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Abstract 

In this paper, a machine-learning approach called Sparse Representation 

Classification(SRC) Viterbi Algorithm is proposed for automatic chord recognition in 

music. We extracted Pitch Class Profile(PCP) features or Log PCP from raw audio and 

achieved sparse representation of classes via 
1
-norm minimization on feature space to 

recognize 24 major and minor triads. This recognition model is evaluated MIREX'09 

dataset including the Beatles corpus. Our method is also compared with various methods 

that entered the Music Information Retrieval Evaluation exchange (MIREX) in 2013 and 

2014. Experimental results demonstrate that our method has good accuracy rate in 

recognizing signal chord and has fewer train data. 

 

Keywords: Chord Recognition; Sparse Representation Classification; Viterbi 

Algorithm; Log Pitch Class Profile 

 

1. Introduction 

A musical chord can be defined as a set of notes played simultaneously. A succession 

of chords over time forms the harmony core in a piece of music. Hence compactly 

representing the overall harmonic content and structure of a song often starts with labeling 

every chord in it. Automation of chord labeling is also called chord recognition, which 

finds many applications such as music segmentation, music similarity identification, and 

audio thumb nailing [1-2]. For these reasons and others, automatic chord recognition has 

been one of the main fields of interest in musical information retrieval (MIR) in the last 

few years. 

The features used in chord recognition may differ from a method to another but are in 

most cases variants of the Pitch Class Profile (PCP) introduced by Fujishima [3]. PCP is 

also called chroma vector, which is often a 12-dimensional vector, whose each component 

represents the spectral energy or salience of a semi-tone on the chromatic scale regardless 

of octave. The calculation of an audio recording into a chroma representation is based 

either on the short-time Fourier transform (STFT) in combination with binning strategies 

[4] or on the constant Q transform (CQT) [5]. The succession of these chroma vectors 

over time is often called chromagram and gives a good representation of the musical 

content of a piece. 

The second part of the chord recognition is the chord labeling of each chord. Our chord 

recognition system is based on the sparse representation-based classification (SRC) [6], 

which has been proposed with amazing identification capability in recent years. Based on 

a giving 12-dimensional PCP features, SRC discriminately selects the subset that most 

compactly expresses the input signal and rejects all other possible but less compact 
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representations. This classification has been applied into many applications and achieved 

perfect performance. If it uses the transitions between chords, SRC could easily be 

incorporated into Viterbi algorithm. This is the first time that we apply SRC and Viterbi 

algorithm into chord recognition. Experiments demonstrate that its perfect discrimination 

capability compared with some other classifications. 

The remainder of this paper is organized as follows: Section 2 reviews previous the 

state-of-the-art methods on this area; Section 3 gives a description of our construction of 

the feature vector; Section 4 detailedly describes our sparse approach and Viterbi 

algorithm; Section 5 gives results on MIREX'09 dataset and a comparison with the other 

methods; In Section 6, we draw conclusions and directions for future work suggested. 

 

2. Related Work 

In audio chord estimation, it mainly includes the feature extraction, modelling 

techniques, evaluation strategies and so on. Many features used, such as non-negative 

least squares(NNLS) [7], chroma DCT-reduced log pitch(CRP) [8], loudness based 

chromagram(LBC) [9], Mel PCP(MPCP) [10]. For auto chord analysis, the most popular 

feature is a chromagram, also known as chroma vectors or Pitch Class Profile (PCP). In 

[3], Fujishima developed a real-time chord recognition system, where he derived a 12-

dimensional pitch class profile from the DFT of the audio signal, and performed pattern 

matching using the binary chord type templates. Lee also used binary chord templates, 

this time for the 24 major/minor triads [11]. He introduced a new input feature called 

Enhanced Pitch Class Profile (EPCP) using the harmonic product spectrum. Gómez and 

Herrera used Harmonic Pitch Class Profile (HPCP) as the feature vector, which is based 

on Fujishima's PCP, and correlated it with a chord or key model adapted from 

Krumhansl’s cognitive study [12]. 

In modelling techniques, it usually uses the templates-fitting methods [3, 13-15]. 

Besides templates-fitting methods, it is widely used machine-learning methods such as 

hidden Markov Model (HMM)[16-20] and DBNs(Dynamic Bayesian Networks)[7, 9] for 

this recognition process. 

