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Abstract
<

Aiming at such shortcomings of traditional Bat algorithm as low r?&@n
convergence, premature convergence, slow convergence, an improved B %@! on
inertia weight factor and Lévy flight (ILBA) has been proposed, which @ e two
modifications on update equations of bat flying position in BA, using in ht factor
to keep the flight inertia of bat individual, adaptively adju pr0|t n mechanism of
the algorithm in different iteration periods, Igoti chieve better
convergence precision and altering the strateg post u ate of bats from
Brownian random walks into Lévy flights strateg ffective d local optimism of
the algorithm and guarantee its exploration nism Wh%ﬁlklng advantage of heavy-

tailed effect of Lévy flight to speed up m nvergen means of 4 typical test
functions simulation, the results show th A boa faster convergence and superior

optimal performance compared to tr@ I BA&&
r

Keywords: Bat algorithmﬁ eight f%, évy flight, Heuristic optimization

1. Introduction @
Novel heuristic algdr s have

that simulates the\%h nature

se%%d in recent years: the krill herd algorithm (KH)
krill swarms [1], the pigeon-inspired optimization

(P10O) that simu e pigeo ing home [2], and the spider monkey optimization
algorithm ts m s the search of spider monkey for food [3]. These heuristic
algorithms ss the icated non-linear optimization problem by simulating the
behaviors of living ¢ in nature. However, there is no heuristic algorithm which can

solve all optimizati blems alone [4-6].
The bat alga&BA) [7]is a meta-heuristic algorithm that Yang XinShe proposed in
I

2010. It i heuristic algorithm that simulates preying of bat in the dark. BA is
uncompli&ld- and easy to implement, outperforming GA and PSO in terms of
conver accuracy and efficiency [8]. The problem with BA, though, is its low
c ce accuracy and proneness to prematurity and local optimum. It is very
e in solving the low-dimension problem, but its performance degrades with the
ingp€ase in dimensionality [8]. The adaptive bat algorithm (ABA) [9] addressed the
premature convergence of the original BA by self-adapting the flight speed and direction
of individual bats. An evolving bat algorithm (EBA) was proposed in [10], which
achieves a balance between the local search and global search abilities of BA by using
diverse distribution of herds and the invasive weed optimization algorithm (IWO). It was
proposed in [11] to balance the local search and global search abilities by adjusting the
loudness and pulse emission rate of individual bats. The Lévy bat algorithm (LBA) in [12]
and [13] provided an approach to premature convergence of BA by using the Lévy flight
search strategy, but its convergence rate is low and the convergence accuracy is poor.

ISSN: 1975-0080 IJMUE
Copyright © 2016 SERSC



International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016)

This paper proposes a novel bat algorithm on inertia weight factor and Lévy flight
(ILBA) which improves the equation of bat flights in two ways. First, due to continuity of
flight speed among individual bats, the inertia factor similar to that used in the particle
swarm optimization (PSO) is utilized to maintain the flight speed of bats. ILBA can self-
adapt the local search ability by using the inertia factor, resulting in higher optimization
accuracy. Second, the Lévy flight strategy is employed to guide the bats’ flight, thereby
expanding the search space and preventing the search from obtaining a local optimal
solution. Finally, classical simulations based on test functions verify that ILBA
outperforms the original BA and LBA in terms of accuracy and convergence rate.

2. Bat Algorithm

2.1. Preying of Bats

dark (optimal solution), the bat emits sound bursts from its mouth in fli
motion. During bat flight, the frequency of the emitted pulse ;

20 milliseconds. When the bat searches for prey, the \r c durst has the

highest loudness, which is helpful in transmitting ﬂél asonicNpurst across a long
distance. When the bat finds the prey, the loudne he so ses and the pulse

BA simulates the bat’s preying through echolocation. While hunting for pr%l?ve

frequency increases gradually, which is conducive Ye=dccurate pasitioning of the prey for
the bat. Q . 9
2.2. BA Steps 0 O \
BA proceeds as follows: \ s%
up the number of bat populations (denoted by n),

Step 1: Initialize the paramete
the position of individual ba% oteddq@i = 1,23, ..., n), the flight speed of
individual bats (denoted by v; ), the lou sound Ao, and the pulse emission rate r.

