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Abstract 

Aiming at such shortcomings of traditional Bat algorithm as low precision 

convergence, premature convergence, slow convergence, an improved BA based on 

inertia weight factor and Lévy flight (ILBA) has been proposed, which has made two 

modifications on update equations of bat flying position in BA, using inertia weight factor 

to keep the flight inertia of bat individual, adaptively adjust the exploitation mechanism of 

the algorithm in different iteration periods, make the algorithm achieve better 

convergence precision and altering the strategy about position update of bats from 

Brownian random walks into Lévy flights strategy to effectively avoid local optimism of 

the algorithm and guarantee its exploration mechanism while taking advantage of heavy-

tailed effect of Lévy flight to speed up the convergence. By means of 4 typical test 

functions simulation, the results show that ILBA boasts faster convergence and superior 

optimal performance compared to traditional BA and LBA. 
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1. Introduction 

Novel heuristic algorithms have emerged in recent years: the krill herd algorithm (KH) 

that simulates the social nature of the krill swarms [1], the pigeon-inspired optimization 

(PIO) that simulates the pigeons returning home [2], and the spider monkey optimization 

algorithm (SMO) that simulates the search of spider monkey for food [3]. These heuristic 

algorithms address the complicated non-linear optimization problem by simulating the 

behaviors of living creatures in nature. However, there is no heuristic algorithm which can 

solve all optimization problems alone [4-6]. 

The bat algorithm (BA) [7]
 
is a meta-heuristic algorithm that Yang XinShe proposed in 

2010. It is a novel heuristic algorithm that simulates preying of bat in the dark. BA is 

uncomplicated and easy to implement, outperforming GA and PSO in terms of 

convergence accuracy and efficiency [8]. The problem with BA, though, is its low 

convergence accuracy and proneness to prematurity and local optimum. It is very 

effective in solving the low-dimension problem, but its performance degrades with the 

increase in dimensionality
 
[8]. The adaptive bat algorithm (ABA) [9] addressed the 

premature convergence of the original BA by self-adapting the flight speed and direction 

of individual bats. An evolving bat algorithm (EBA) was proposed in
 
[10], which 

achieves a balance between the local search and global search abilities of BA by using 

diverse distribution of herds and the invasive weed optimization algorithm (IWO). It was 

proposed in [11]
 
to balance the local search and global search abilities by adjusting the 

loudness and pulse emission rate of individual bats. The Lévy bat algorithm (LBA) in [12]
 

and [13] provided an approach to premature convergence of BA by using the Lévy flight 

search strategy, but its convergence rate is low and the convergence accuracy is poor. 
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This paper proposes a novel bat algorithm on inertia weight factor and Lévy flight 

(ILBA) which improves the equation of bat flights in two ways. First, due to continuity of 

flight speed among individual bats, the inertia factor similar to that used in the particle 

swarm optimization (PSO) is utilized to maintain the flight speed of bats. ILBA can self-

adapt the local search ability by using the inertia factor, resulting in higher optimization 

accuracy. Second, the Lévy flight strategy is employed to guide the bats’ flight, thereby 

expanding the search space and preventing the search from obtaining a local optimal 

solution. Finally, classical simulations based on test functions verify that ILBA 

outperforms the original BA and LBA in terms of accuracy and convergence rate. 

 

2. Bat Algorithm 
 
2.1. Preying of Bats 

BA simulates the bat’s preying through echolocation. While hunting for prey in the 

dark (optimal solution), the bat emits sound bursts from its mouth in flight, hears and 

collects the echo, and determines the position and size of the object as well as the object’s 

motion. During bat flight, the frequency of the emitted pulse is 10kHz-100kHz, lasting 5-

20 milliseconds. When the bat searches for prey, the emitted ultrasonic burst has the 

highest loudness, which is helpful in transmitting the ultrasonic burst across a long 

distance. When the bat finds the prey, the loudness of the sound decreases and the pulse 

frequency increases gradually, which is conducive to accurate positioning of the prey for 

the bat. 

 

2.2. BA Steps 

BA proceeds as follows: 

Step 1: Initialize the parameters. Set up the number of bat populations (denoted by n), 

the position of individual bats (denoted by xi, i = 1,2,3，…, n), the flight speed of 

individual bats (denoted by vi ), the loudness of sound A0, and the pulse emission rate r0. 

Step 2: Compute the fitness function f(x), and store the optimal solution. 

