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Abstract 

In this paper, a new fractional-order chaotic system was studied, and the basic 

dynamic properties of the new system were analyzed. The control of the new system in 

unstable equilibrium point was realized by designing the reasonable nonlinear controller. 

Further, we investigated the projective synchronization problem about fractional order 

chaotic systems with different dimensions, the appropriate controller was designed to 

achieve the projective synchronization of a four-dimensional drive system and a three-

dimensional response system by reducing the dimension. With the numerical simulation of 

Matlab, the feasibility of the scheme was verified. 
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1. Introduction 

In the 1980s, Mandelbort pointed out that the motion system described by fractional-

order calculus was very similar to the motion system of the integer order calculus [1]. 

Since then, people gradually shifted the research to the fractional calculus theory. 

Fractional order calculus extends the description ability which the familiar integer order 

calculus does. Fractional order could be said to be the promotion of the integer order, 

while the integer order is only a special case of fractional order differential equation, so 

the study of fractional order system is also of more universality [2].  

Chaos, as a kind of complex nonlinear dynamic behavior, has been applied in biology, 

chemistry, engineering, informatics and other fields, especially in secure communications, 

signal processing, image processing [3]. For chaotic systems, the fractional-order chaotic 

system has more research value than integer order chaotic system. Due to the 

characteristics of its high complexity, it could be applied to secure communication field 

with better security [4]. Chaos control and chaos synchronization had become the 

important foundation of application in the field [5-6], many scholars also got a lot of 

valuable achievements through the constantly research. For instance, Z Xu [7] realized the 

control of fractional-order chaotic system based on Lyapunov stability theory; X Geng 

and X B Zhang [8]
 
proved the effectiveness of the proposed method for the system control 

, and synchronization in the paper was verified by using the Lyapunov second method; L 

L Huang [9] proposed a new theorem to judge whether system had chaotic phenomena or  

not, based on Lyapunov stability theory, and then applied it to the control and 

synchronization of fractional-order chaotic system, so as to realize the projective 

synchronization of the same dimension case structure; Z Y Yan[10]
 
put forward a kind of 

more generalized projective synchronization, and the drive system and response system 

had the scale factors Q and S simultaneously,  based on it, F D Zhang [11]
 
achieved the 

synchronization of fractional-order chaotic systems which have different dimensions, but 

for the choice of scale factor was more trouble. 
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In this paper, we will study a new three-dimensional fractional-order chaotic system, 

the chaotic dynamic characteristics of the system would be analyzed, and try to 

implement chaotic control to make sure of the new system stabilization in unstable 

equilibrium points. Simultaneously, through the method of dimension reduction, the 

appropriate controller will be proposed to realize synchronization about a high 

dimensional fractional order chaotic system and a low dimensional system. Moreover 

numerical simulations will be used to realize synchronization between the new three 

dimensional chaotic response system and the four-dimensional hyperchaotic Lorenz drive 

system, to verify the validity and feasibility of the scheme. 

 

2. The Main Results 

Consider the fractional order chaotic system as follows: 
q

t

q

t

q

t

D x ax by yz

D y cx dy xz

D z rz xy

    


   


                                                           (1) 

Where a, b, c, d, r are the real constants. When parameters 

( , , , , ) (35,3,10,17, 5)a b c d r   , and different values of q  are taken, the system 

presents different features. With 0.83q  , we set up the system initial value respectively: 

0 0 0( , , ) (2,1,3)x y z 
. The system phase diagram and attractor figure respectively are 

shown in Figure 1 and Figure 2. And the system is periodically changed at this time, so 

there is no chaos. With 0.90q  , we also set up the system initial value respectively: 

0 0 0( , , ) (2,1,3)x y z 
. Then we get the phase diagram and attractor figure respectively are 

shown in Figure 3, Figure 4. Obviously there is chaos in the system. With 0.98q   and 

the system initial value 0 0 0( , , ) (2,1,3)x y z 
, we could see more clearly that system is a 

chaotic state from Figure 5 and Figure 6. 