In our auto chord recognition method, like most of the methods, it is composed of 

extracted features and recognition chord process. 

 

3. Feature Vectors 

First of all, the recognition system extracts a sequence of suitable feature vectors from 

the audio signal. In our system, the feature vectors are PCP. 

Like most chord recognition systems, a chromagram or a PCP vector is used as the 

feature vectors. Müller and Ewert propose feature vectors 12-dimensional Quantized 

PCP[8] which avoids a possible frequency resolution and is sufficient to separate musical 

notes of low frequency comparing with others. 

The calculation of feature vectors PCP can be divided into the following steps: (1) 

Using the constant Q transform to calculate the 36-bin chromagram; (2)Mapping spectral 

chromagram to a particular semitone; (3) segmenting the audio signal with beat tracking 

algorithm; (4)Reducing the 36-bin chromagram to 12-bin chromagram based on beat-

synchronous segmentation. (5)Logarithm and normalization of 12-bin chromagram. Refer 

to [19] for more detailed steps on how to calculate chromagram. 

(1) 36-bin chromagram calculation. Using the constant Q transform, it can get 
 cqtX k

 

of a audio signal 
 x m
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where k  is the bin position, 
 

kNw m
is the hamming window and its 

length /k k sN Qf f . And kf  is the center frequency of the k bin and sf  is the sample 

frequency. In this paper, the music signal is down-sampled to 11025Hz. 

By adding all 
 cqtX k

that correspond to a particular frequency, then it gets 36-bin 

chromagram of each frame. The specific formula is as follows: 

   
1

=0

= + , =1,2,...,36
M

cqt

m

QPCP p X p mb p



                                  (2) 

Where M is the total number of octaves and b is the number of bins per octave. 

(2)Chromagram tuning. In the 36-bin chromagram, 3 bins represent one note in the 

octave. Each spectral components of 36-bin is maped to a particular semitone. The 

mapping formula is as follows: 

 2 0( ) 36 log mod36s kp k f N k f                                        (3) 

(3)beat-synchronous segmentation. In our system, it use the beat tracking with dynamic 

programming method proposed by Daniel P.W. Ellis [21]. This approach has been found 

to work very well in many types of music. Segmenting the audio signal with beat tracking 

algorithm has additional advantage that the chroma feature is a function of beat segments, 

rather than time. 

(4)12-bin chromagram reduction. Finally, averaging the each spectral components of 

36-bin in beat segments and summing them in semitones, thus the dimension of 

chromagram is reduced to 12 from 36. Then the chromagram of audio music can 

represented with these 12 dimensional vectors. 

(5)Logarithm and normalization of 12-bin chromagram. 
 12QPCP p

 is the 12-bin 

chromagram. It can get the normalized value with p-norm and logarithm. The formula is 

as follows: 

   log 10 12log ( 1)QPCP p C QPCP p  
                                  (4) 

   log log/ ( )normQPCP p QPCP p QPCP p
                              (5) 

If it performs the Logarithm and normalization, the chromagram is called Log PCP. In 

step (5), if it has only normalization, it is called PCP. 

As can be seen in Figure 1, the left picture shows a PCP of C major triad. The right one 

shows its Log PCP, as we can see, the strongest peaks are found at C, E, and G, since C 

major triad comprises three notes at C(root), E(third), and G(fifth). From the Figure 1, it 

can see that LPCP is clear than PCP. 
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Figure 1. PCP and LPCP of C Major Triad 
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4. Feature Vectors 

In our chord recognition method, the system includes two sections: (1) Sparse 

representation-based classification (SRC); (2) Viterbi algorithm. If it uses labeled musical 

fragments, then the system uses SRC method and only relies solely on frame-wise 

classification. The method doesn’t need amount of training data. If it has amount of 

training data, the system can add Viterbi algorithm by using transitions between chords to 

recognize chords. 

 

4.1 Sparse Representation-based Classification 

First, if it selects matrix 1 2 1,1 1,2 ,[ , , ] [ , , ]
k

M N

K K nW W W W c c c   
 by 

collecting   training PCP features of all K  chord classes, where M  is the dimension of 

the feature set and N  is the Number of the samples. Chord type [1, ]i K contains in
 

samples, its chromagram denoted by ,1 ,2 ,[ , , ]
ii i i nc c c

. For a given PCP feature of test 

sample y  from subject chord i , can be rewritten in terms of all training samples as: 

0

My Wx R
                                                           (6) 

where 0 ,1 ,2 ,[0, ...,0, , , ..., ,...,0]
i

T

i i i n

Nx    R  is a coefficient vector whose 

entries are mostly zero except the values corresponding to the i -th class. 