Step 3: Randomly generate the pulse frequency, update the flight speed and position. 

Let  x
t 

i  denote the position of the individual bat in the d-dimension space, v
t 

i  denote the 

flight speed, and fi denote the pulse frequency. The position x
t 

i , speed v
t 

i  and sounding 

frequency fi of the individual bat at time step t are given below: 

)ff(ff minmaxmini 
                                                      (1) 

f)xx(vv *

ttt
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                                                         (2) 
ttt

iii
vxx  

                                                                   (3) 

where fmax and fmin denote the maximum and minimum values of the bat’s pulse 

frequency, β[0,1] is a random vector drawn from a uniform distribution. In (2), x
  

* is the 

current global best location (solution) which is located after comparing all the solutions 

among all the n bats.  

Step 4: Generate a new solution based on the pulse emitting rate ri. 

During local search, once a solution is selected among the currently obtained best 

solutions, a new solution for each bat is generated locally using random walk. 
t

oldnew Axx 
                                                            (4) 

where ε∈[-1,1] is a random number that follows uniform distribution, A
t 
denotes the 

average loudness of all bats at this time step, xold is the current global optimal solution, 

and xnew is the new solution achieved from the current global optimal solution. 

Step 5: Accept the new solution based on the loudness Ai and the value of the fitness 

function. Increase the loudness Ai and decrease the pulse emitting rate ri. 
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The formula for updating the loudness Ai and decreasing the pulse generating rate ri at 

each iteration is:  
t

i

t

i AA  

                                  (5) 

]e[rr )t(

i

t

i

   
                               (6) 

where A
t 

i  is the loudness at previous iteration, A
t+1 

i is the current loudness, α and γ are 

constant and similar to the cooling factor used for the cooling process in the simulated 

annealing algorithm [14], r
t+1 

I  is the current pulse emitting rate. 

If Ai=0 and ri=1, BA becomes the standard PSO algorithm; if Ai=ri is a constant, then 

BA becomes the harmony search algorithm (HS); for anyα∈（0,1）andγ>0, the following 

assertion holds with an increase in the number of iterations. 

A
t 

i→0，       r
t 

i→r
0 

i   （t→ ∞）                                                     (7) 

Step 6: Compare the value of fitness among the n bat populations, and find the optimal 

solution. 

Step 7: Repeat Steps (2) to (7), until the condition is satisfied. 

 

 

Figure 1. The Changes of Loudness with Iterations 

 

Figure 2. The Changes of Pulse Rate with Iterations 

 

3. BA with Inertia Factor and Lévy Flight Strategy 

The traditional BA has issues. For example, its convergence rate is low, the local 

search ability is better than the global search ability, and it is prone to be trapped in local 

optimum while solving multi-modal problems
 
[15]. In this paper, the balance between the 

algorithm’s local search ability and the global search ability is achieved by making two 

modifications to the equation for updating the individual bat’s speed. 
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3.1. Inertia Factor 

In the PSO algorithm
 
[16-17], the equation for updating the particle’s speed consists of 

three parts. The first is the inertia regarding the particle’s speed. The second is the 

particle’s self-cognition. This part represents the memory of the particle’s flight, enables 

the particles to carry out global search, and prevents particles from being trapped in local 

optimum. The third pertains to the particle’s social cognition. This part represents 

information sharing among particles and is helpful in improving the global search ability. 

The inertia factor ω in the first part controls the rate of change of the particle’s flight 

speed. When the value of ω is large, the particle’s flight speed varies greatly, the global 

optimization ability is strong and the local optimization ability is weak, and vice versa. 

In BA, the algorithm’s global and local search ability is controlled via the pulse 

emitting rate r. In Step 4 of BA, if rand>ri, the algorithm conducts local search and as the 

iteration continues, the pulse emitting rate ri increases. As a result, the algorithm gradually 

loses its local search ability and the convergence accuracy decreases. The inertia factor ω 

is utilized to control the position variation range of bat flight, and to balance the 

algorithm’s local and global search ability. As the iteration continues, the value of ω 

increases, the local search ability improves, and the individual bat approaches the global 

optimal solution more closely, resulting in faster convergence rate. The position and 

speed updating formulas (1)-(3) are transformed into (8)-(9). 
tt

i

t

iii
vxx  

                                                                (8) 
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where ωi is the inertia factor, ωmin is the minimal inertial factor, ωmax is the maximum 

inertia factor, itermax is the algorithm’s highest number of iterations, iteri is the number of 

iterations, n is the number of populations,   is the rounding off operation. 