 

 

Figure 1. Phase Diagram of System (1) with 0.83q   
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Figure 2. Attractor of System (1) with 0.83q   

 

Figure 3. Phase Diagram of System (1) with 0.90q 
 

 

Figure 4. Attractor of System (1) with 0.90q   
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Figure 5. Phase Diagram of System (1) with 0.98q   

 

Figure 6. Attractor of System (1) with 
0.98q 

 

To calculate the balance point of the new system, equations in system (1)  are equal to 

zero on the left, we can get: 

0

0

0

ax by yz

cx dy xz

rz xy

   

   
                                                (2) 

When parameters of the equation (2) are taken from ( , , , , ) (35,3,10,17, 5)a b c d r   , 

the equation (2) could be solved, finally obtaining five equilibrium points of system(1) . 

They are: 
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0 (0,0,0)S  1 (11.4170, 12.5881, 28.7438)S   

2 ( 11.4170,12.5881, 28.7438)S    3 (7.6304,14.2481,21.7438)S 

4 ( 7.6304, 14.2481,21.7438)S   
 

If the equilibrium point is expressed as a unified expression: ( , , )S    , the 

Jacobian matrix may be expressed as: 

35 3

10 17

5

J

 

 

 

   
 

   
 
                                           (3) 

We may get a different equilibrium in the eigenvalues corresponding Jacobian matrix, 

when different equilibrium points are substituted into the Jacobian matrix (3). 

When the system is at the equilibrium point 0 (0,0,0)S 
, the obtained eigenvalues 

are: 

1 2 317.5707, 35.5707, 5      
 

There is a positive characteristic value, indicating that the equilibrium point 0S
 is not 

stable. 

When the system is at the equilibrium point 1 (11.4170, 12.5881, 28.7438)S   
, the 

obtained eigenvalues are: 

1,2 35.4211 19.9856 , 33.8422i    
 

Lemma 1[12]: Considering the fractional order systems 
q

tD x x A
, where, q  is an 

order number and 0 1q  , A  is a coefficient matrix. If and only if , all eigenvalues of 

Angle satisfy the condition,  

arg( ( )) , 1,2,
2

i

q
i N


  A

, 

The system is asymptotically stable. 

According to lemma 1, as long as its eigenvalues meet
arg( )

2

q
 

, the system is 

asymptotically stable. At this time the eigenvalues of the system of Angle is 

1 2arg( ) arg( ) 74.8237  
. So it could be deduced the system at the equilibrium 

point 1S
 is stable, when 0.83q  . Therefore this may also explain why system (1) does 

not appear the chaos phenomenon and its orbit periodic change. Thus 1S
 is unstable 

equilibrium point. 

The same conclusion may be get easily, from that, 2S
, 3S

and 4S
 are also unstable. 

For system 1, there is 

23 0
x y z

V a d v
x y z

  
          

    

System (1) is a dissipative system because of 0V  .That means all systems of the 

trajectory of the progressive movement will be fixed in an attractor, finally be restricted to 

a subset of volume of 0, when t  . It also shows the existence of the attractor. 

Then we study the new fractional order chaotic system control problem at the unstable 

equilibrium points: 
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In order to make the system (1) stable at the unstable equilibrium point 0 (0,0,0)S 
 , 

the following controller U is determined as : 

1 1

2 2

3 3

u k x yz

u k y xz

u k z xy

  


 
                                                           (4) 

Under the control of the controller (4), the new fractional order chaotic system is 

changed as: 

1

2

3

q

t

q

t

q

t

D x ax by yz u

D y cx dy xz u

D z rz xy u

     


    


    
Namely, it equals to this: 

1

2

3

( )

( )

( )

q

t

q

t

q

t

D x a k x by

D y cx d k y

D z r k z

    


   


                                                  (5) 

To make Laplace transform on both sides of the equation (5), we let 

1

2

3

( ) ( ( ))