As the entries of the vector 0x  encode the identity of the test sample y , it is tempting 

to attempt to obtain it by solving the linear system Eq.(6). 

Recent development in the emerging compressed sensing theory and sparse 

representation reveals that if the solution 0x  sought is sparse enough, the solution to the 

system of Eq.(6) is equivalent to the following 1 -minimization problem: 

1 1
ˆ arg minx x subject to y Wx 

                                       (7) 

Actually, noise and modeling error may lead to small nonzero entries associated with 

multiple object classes. For each class i , one can approximate the given test sample y  as 

 1
ˆ ˆ

i iy W x , where : N

i

N R R  is the characteristic function which selects the 

coefficients associated with the i -th class. We then calculate the residual between y  and 

ˆ
iy : 

   1 2
ˆ

i ir y y W x 
                                                  (8) 

Finally, we classify y  based on these approximations by assigning it to the object class 

that minimizes the residual, as follows: 

   arg mini iidentity y r y
                                           (9) 

In our system two chord types are used, i.e., major and minor, and 12 for each chord 

type. One each for all 12 members of the chromatic scales: C Major, C minor, C# Major, 

C# minor... A# Major, A# minor, B Major, B minor. Each class contains 50 labeled 

musical fragments which select from the Beatles albums. And the number of labeled 

musical fragments is 1200. The training dictionary W  is composed of 1200 labeled 

musical fragments’ PCP feature. The given test sample is PCP feature of musical 

fragment to estimate chord. 
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4.2 Sparse Representation-based Classification 

In SRC method, it uses the residuals 
 ir y

 to recognize the chord. The method 

recognizes the chord on frame-wise classification. If it uses transitions between chords, it 

can improve the recognition rates of chord. Our system uses the Viterbi algorithm. 

Suppose the system has hidden N  states, and we denote each state as 
, [1: ]iS i K

. The 

observed events are 
, [1: ]tQ t T

. The current observed events 

1 2{ , , }, [1: ]TQ Q Q Q t T  
. ijA

 represents the probability chord iS
 jump to chord jS

. 

At an arbitrary time point t  , for each of the states iS
, a partial probability 

( )t iS
 is 

defined to indicate the probability of the most probable path ending at the state iS
, given 

the current observed events 1 2, , tQ Q Q
:

1( ) max( ( ) ( , ) ( | ))t i t j j i t i
j

S S A S S P Q S    
. Here, 

we assume that we already know the probability 1( )t jS   for any of the previous states 

jS
 at time 1t  . 

( | )t iP Q S
 is the current observation probability. After having all the 

objective probabilities for each state at each time point, the algorithm seeks from the very 

end backwards to the beginning to find the most probable path of states for the given 

sequence of observation events
1

1
( ) arg[max( ( ) ( , ))]t t j j i

j N
i S A S S  

 
 

. Where 
( )t i

 indicates 

which state is the most optimal state at time t  based on the probability computed in the 

first stage. 

The Viterbi algorithm is as follows: 

Algorithm 2: Vertibi algorithm                     

1: Initialization: 1( ) ( | ), ( ) 0, 1t i i i tS P Q S i i K    
. 

2: Recursion: 
1

1

( ) ( ( ) ( , )) ( | ), 2maxt i t j j i t i
j N

S S A S S P Q S t T  
 

    

, 

1
1

( ) arg[max( ( ) ( , ))]t t j j i
j N

i S A S S  
 

 
. 

3: Termination: 

*

1
arg max[ ( )]T t i

i N
q S

 


, 

* max[ ( )]t i
i

P S
. 

4: Path Backtracking: 
* *

1 1( ) 1, 2...1t t tq q t T T     
. 

In our method, the initialization observation probability i
 is equal to 1/24. The 

observed events are PCP features ty
, where ty

 is the PCP feature of t th frame. And 

current observation probability is 
 i tr y

 and replaces the 
( | )t iP Q S

 in Viterbi algorithm. 

iS
 represents the chord 

[1: ]i K
, where K  is the number of chord and set to 24. 

