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Abstract
In this paper, a new fractional-order chaotic system was studied, and the "
dynamic properties of the new system were analyzed. The control of the n %’m
unstable equilibrium point was realized by designing the reasonable nonlln ar, troller.
Further, we investigated the projective synchronization proljlep abo aI order
chaotic systems with different dimensions, the appropr ntrolle designed to

achieve the projective synchronization of a four- d| and a three-
dimensional response system by reducing the dlm‘ |cal simulation of
Matlab, the feasibility of the scheme was verified

Keywords: Fractional-order chaos sy@Q rOJectl\\(achromzatlon Controller,

Different dimension

1. Introduction s&

In the 1980s, Mandelborw& out @ motion system described by fractional-
order calculus was very similar-to th system of the integer order calculus [1].
Since then, people gra y shlfte research to the fractional calculus theory.
Fractional order calc u ends rlptlon ability which the familiar integer order
calculus does I ord r be said to be the promotion of the integer order,
while the inte ris onIy e al case of fractional order differential equation, so
the study o I ord tem is also of more universality [2].

Chaos, a nd of @j nonlinear dynamic behavior, has been applied in biology,
chemistry, englneerl rmatics and other fields, especially in secure communications,
signal processing processing [3]. For chaotic systems, the fractional-order chaotic
system has search value than integer order chaotic system. Due to the
characteristiEs oivits high complexity, it could be applied to secure communication field

with bett urity [4]. Chaos control and chaos synchronization had become the
importa@) ndation of application in the field [5-6], many scholars also got a lot of
valu chievements through the constantly research. For instance, Z Xu [7] realized the
of fractional-order chaotic system based on Lyapunov stability theory; X Geng
B Zhang [8] proved the effectiveness of the proposed method for the system control
, and synchronization in the paper was verified by using the Lyapunov second method; L
L Huang [9] proposed a new theorem to judge whether system had chaotic phenomena or
not, based on Lyapunov stability theory, and then applied it to the control and
synchronization of fractional-order chaotic system, so as to realize the projective
synchronization of the same dimension case structure; Z 'Y Yan[10] put forward a kind of
more generalized projective synchronization, and the drive system and response system
had the scale factors Q and S simultaneously, based on it, F D Zhang [11] achieved the
synchronization of fractional-order chaotic systems which have different dimensions, but
for the choice of scale factor was more trouble.
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In this paper, we will study a new three-dimensional fractional-order chaotic system,
the chaotic dynamic characteristics of the system would be analyzed, and try to
implement chaotic control to make sure of the new system stabilization in unstable
equilibrium points. Simultaneously, through the method of dimension reduction, the
appropriate controller will be proposed to realize synchronization about a high
dimensional fractional order chaotic system and a low dimensional system. Moreover
numerical simulations will be used to realize synchronization between the new three
dimensional chaotic response system and the four-dimensional hyperchaotic Lorenz drive
system, to verify the validity and feasibility of the scheme.

2. The Main Results

Consider the fractional order chaotic system as follows:
Dix =—-ax—by+yz

*
Dy =—cx+dy —xz ?y

Q'
Where a, b, ¢ d, r real ?{égts \@ parameters

(a,b,c,d,r)=(35310,17,-5) , and dlfferentg are en, the system
presents different features. With q=083 we set e system fal value respectively:

(%, Yo, 20) = (2,1,3) . The system phase and X\?}r figure respectively are
shown in Figure 1 and Figure 2. And th m is % changed at this time, so
set

there is no chaos. With 9=0-90 @o
(%, Yo, 20) = (2,1,3) . Then phase %g and attractor figure respectively are
shown in Figure 3, Figure 4~Xlousl t’a( chaos in the system. With q=0.98 and

the system initial value 0120) = , we could see more clearly that system is a

chaotic state from RigdreNs and FI%
N ;

Dlz=rz+xy

stem initial value respectively:
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Figure 1. Phase Diagram of System (1) with q=0.83
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Figure 4. Attractor of System (1) with 9= 0.90
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Figure 5. Phase Diagram of Sywi qio/
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@igure 6. Attractor of System (1) with q=0.98

To c@ate the balance point of the new system, equations in system (1) are equal to

o®he left, we can get:
% —ax—by+yz=0

—cx+dy—-xz=0
rz+xy=0

)

