bayesian network with Bayesian statistical methods can combine the relative 

knowledge in the problem domain and the available data effectively. It is useful for the 

situations with the prior information, especially in which little or no data are available or 

data collection is costly. 

 

3. Modeling and Deduction 

Let Xi(1≤ i≤ n) and Yi(1≤ i≤ n) respectively denote the remaining defect numbers 

after the ith failure and the time between the (i-1)th and ith failure. During the defects 

removal process, it is possible to both remove and introduce defects, and hence Xi+1 is 

dependent on Xi. The time interval between software failures is influenced by the number 

of remaining defects. Assuming that the next failure is independent of time, then the 

Markov Bayesian network can be used to model this problem, and the network graph is 

given in Figure1. In this paper, we will denote this as the MBN model.  
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Z1 Z2 ZnZ3 ...

X1 X2 XnX3 ...

Y1 Y2 YnY3 ...
  

Figure 1. Model of Failure Prediction for Launch Vehicle Software 

3.1. Determine the Distributions 

In order to use the Markov Bayesian network model to predict software failure, the 

following three distributions are essential: one is the initial distribution of software 

defects, another is the distribution of software failure time with respect to the number of 

defects, and the third is distribution of the number of removal defects under software 

failure. 

The initial distribution of software defects p0(x) could be estimated using software 

metrics from the development or software product. 

When a software failure occurs, software programmers should try to detect and remove 

the defect. Sometimes it is a common practice to remove the defect together with 

introducing a new one. Overall, the tendency of the number of defects is decreasing. In 

this regard, the distribution of xi+1can be assumed normal with a mean of E[p(zi)xi] 

(p(zi)>0) and a standard deviation of zi). Note that, here the p(zi) denotes the status of 

defect removing, and zi) reflects the skill level differences between the defect-

removing programmer. Due to the complexity of Launch Vehicle software, these two 

parameters should relate to the status of the Launch Vehicle software under test. In 

general, the software reliability is increasing during the defect removal process, that is, 

p(zi)< 1. Thus, the relationship between xi+1 and xi follows xi+1= p(zi)xi+w where w is a 

normal distribution random variable with mean 0. 

We can now consider the failure of software with xi defects inside. Assuming that the 

number of executable code line is N, then the average defects per line is xi/N. By 

assuming h is the number of the executive code line per time unit, its failure probability is 

p when one defect is executed, then the software failure probability per unit time is 

 

/ ln(1 )
1 (1 ) 1 exp

1 exp 

 
     

 

  

ihx N i

i

hx p
p

N

x
                                            (1) 

where
ln(1 ) 0    

h
p

N . 

It can be assumed that when the number of the remaining defects is xi, the software 

failure is of exponential distribution as following 
(1 )

( | ) (1 )
 

  
  

xi
i ix e y

i ip y x e e
                                           (2) 
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In addition, the distribution of software status should be related to its previous status 

and the defect removal process, i.e., 1 1( ) ( | , ) i i i ip z p z z x
. Note that, the initial 

distribution of software status relates to the test suite and its partition, that 

is, 1( ) ( , )p z f suite partition
, which can be expressed with a beta distribution beta(ai,bi). 

Besides, the number of remaining defects should be related to the distribution of software 

status, which means 1 1 1 1( ) ( | , ) ( , )    i i i i i ip z p z z x beta a b
. 

 

3.2. Software Failure Prediction when Parameters in Distributions are Known 

As in standard Markov Bayesian network, the joint probability density of X1,…,Xn, 

Y1,…,Yn is 

1 2 1 2 1 1

1 1

( , ,..., , , ,..., ) ( ) ( | ) ( | )

 

   
n n

n n i i i i

i i

p x x x y y y p x p y x p x x

 
and the marginal probability density is 

1 2 1 1

1

( , ,..., ) ( ) ( | )



 
n

n i i

i

p x x x p x p x x

. 