( ) ( ( ))

( ) ( ( ))

E s L x t

E s L y t

E s L z t





   

According to  
1

1

1

2

1

3

( ) ( ) (0)

( ) ( ) (0)

( ) ( ) (0)

q q q

t

q q q

t

q q q

t

L D x s E s s x

L D y s E s s y

L D z s E s s z







  


 


   
We have 

1

1 1 1 2

1

2 1 2 2

1

3 3 3

( ) (0) (35 ) ( ) 3 ( )

( ) (0) 10 ( ) (17 ) ( )

( ) (0) (5 ) ( )

q q

q q

q q

s E s s x k E s E s

s E s s y E s k E s

s E s s z k E s







     


    


                          (6) 

Then solving the equation (6), we have 
1

2
1

1

1

1
2

2

1

3

3

(0) 3 ( )
( )

35

(0) 10 ( )
( )

17

(0)
( )

5

q

q

q

q

q

q

s x E s
E s

s k

s y E s
E s

s k

s z
E s

s k







 


 
 


 


 

   
According to Laplace's final value theorem, we may get 
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1

1

2

2

3

3

2
1

0
1

1
2

0
2

3
0

3

(0) 3 ( )
lim ( ) lim ( )

35

(0) 10 ( )
lim ( ) lim ( )

17

(0)
lim ( ) lim ( )

5

q

qt s

q

qt s

q

qt s

s x sE s
x t sE s

s k

s y sE s
y t sE s

s k

s z
z t sE s

s k







 

 

 

 
 

 
 

 
 


  

   

When 1 2 335, 17, 5k k k     
, we may infer that

lim ( ) 0

lim ( ) 0

lim ( ) 0

t

t

t

x t

y t

z t







 






 . 

So, the fractional order system under the controller(4) asymptotically stable at the 

equilibrium point 0 (0,0,0)S 
 with t  . 

We set up the system initial value 0 0 0, ,x y z
, the order q , the gain 1 2 3, ,k k k

 

respectively: 

0 0 0( , , ) ( 2,1,3)x y z  
, 0.98q   and 1 2 3( , , ) (10, 20,0)k k k  

. 

In the light of the prediction-correction method[13], the simulation results are shown in 

Figure 7. 

 

 

Figure 7. The Stability Curve of , ,x y z , when System(1) is Controlled 

We could see, from figure 7, the system quickly tends to zero in a short time after 

adding a controller (4). And the results have proved the feasibility of the controller (4). 

Based on the analysis of dynamic characteristics of a new fractional order chaotic 

systems, we continue to research the projection synchronization problem of fractional-

order chaotic systems with different dimensions. 
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For researching the projection synchronization problem about fractional-order chaotic 

systems with different dimensions, now we select the four-dimensional fractional order 

hyperchaos Lorenz system as the drive system , and the system model is described as 

follows: 

1 2 1 4

2 1 2 1 3

3 3 1 2

4 4 2 3

10( )

28

8 / 3

q

t

q

t

q

t

q

t

D x x x x

D x x x x x

D x x x x

D x x x x

   


  


  


                                                (7) 

When 0.98q  , the system is in a chaotic state. 

Then we choose the new fractional order three-dimensional chaotic system (1) as the 

response system. When 0.98q  , there is chaos in the system. After generation into the 

system of the parameters, the system is as the following form: 

1 1 2 2 3 1

2 1 2 1 3 2

3 3 1 2 3

35 3

10 17

5

q

t

q

t

q

t

D y y y y y u

D y y y y y u

D y y y y u

     


    


                                       (8) 

For any fractional order drive system and the response system could be written as 

follows: 

  
( )

q

tD x x F x A
                                                       (9) 

( )q

tD y y G y U  B
                                                 (10) 

Where 0 1q  , matrix A and B , respectively, are the linear parts of the drive system  

and response system, ( )F x and ( )G y are the nonlinear parts of the two systems. U  is the 

controller to be determined later. 