Step 2: Compute the fi@s functio and store the optimal solution.

Step 3: Randomly Q{ e the pulse frequency, update the flight speed and position.
Let x denote t?ﬁq ition Qf the"Mdividual bat in the d-dimension space, vi denote the
indi

flight speed, and fh\denote the e Trequency. The position x;, speed v; and sounding
frequency VW}E at tlerr(w% step_ tfare )ggen below:

e ®

& vi:vti +t(j(i ?x*)f @

X =X"+V 3)

wher nd fpi, denote the maximum and minimum values of the bat’s pulse
frequ €]0,1] is a random vector drawn from a uniform distribution. In (2), x- is the
r lobal best location (solution) which is located after comparing all the solutions
%g all the n bats.
ep 4: Generate a new solution based on the pulse emitting rate r;.
During local search, once a solution is selected among the currently obtained best
solutions, a new solution for each bat is generated locally using random walk.

_ t
Xnew - Xold + &‘A (4)

where ¢€[-1,1] is a random number that follows uniform distribution, A" denotes the
average loudness of all bats at this time step, Xqq is the current global optimal solution,
and Xnew is the new solution achieved from the current global optimal solution.

Step 5: Accept the new solution based on the loudness A; and the value of the fitness
function. Increase the loudness A; and decrease the pulse emitting rate r;.
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The formula for updating the loudness A; and decreasing the pulse generating rate r; at
each iteration is:

At+1 =aAt (5)
rt+1 — rO[]_e(*ﬂ)]
[ i (6)

where A} is the loudness at previous iteration, A is the current loudness, « and y are
constant and similar to the cooling factor used for the cooling process in the simulated
annealing algorithm [14], ri™* is the current pulse emitting rate.

If Ai=0 and ri=1, BA becomes the standard PSO algorithm; if A;=r; is a constant, then
BA becomes the harmony search algorithm (HS); for anya€e (0,1) andy>0, the following
assertion holds with an increase in the number of iterations.

A —0, rn—r  (t— o) (7)

Step 6: Compare the value of fitness among the n bat populations, and find the gptimal,
solution.

Step 7: Repeat Steps (2) to (7), until the condition is satisfied. ?N

O
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3. BA with Inertia Factor and Lévy Flight Strategy

The traditional BA has issues. For example, its convergence rate is low, the local
search ability is better than the global search ability, and it is prone to be trapped in local
optimum while solving multi-modal problems [15]. In this paper, the balance between the
algorithm’s local search ability and the global search ability is achieved by making two
modifications to the equation for updating the individual bat’s speed.
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3.1. Inertia Factor

In the PSO algorithm [16-17], the equation for updating the particle’s speed consists of
three parts. The first is the inertia regarding the particle’s speed. The second is the
particle’s self-cognition. This part represents the memory of the particle’s flight, enables
the particles to carry out global search, and prevents particles from being trapped in local
optimum. The third pertains to the particle’s social cognition. This part represents
information sharing among particles and is helpful in improving the global search ability.
The inertia factor w in the first part controls the rate of change of the particle’s flight
speed. When the value of w is large, the particle’s flight speed varies greatly, the global
optimization ability is strong and the local optimization ability is weak, and vice versa.

In BA, the algorithm’s global and local search ability is controlled via the pulse
emitting rate r. In Step 4 of BA, if rand>r;, the algorithm conducts local search and as the
iteration continues, the pulse emitting rate r;increases. As a result, the algorithm gradually
loses its local search ability and the convergence accuracy decreases. The inertia factor
is utilized to control the position variation range of bat flight, and to ba%s he
algorithm’s local and global search ability. As the iteration continues, t of w

increases, the local search ability improves, and the individugl bat app e global
optimal solution more closely, resulting in faster con\h&e rate.\J#e jposition and

speed updating formulas (1)-(3) are transformed into 8@
X =@ XX~

O

ite \
%1% % ©
where w; is the inertia factog s the inertial factor, wmay is the maximum

inertia factor, itery.is the m’s hig h% mber of iterations, iter;is the number of
i

iterations, n is the numbe opulatr
The inertia factor i d as:
\\) a) max

©)

s the rounding off operation.