When parameters of the equation (2) are taken from (a,b,c,d,r)=(35310,17,-5) :
the equation (2) could be solved, finally obtaining five equilibrium points of system(1) .
They are:

48 Copyright © 2016 SERSC



International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016)

S, =(0,0,0) S, = (11.4170,~12.5881,—28.7438)
S, =(—11.4170,12.5881,—28.7438) S, = (7.6304,14.2481, 21.7438)
S, = (—7.6304,-14.2481,21.7438)

If the equilibrium point is expressed as a unified expression: © = (& 7:7) | the
Jacobian matrix may be expressed as:

-35 383+y
J=|-10-y 17 ¢
T & -5

®3)
We may get a different equilibrium in the eigenvalues corresponding Jacobian matrix,

when different equilibrium points are substituted into the Jacobian matrix (3).
0

When the system is at the equilibrium p0|nt =(0.0,0) , the obtained elv‘

are
A, =17.5707,4, =-35.5707, 4, = O
There is a positive characteristic value, indicating th %un n%ﬂmt S is not
stable.
When the system is at the equilibrium point @ 4170,

obtained eigenvalues are:
=5. 4211,_ @422
q
Lemma 1[12]: Con5|der|ng the f @al og‘&gms D/'x = Ax . where, 9 is an

order number and 0<qg<1 eff|0|ent rix. If and only if , all eigenvalues of
Angle satisfy the condition,

@Iarg(ﬂi(@,n =1,2,---N
The system |s caIIy stﬁ ’

|arg(4)| > -— _
ACCOI‘dI’| mm eglong as its eigenvalues meet 2 | the system is
i

asymptotica table. s time the eigenvalues of the system of Angle is

larg(4,)| =arg(4,)|E%4-8237°

point S, is sta hen 4 < 0'83. Therefore this may also explain why system (1) does

not app@ chaos phenomenon and its orbit periodic change. Thus 5 is unstable

1,-28.7438) the

. So it could be deduced the system at the equilibrium

equili point.
S, S

@ ame conclusion may be get easily, from that, 3and S are also unstable.

r system 1, there is

VV = 8x ay+Q:—a+d +v=-23<0

ox oy oz
System (1) is a dissipative system because of VV <0 That means all systems of the
trajectory of the progressive movement will be fixed in an attractor, finally be restricted to
a subset of volume of 0, when t— 0 |t also shows the existence of the attractor.
Then we study the new fractional order chaotic system control problem at the unstable
equilibrium points:
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In order to make the system (1) stable at the unstable equilibrium pomt =(0.0, O)
the following controller U is determined as :
u, =-kx-yz
u, =k,y+xz
Uy =—K,z— Xy @

Under the control of the controller (4), the new fractional order chaotic system is
changed as:

Dix=—-ax—by+yz+u,
Dy =—cx+dy—xz+u,
Dlz=rz+xy+u,

Namely, it equals to this: \/
Dx =—(a+k,)x+by 0

Dy =-cx+(d +k2
Dz =(r—k,)z

(%)
To make Laplace transform on both sides of the‘lon (SW
E(s)=Lps®) | %
E (s) 1)

L(Z IB\
According to

LD = sq.El%s ‘1x(0)
L(Dy) s"'y(0)
L(Dq s) s%z(0)

We have \\Q
s7'X(0) =—(35+k,) E, () +3E,(s)
é(s) —57y(0) =—10E, () + (17 +k,) E,(s)
E,(8)~52(0) =~(5-+ k;)E, ()
Then solvin equation (6), we have
\& E.(s) $9'%(0) +3E, (s)
O s +35+Kk,
@O E,(s) = s7y(0) +10E,(s)
s?-17 -k,
s%7%z(0)

E.(s)=
5(8) s +5+k,
According to Laplace's final value theorem, we may get

(6)
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G
limx(t) = lim sE, (s) = S0+ 35, (5)
t—>wo s—0" Sql +35+kl
i - s%y(0) +10sE,(s)
limy(t) = lim sE,(s) = 1
lim y(t) = lim sE, (s) R
H - sq3z(o)
lim z(t) = lim SE. (s) = — 2\
t—o () s50* 3() Sq3+5+k3
limx(t) =0
Iim y(t)=0
k, >-35k, <-17,k, > -5 Ilmz(t) 0