The conditional probability density is  

1 2 1 2
1 2 1 2

1 2

( , ,..., , , ,..., )
( , ,..., | , ,..., )

( , ,..., )
 n n

n n

n

p x x x y y y
p x x x y y y

p y y y
.  

According to this equation, the estimates of nodes 1 2, ,..., nX X X
can be estimated as 

1 2, ,..., nx x x , and therefore, 1nx can be obtained through 1( | ) nnp x x . In a similar way, 1ny  

can be obtained by 11( | ) nnp y x . 

In fact, the density is hard to compute in practice. Therefore, the Gibbs sampling 

approach can be adopted to approximate the equations. According to the Gibbs sampling 

theory the key point is to get samples from the distribution. 

1 2 1 2
1 2 1 1 1 2

1 2 1 1 1 2

( , ,..., , , ,..., )
( | , ,..., , ,..., , , ,..., )

( , ,..., , ,..., , , ,..., )

( 2,..., 1)

 

 



 

n n
k k k n n

k k n n

p x x x y y y
p x x x x x x y y y

p x x x x x y y y

k n       (3) 

Where the denominator is 

1 2 1 2

1

1

1 2 1

1 1 1 1 1

1 1 1 1

( , ,..., , , ,..., )

( ) ( | )

( ) ( | ) ( | ) ( | ) ( | ) ( | ) ( | ) ( | )



  

   

     





 





    

k

k

k

n n k
x

n

i i k
x

i

k n k n

i i i i i i i i k k k k k k k
x

i i k i i k

I p x x x y y y dx

p x p y x dx

p x p y x p y x p x x p x x p y x p x x p x x dx
(4) 

and the numerator is 

1 2 1 2

1

1 1

1 1

1 2 1

1 1 1 1 1

1 1 1 1

( , ,..., , , ,..., )

( ) ( | ) ( | )

( ) ( | ) ( | ) ( | ) ( | ) ( | ) ( | ) ( | )





 

  

   

     





 

 

   

n n

n n

i i i i

i i

k n k n

i i i i i i i i k k k k k k

i i k i i k

II p x x x y y y

p x p y x p x x

p x p y x p y x p x x p x x p y x p x x p x x
(5) 

Therefore, the distribution 1 2 1 1 1 2( | , ,..., , ,..., , , ,..., ) k k k n np x x x x x x y y y
 can be sampled.  

As for the Launch Vehicle software status, the initial status should be beta(a1,b1). And 

according to 1 1 1 1( ) ( | , ) ( , )    i i i i i ip z p z z x beta a b
, the values of 1 1, i ia b

can be calculated 

as 

Onli
ne

 Vers
ion

 O
nly

. 

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.



International Journal of Multimedia and Ubiquitous Engineering 

Vol.11, No.11 (2016) 

 

 

330   Copyright ⓒ 2016 SERSC 

1

1





  

  

i i i i i

i i i i

a a x f

b b n f
                                                       (6) 

Where if denotes the number of failures during testing, and in
is the number of tests 

between the ith and (i+1)th failure. In fact, the coefficient i can be estimated by the test 

suite and partition, which should be determined by the test engineers and will not be 

discussed in this paper. 

 

4. Case study 

Experiments on three Launch Vehicle software subject programs are conducted to 

validate the effectiveness of the proposed approach. In order to evaluate the effectiveness, 

this novel model is compared with two traditional models: the Jelinski–Moranda model 

(JM model) and the Goel–Okumoto NHPP model (GO model). These two models are 

usually taken as the benchmark in failure prediction research. In this section, the results of 

these three models are compared and analyzed. 

 

4.1. Subject Programs 

In this paper,Three subject programs are adopted for validation, that is, Launch Vehicle 

Telemetry Data Real-time Processing Software, Launch Vehicle Dynamical system 

Control Software and Launch Vehicle Measuring and Control Software. 