—lteri o —w )
max min

(10)
During atron ) the number of iterations ranges from 1 to iter,. A small
variation range of w; re in slower convergence rate and lower convergence accuracy.

3.2. Lévy Fllgr® gy
A Lévy flight,wamed for French mathematician Paul Lévy, is a Markov process. It is
a rando Win which the step-lengths have a probability distribution that is heavy-
tailed. he equation of the step length « and the occurrence frequency P(w) is:
cording to the research conducted by Viswanathan et al. in [19-20], for large-scale
search and especially the high-dimension complicated space, expanding the search space
by using the Lévy flight strategy can effectively avoid premature convergence and
improve the algorithm’s convergence speed. An excellent heuristic algorithm should have
the ability to prevent premature convergence and provide great optimization performance.
In the traditional BA, the parameter 3 in the frequency updating equation follows the
uniform distribution, so the individual bat updates its position based on the Brownian
motion. In addition to expanding the individual bat’s search space, updating the bat’s

position through Lévy flight can also prevent it from being trapped in local optimum and
improve the bat algorithm’s ability in searching the high-dimension space for optimal
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solution. Unlike the Gaussian and Poisson distributions, the Lévy distribution can make it
hard to access the previous position, which is helpful in jumping out of the local optimum.
By using the Lévy flight strategy, the position and speed updating formulas (1)-(3) can be
written as:
t _ yt-/ t=1
X =X"+(X" —x)®Levy(1) 12)

where x}; is the spatial location of the i" bat at the (I-1)™ search, x.is the optimal
location of the current bat, Levy (1) is the random search vector whose step length

follows the Lévy distribution, ® s the vector operation.
Based on (9) and (12), the equation for updating the bat’s position in ILBA is:

iter ., | iter;
n n

X.t = ( a)min + H (a)max mm )) X + ( Xt - - X ) ® Levy( 2’ )
i iter ; .
n
4. Simulations R O
To evaluate the performance of ILBA, simulations \oﬁuct du atlab2010b
with four standard test functions. Its performance i ared with t the original BA
and LBA[12]. \/

4.1. Standard Test Functions Q S
Q \(O

(a) Sphere ¢

f(X) x, <10
%‘ K (14)

This functlon is a ummodskunctlon \/\ provides the global minimum f;,=0 at
x=(0,0, ..

(b) Grlewank \

50
£,(x) 600 < x, < 600

X]- .
=1 Vi 1 (150

This fu‘ an 0 aggressive multi-modal function. The global minimum
frin=0 can b ieved =(0,0,...,0).

(c) Ackley

f,(x) = @e — 20 exp (0. 2 /%sz) — exp(—Zcos(Zﬂ'X ))

-30 < < 30 (16)
)@tlon is a muIt| modal functlon and the global minimum f;;;=0 can be
h

en x=(0,0,..
strlgrm

£,(x) = Z[Xf ~ 10 cos @zx,) +10], —-5.12 < x, <5.12
i=1 (17)
This is a multi-modal function. It has several local minimal values which curve
outwards in a sinusoidal manner, making it prone to be trapped in local optimum. The
global minimum f;,;=0 can be achieved when x=(0,0,...,0).

4.2. Setting the Algorithm Parameters
The initialization parameters of BA, LBA and ILBA, are shown in Tablel.
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Table 1. Initialization Parameters

Parameters ~ Populations  Iteration  fpin  fax o/y Vioce volumn  wmin  @max  Pulse rate
Value 20/50 1000 0 2 0.9/0.9 15 0.2 0.9 0.5

4.3. Analysis of Experimental Results

BA, LBA and ILBA are each run 1,000 times to compute the algorithms’ optimal
values, worst values, mean values, and the variance of the optimal values. It is stipulated
in the experiment that the algorithm is considered to find the optimal value when the
difference between the actual value of the fitness function and the theoretically optimal
value of the fitness function is less than 0.01. Experimental results are shown in Table2.
In the “success” column, “+” denotes the success in finding the global optimal value, and