The inertia factor is defined as: 

)(
iter

iteriter
minmax

max

imax
mini  




                                   (10) 

During the iteration process, the number of iterations ranges from 1 to itermax. A small 

variation range of ωi results in slower convergence rate and lower convergence accuracy. 

 

3.2. Lévy Flight Strategy 

A Lévy flight, named for French mathematician Paul Lévy, is a Markov process. It is 

a random walk in which the step-lengths have a probability distribution that is heavy-

tailed. [18]. The equation of the step length μ and the occurrence frequency P(μ) is: 

    ,)P( 
                                          (11) 

According to the research conducted by Viswanathan et al. in
 
[19-20], for large-scale 

search and especially the high-dimension complicated space, expanding the search space 

by using the Lévy flight strategy can effectively avoid premature convergence and 

improve the algorithm’s convergence speed. An excellent heuristic algorithm should have 

the ability to prevent premature convergence and provide great optimization performance. 

In the traditional BA, the parameter β in the frequency updating equation follows the 

uniform distribution, so the individual bat updates its position based on the Brownian 

motion. In addition to expanding the individual bat’s search space, updating the bat’s 

position through Lévy flight can also prevent it from being trapped in local optimum and 

improve the bat algorithm’s ability in searching the high-dimension space for optimal 
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solution. Unlike the Gaussian and Poisson distributions, the Lévy distribution can make it 

hard to access the previous position, which is helpful in jumping out of the local optimum. 

By using the Lévy flight strategy, the position and speed updating formulas (1)-(3) can be 

written as: 

)(Levy)xx(xx *

ttt

iii
  

                      (12) 

where x
t-

1 i is the spatial location of the i
th
 bat at the (l-1)

th
 search, x

  

* is the optimal 

location of the current bat, Levy（λ） is the random search vector whose step length 

follows the Lévy distribution,  is the vector operation. 

Based on (9) and (12), the equation for updating the bat’s position in ILBA is: 

)(Levy)xx(x))(
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  (13) 

 

4. Simulations 

To evaluate the performance of ILBA, simulations are conducted using Matlab2010b 

with four standard test functions. Its performance is compared with that of the original BA 

and LBA
 
[12]. 

 

4.1. Standard Test Functions 

(a) Sphere 

1010,)(
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2
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                               (14) 

This function is a unimodal function, which provides the global minimum fmin=0 at 

x=(0,0,…,0). 

(b) Griewank 
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This function is an overall aggressive multi-modal function. The global minimum 

fmin=0 can be achieved when x=(0,0,…,0). 

(c) Ackley 
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This function is a multi-modal function, and the global minimum fmin=0 can be 

achieved when x=(0,0,…,0). 

(d) Rastrigrin 
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2
4 12.512.5],10)2cos(10[)(

i
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       (17) 

This is a multi-modal function. It has several local minimal values which curve 

outwards in a sinusoidal manner, making it prone to be trapped in local optimum. The 

global minimum fmin=0 can be achieved when x=(0,0,…,0). 

 

4.2. Setting the Algorithm Parameters 

The initialization parameters of BA, LBA and ILBA, are shown in Table1. 
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Table 1. Initialization Parameters 

Parameters Populations Iteration fmin fmax α/γ Vioce volumn ωmin ωmax Pulse rate 

Value 20/50 1000 0 2 0.9/0.9 1.5 0.2 0.9 0.5 

 

4.3. Analysis of Experimental Results 

BA, LBA and ILBA are each run 1,000 times to compute the algorithms’ optimal 

values, worst values, mean values, and the variance of the optimal values. It is stipulated 

in the experiment that the algorithm is considered to find the optimal value when the 

difference between the actual value of the fitness function and the theoretically optimal 

value of the fitness function is less than 0.01. Experimental results are shown in Table2. 

In the “success” column, “+” denotes the success in finding the global optimal value, and 

“-” denotes the failure to find the global optimal value.  