Telemetry Data Real-time Processing Software is an example program alone with 

Borland C++ Builder 6. This program is coded with C++ using Visual Component 

Library and contains about 10532 lines of code. The Dynamical system Control software 

is a standard Win32 application, which is designed according to the Launch 

VehicleDynamical system. The Measuring and Control Software is an example program 

alone with QT. 

The number of seeded faults relevant to this study seeded in these software are 116, 

126, and 71, respectively. In this study, the application should have passed a series of 

testing procedures before release, and thus “obvious” bugs should be eliminated. In this 

case, a static analysis tool, i.e., FindBugs, is adopted to verify that none of the reported 

bugs in this study can be detected by FindBugs. 

 

4.2. Experimental Results 

With the assumption that the initial remaining number x1 and the number of remaining 

defects after the ith failure xi+1 follow normal distribution, i.e. 1 1 1( , )x N  
, 

1 1 1| ( , )i i i ix x N     ,we could assume 1i ix x w  
, with 

(0, )w N 
. The distribution 

of software failure time interval is determined by Eq. (1). As to the initial value of the 

parameters in the distribution, we could get them from the analysis of software and the 

testing process. In this case, it is assumed that 1 17 
, 0 1 

, 0 0.15 
, 0 0.85 

, 

1  . The computing process is described in Section 3. The failure prediction is a 

dynamic rolling process, which means the (i+1)th failure time is predicted with the former 

i failure times available.  

Figure 3(a), (b), (c) illustrate the time interval between failures (y) with the failure 

order number (n) for the three models and the data. From the results, we see that the 

MBNG model has good estimation and prediction capabilities. 
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(a) Telemetry Data Real-time Processing Software Failure Data and Prediction 

 

(b) Dynamical System Control Software Failure Data and Prediction 
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C) Measuring and Control Software Failure Data and Prediction 

Figure 2. Failure Data and Prediction Data from Three Different Methods 

According to the above results, this novel MBNG model provides the most accurate 

failure data prediction among three prediction models. With the increasing number of 

failures, JM and GO models provide inaccurate failure data. Comparing JM and GO 

models, it can also be seen that JM model provides more accurate failure data than GO 

model when the number of failures is small. As the number of failures increase, GO 

model provides more accurate failure data than JM model. 

 

4.3. Threats to Validity 

Threats to construct validity in this case study are mainly on the measurement of the 

performance of a prediction model. In this study, providing accurate failure prediction is 

the only target for these models. Thus, the prediction of Launch Vehicle software failure 

using all three models are recorded and compared with the true failure data to determine 

the performance of each model. 

Threats to internal validity usually are about possible bias in experimental design. In 

this study, all the three models are adopted to predict the failure date of Launch Vehicle 

software. These models used the same failure data produced by the same Launch Vehicle 

operation process. Thus, the design bias can be avoided as far as we can. 

The external validity for such an empirical study is whether the obtained results can be 

generalized. In this study, the proposed MBNG model does not rely on any specific 

assumption of Launch Vehicle software, thus this model should be a general one. In 

addition, the four software subjects can represent a variety of Launch Vehicle software, 

which have different lines of code, defects and operational profile. Thus, we are confident 

about the effectiveness of MBNG model. 

 

5. Discussion 

Applications of Launch Vehicle software have been important in Launch Vehicle 

system. The reliability of such kind of software should be paid more attention to 

guarantee good user experience. Due to the complexity of Launch Vehicle, failure 

prediction models for common software might ignore the features of Launch Vehicle 

software, which might reduce their performance. Thus, a novel MBNG model is proposed 

by considering more information, including the initial distribution of software defects and 

the software status. In this way, MBNG is considered more effective in failure prediction 
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for Launch Vehicle software. Experiments on three Launch Vehicle software show that 

MBNG model can provide more accurate failure data than JM and GO models. In the 

future, more Launch Vehicle software should be considered for further validation of 

MBNG model. Another direction is to reconsider the assumptions of MBNG model, such 

as, the normal assumption of existing number of defects in the software. 
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