Define 1[14]: For the given drive system and response system, synchronization error 

variable e  is defined as: e y Sx  . If there is a suitable controllerU , making 

lim lim 0
t t

e y Sx
 

  
 

Where
n mS R  , 1 2( , , )T

ne e e e
.It can prove that the projective synchronization 

has been realized between drive system and response system. 

Theorem 1: Design the controller U of drive system and response system as: 

( ) ( ) ( )U S x Sx SF x G y V t    A B  

Where ( )V t e P , if 
arg( ( ))

2

q
  B P

 is established, then the error system is 

stability, so the projective synchronization of the system (9) and the system (10) is 

achieved.  

Prove: 

According to Define 1 synchronization error of system (9) and system (10) is defined 

as follows: 
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( ) ( ) ( ) ( ) ( ( ))

( )

( )

q q q

t t tD e D y SD x

y G y S x Sx SF x G y V t S x F x

y S x e

y Sx e

e e

e

 

        

  

  

 

 

B A B A

B B P

B P

B P

B P
    (11) 

From Lemma 1, just choosing the appropriate matrix P , so as to satisfy the condition 

arg( ( )
2

q
  B P

, then the error system (11) is asymptotically stable, namely the 

establishment of 
lim 0
t

e



. Therefore the projective synchronization of the system (9) 

and system (10) is realized. 

Considering the synchronization problem for systems (7) and systems (8). 

When 

1 0 0 0

0 1 0 0

0 0 1 0

S

 
 


 
    , synchronization error is 

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

 


 
   . 

According to the previous form of equation (9) and (10). Matrix B  can be obtained as 

35 3 0

10 17 0

0 0 5

B

  
 

 
 
    

Matrix P  is taken as 

1

2

3

35 3 0

10 17 0

0 0 5

p

p

p

   
 

  
 
   

P

, where 1 2 3, , 0p p p 
. 

When 0.98q  , the error system
( )q

tD e e B P
, is equal to 

 
1

2 1 2 3

3

0 0

0 0

0 0

Tq

t

p

D e p e e e

p

 
 

 
 
    

Obviously, none of the eigenvalues of the matrix P  is greater than zero, which 

satisfies
arg( ( )

2

q
  B P

.Therefore, system (7) and system (8) achieve  the 

synchronization. 

We respectively set the initial values of drive system (7) and response system (8) are: 

1 2 3 4( (0), (0), (0), (0)) (1, 1,1,1)x x x x  
 and 1 2 3( (0), (0), (0)) ( 5,3, 2)y y y   

. 

Meanwhile, we let 1 2 3( , , ) (1,2,3)p p p 
. The simulation results are shown in Figure 

8. 

From Figure 8, we can see 1e
, 2e

and 3e
 are asymptotically stable to the origin after a 

relatively short period of time. As a result, this also shows that synchronization of the two 

systems has been achieved. 
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3. Conclusion 

In summary, we investigated a new three-dimensional fractional-order chaotic system 

which had five parameters. By observing the system phase diagram and the attractor 

figure in different order, we have judged whether the system appeared chaotic 

phenomenon. The characteristic of the new fractional order chaotic system has been 

analyzed from the stability of the system’s equilibrium points and the dissipative. 

Theoretically it proved that the new system was chaotic. Then the control of the new 

chaotic system has been realized by designing proper controller based on Laplace 

transform. Numerical simulations were used to verify the effectiveness of the proposed 

controller .In the last, we took the new system as an example to achieve the projective 

synchronization between a high dimension fractional order chaotic system and a low 

dimension fractional order chaotic system by reducing the dimension. Compared with 

other synchronizations, the key to achieve synchronization is how to choose the projection 

factor S and how to set up the value of matrix P . With the numerical simulation of 

Matlab, the results show that the synchronization of the two systems has been achieved in 

a short period of time. 

 

 

Figure 8. Synchronization Error Curve of System (7) and (8) 
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