Table 2. The comparison of BA, LBA 和 ILBA 

Functions d Algorithm Optimal Worst  Mean Variance Success 

f1 

Sphere 

20 

BA 1.3670E+01 6.1638E+01 2.8984E+01 1.2984E+01 - 

LBA 9.3865E+00 5.0456E+01 2.6841E+01 1.0147E+01 - 

ILBA 0 1.4658E-09 1.0321E-10 3.0761E-10 + 

50 

BA 3.7061E+01 1.4961E+02 8.6454E+01 3.1535E+01 - 

LBA 1.6045E+01 1.1152E+02 6.2319E+01 2.4253E+01 - 

ILBA 0 3.4278E-08 1.2393E-09 6.2467E-09 + 

f2 

Griewank 

20 

BA 2.3801E+02 6.9037E+02 3.8025E+02 1.4347E+02 - 

LBA 1.8468E+02 2.9966E+02 2.5479E+02 1.3899E+02 - 

ILBA 0 1.4056E-09 7.7713E-11 2.3069E-10 + 

50 

BA 4.2881E+02 1.1383E+03 6.4035E+02 1.1073E+02 - 

LBA 3.1959E+02 1.0352E+03 5.4239E+02 1.1814E+02 - 

ILBA 0 1.8005E-09 6.8021E-11 2.6179E-10 + 

f3 

Ackley 

20 

BA 1.8220E+01 5.5545E+01 3.2263E+01 1.3420E+00 - 

LBA 1.5810E+01 4.5423E+01 2.6378E+01 1.5796E+00 - 

ILBA 0 7.7783E-05 7.7029E-06 1.8324E-05 + 

50 

BA 1.9912E+01 2.1275E+01 2.0671E+01 1.1188E+00 - 

LBA 1.5353E+01 1.7931E+01 1.6754E+01 1.0285E+00 - 

ILBA 0 1.4662E-04 9.0667E-06 2.1980E-05 + 

f4 

Rastrigrin 

20 

BA 1.8695E+02 3.9455E+02 2.9998E+02 2.6300E+01 - 

LBA 1.0322E+02 5.0015E+02 2.8005E+02 3.4276E+01 - 

ILBA 0 1.8841E-02 1.3811E-03 3.5648E-03 + 

50 

BA 3.2990E+02 6.2979E+02 4.7922E+02 6.4370E+01 - 

LBA 1.6340E+02 4.8174E+02 2.9310E+02 6.9347E+01 - 

ILBA 0 9.3474E-02 1.9543E-03 1.3209E-02 + 

 

From Table2, it can be seen that BA provides the lowest convergence accuracy while 

evaluating the function’s convergence performance in the 20- and 50-dimension search 

space. For LBA, the function f3 (Ackley) provides good accuracy for different dimensions 

and the relative error is 2.98%. In comparison, the relative error of other test functions is 

greater than 40%. This means that the convergence accuracy of LBA decreases with 

increase in the dimensions. In ILBA, functions f1 - f4 converge to 0 (optimal value) at 

different dimensions, and the variance of the optimal values is less than 10
-2

. This 

indicates that the convergence accuracy of ILBA is higher than that of LBA at different 

dimensions.  
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To evaluate the iterating performance of the test functions, the maximum number of 

iterations is set to 5,000 and the basic parameters are shown in Table1. The optimization 

curves of the test functions are shown in Figures 3-8.  
 

 

Figure 3. Convergence for 20-D Sphere Function 

 

Figure 4. Convergence for 20-D Griewank Function 

 

Figure 5. Convergence for 20-D Ackley Function 
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Figure 6. Convergence for 20-D Rastrigrin Function 

 

Figure 7. Convergence for 50-D Griewank Function 

 

Figure 8. Convergence for 50-D Ackley Function 

As shown in Figures 3-8, the convergence value slumps when the Lévy flight strategy 

is used, which means that the algorithm breaks out of the local optimum during the 

iteration process. ILBA converges faster than BA and LBA in both high and low 

dimensions. It can thus be concluded that ILBA outperforms BA and LBA in terms of 

convergence accuracy and rate. 
 

5. Conclusions 

This paper proposes a novel bat algorithm called ILBA to improve the traditional bat 

algorithm’s convergence accuracy and rate. In ILBA, the equation for updating the bat’s 

flight is adjusted through the use of the inertia factor and the Lévy flight strategy. 
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Simulations based on four standard test functions show that ILBA outperforms BA and 

LBA in terms of the search ability. Thus, ILBA is suited for solving the high-dimension 

optimization problem. Since the BA study is in its infancy stage, there are still many 

issues to be addressed. Moreover, the setting of initial parameters in BA, the functions for 

loudness and the pulse rate, as well as the combination with other optimization algorithms 

can be investigated further. 
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