Figure 2 is the comparison of ground truth chord and estimated chord of the Beatles 

song Misery. In the top figure, it only uses the SRC method to recognize the chord and the 

bottom uses SRC and Viterbi decoding. The ground truth chord is represented in pink and 

the estimated chord labels are in blue. From the Figure 2 it can see that the estimation is 

more stable when it uses the Viterbi than without. 
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(a) A Comparison of  Groud Truth Chord and Estimated Chord of SRC with PCP
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(b) A Comparison of  Groud Truth Chord and Estimated Chord of SRC(Viterbi) with PCP
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Figure 2. A Comparison of Ground Truth Chord and Estimated Chord 

 

5. Evaluation 

For evaluation, we use the MIREX’09 dataset in Audio Chord Estimation task of 

MIREX. The dataset consists of 12 Beatles albums (180 songs, PCM 44 100Hz, 16 bits, 

mono). Besides the Beatles albums, in 2009, an extra dataset was donated by Matthias 

Mauch which consists of 38 songs from Queen and Zweieck. 

To evaluate the quality of an automatic transcription, a transcription is compared to 

ground truth created by one or more human annotators. According to \citePauwels2013 

the chord symbol recall (CSR) is a good metric to evaluate performances of good results. 

Because pieces of music come in a wide variety of lengths, we will weight the CSR by 

the length of the song when computing an average for a given corpus. This final number 

is referred to as the weighted chord symbol recall (WCSR). In the paper, recognition rate 

and CSR are equivalent for a song. And recognition rate and WCSR is equivalent for a 

given corpus or dataset. 

Our method is also compared to the following methods that entered MIREX 2013 and 

MIREX 2014. 

MIREX 2013: 

·CB4 and CB3: Taemin Cho & Juan P. Bello[22] 

·KO1and KO2: Maksim Khadkevich & Maurizio Omologo[23] 

·NMSD1 and NMSD2: Yizhao Ni, Matt Mcvicar, Raul Santos-Rodriguez[24] 
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·CF2 : Chris Cannam, Matthias Mauch, Matthew E. P. Davies[25] 

·NG1 and NG2: Nikolay Glazyrin[26] 

·PP3 and PP4: Johan Pauwels & Geoffroy Peeters[27] 

·SB8: Nikolaas Steenbergen & John Ashley Burgoyne[28] 

MIREX 2014: 

·KO1: Maksim Khadkevich & Maurizio Omologo[29]  

·CM3: Chris Cannam, Matthias Mauch[30] 

·JR2: Jean-Baptiste Rolland[31] 

More details about these methods can be found from the corresponding MIREX 

websites - http://www.music-ir.org/mirex/wiki/MIREX_HOME. 

Figure 3 presents the results with SRC method on the MIREX'09 dataset. In the Figure 

3, the method SRC plus Viterbi with LPCP feature has better performance than others. 
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Figure 3. A Comparison of SRC' Recognition Rates with Different Features 

Figure 4 presents the results obtained by these chord recognition systems on the 

MIREX'09 dataset. In the Figure 4, the SRC method is referred to SRC+Viterbi method. 

The rates of recognition show that our SRC method with LPCP features has high 

recognition rate than most of state of the art. More specifically, our SRC(LPCP) approach 

is lower 3.1 percent than the best score method (KO1) in MIREX 2014. But our SRC 

method has fewer train data than previous methods. 

 

6. Conclusion 

In this paper, we have presented a new machine learning model SRC+Viterbi for chord 

estimation. In comparison with previous work, our new approach presents good 

performance. The main ingredients of our new approach are calculation of PCP features, 

sparse representation classification and Viterbi algorithm. Our method need fewer train 

data and parameters than most of HMM method. 

As for perspective, we envisage the following lines of work. First, this paper only 

involved maj-min chord estimation which is a part of chord transcription task. Future 

work will consider adding recognition of more complex chords to our work. This will find 

many applications in the field of MIR such as song identification, query by similarity or 

structure analysis. Second, in this work we take the effect of different features in SRC. So 

Improving PCP features to make them more suitable for chord recognition have a long 

way to go. Finally, we can use the SRC method when the audio music is a piece of 

fragment not a whole song. 
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Figure 4. A Comparison of SRC' Recognition Rates With Other Methods 
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