“-” denotes the failure to find the global optimal value.
A\ V2

Table 2. The comparison of BA, LBA 1 ILBA

Functions d  Algorithm Optimal Worst Mean Variance

Suc
BA 1.3670E+01  6.1638E+01  2.8984E+01 4 1.2984E+01
20 LBA 9.3865E+00  5.0456E+01  2.684 0%0147&01%
f, ILBA 0  1.4658E-09 0761

Sphere BA 3.7061E+01  1.4961E+0 G X+01 5e+01V

50 LBA 1.6045E401  1.1152E+02 19E+01  2.3p53B01 ;

ILBA 0 3.@ 1.2393€- 0\6 2467E-09 +

BA 2.3801E+Q2 }+oz 3. aost\"’l 4347E+02 -

20 LBA 1.8468 §O66E +0 @wz 1.3899E+02 ;

| ILBA % 14056%\7 13E-11  2.3069E-10 +

Griewank BA Boz 113836403\, 6.40356+02  1.1073E+02 -
50 LBA 3.1050E+02 ¢ 1 03  54230E+02  1.1814E+02

XosE-og 6.8021E-11  2.6179E-10 +

ILBA “
]

1.8220 \ 5.5545E+01  3.2263E+01  1.3420E+00

¢ LBA 58M0E+01  4.5423E+01  2.6378E+01  1.5796E+00
, \& ILBA “ 0 7.7783E-05 7.7029E-06 1.8324E-05 +

IQ‘ BA \19912E+01 2.1275E+01  2.0671E+01  1.1188E+00
O 50 1.5353E+01  1.7931E+01  1.6754E+01  1.0285E+00 -
Aé 0 1.4662E-04 9.0667E-06 2.1980E-05 +

¢ A 1.8695E+02  3.9455E+02  2.9998E+02  2.6300E+01

& LBA 1.0322E+02  5.0015E+02  2.8005E+02  3.4276E+01 -

‘ ILBA 0 18841E-02  1.3811E-03  3.5648E-03 +
A

O*'g”” BA 3.2990E+02  6.2979E+02  4.7922E+02  6.4370E+01

50 LBA 1.6340E+02  4.8174E+02  2.9310E+02  6.9347E+01

O ILBA 0 9.3474E-02 1.9543E-03 1.3209E-02 +

rom Table2, it can be seen that BA provides the lowest convergence accuracy while
evaluating the function’s convergence performance in the 20- and 50-dimension search
space. For LBA, the function f; (Ackley) provides good accuracy for different dimensions
and the relative error is 2.98%. In comparison, the relative error of other test functions is
greater than 40%. This means that the convergence accuracy of LBA decreases with
increase in the dimensions. In ILBA, functions f; - f, converge to 0 (optimal value) at
different dimensions, and the variance of the optimal values is less than 102 This
indicates that the convergence accuracy of ILBA is higher than that of LBA at different
dimensions.
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iterations is set to 5,000 and the basic parameters are shown in Tablel. The optimization

curves of the test functions are shown in Figures 3-8.
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own in Figures 3-8, the convergence value slumps when the Lévy flight strategy
iS\uSed, which means that the algorithm breaks out of the local optimum during the
iteration process. ILBA converges faster than BA and LBA in both high and low
dimensions. It can thus be concluded that ILBA outperforms BA and LBA in terms of
convergence accuracy and rate.

5. Conclusions

This paper proposes a novel bat algorithm called ILBA to improve the traditional bat
algorithm’s convergence accuracy and rate. In ILBA, the equation for updating the bat’s
flight is adjusted through the use of the inertia factor and the Lévy flight strategy.
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Simulations based on four standard test functions show that ILBA outperforms BA and
LBA in terms of the search ability. Thus, ILBA is suited for solving the high-dimension
optimization problem. Since the BA study is in its infancy stage, there are still many
issues to be addressed. Moreover, the setting of initial parameters in BA, the functions for
loudness and the pulse rate, as well as the combination with other optimization algorithms
can be investigated further.
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