When , we may infer that 1t~
So, the fractlonal order system under the controller(4) asymptotlcall @ the

equilibrium point > =0.0.0) it t >0,

We set up the system initial value X0 Yo Zo
respectively:
—2

(0: Y0 20) =(-213) =098 4 (K. k,, \
In the Ilght of the predlctlon -correction me@ﬁ] the lation results are shown in

igure | s\\ I _
| @ S

Ty
- — E

Figure 7. The Stability Curve of % Y2 when System(1) is Controlled

We could see, from figure 7, the system quickly tends to zero in a short time after
adding a controller (4). And the results have proved the feasibility of the controller (4).

Based on the analysis of dynamic characteristics of a new fractional order chaotic
systems, we continue to research the projection synchronization problem of fractional-
order chaotic systems with different dimensions.

Copyright © 2016 SERSC 51



International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016)

For researching the projection synchronization problem about fractional-order chaotic
systems with different dimensions, now we select the four-dimensional fractional order
hyperchaos Lorenz system as the drive system , and the system model is described as
follows:

thx1 = 10(X2 - X1) + X,
th X, = 28X1 =X =X X
D X, = —8%, / 3+ %X,

Ay —_x —
D' X, ==X, — X, X, @)

When 4=0-98 e system is in a chaotic state.
Then we choose the new fractional order three-dimensional chaotic system (1) as the

response system. When q= 0'98, there is chaos in the system. After generation iW’
system of the parameters, the system is as the following form:

D'y, =-35y, =3y, +Y,Y; +U,

D{y, =10y, +17y, »\&ﬁz @
Dy, =-5y, +
i Ys Y+, VV ®)
For any fractional order drive system and th onse s ould be written as

follows:
AR @ F(x) ’\%

9)

v 5\ (10)
Where 0<q <1, matrix A spectl elyNare the linear parts of the drive system

and response system, F(X)
controller to be determln

Define 1[14]: For n dr|v S and response system, synchronization error

variable € is defi % S&f there is a suitable controllerY , making
;(\ .m Jiim]y -6 =0

Where S & €)' It can prove that the projective synchronization

has been realized be@ drive system and response system.

Theorem 1: e controller Y of drive system and response system as:
U =SAX—BSx+ SF(X)-G(y) -V (t)

are linear parts of the two systems. U s the

) = |arg(A(B - P))|
if is established, then the error system is
@v so the prOJectlve synchronization of the system (9) and the system (10) is
rove:

According to Define 1 synchronization error of system (9) and system (10) is defined
as follows:
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Dle =Dy —SD/x
=By +G(y) + SAX—BSx+ SF (x) - G(y) -V (t) - S(Ax+ F (X))

=By - SBx—Pe

=B(y—Sx)—Pe

=Be—-Pe

=(B-P)e (11)

From Lemma 1, just choosing the appropriate matrix P, so as to satisfy the condition

larg(A(B—-P)|> ar
, then the error system (11) is asymptotically stable, namely the

limje||=
establishment of t—~ ” ” . Therefore the projective synchronization of the s stﬁ\g@)0
and system (10) is realized. v
Considering the synchronization problem for systems (7) and systems (8

1 000 |- X1
S=0 1 0 O
When 0010 , synchronization er 3=

According to the previous form of equation gand (10) trix B can be obtained as

R

\Q\ p, O
Matrix P is taka\Q O 5+ p3 ,Where pl’ p2’ p3 > 0
q=0. e = (B —P)e .
When error s , isequal to

_pz 0 [el ez ea]T

O @@ P00

0 -p,
Obviously, of the eigenvalues of the matrix P is greater than zero, which
B-P)>&
satisfig 2 Therefore, system (7) and system (8) achieve the

ization.
% respectively set the initial values of drive system (7) and response system (8) are:
%,(0),%,(0),%,(0), %,(0)) =4, -111) _\ (%,(0), ¥,(0), ¥5(0)) =(-5.3-2)

Meanwhile, we let (pl’ P2 p3) =123 . The simulation results are shown in Figure
8.

From Figure 8, we can seee € and® are asymptotically stable to the origin after a

relatively short period of time. As a result, this also shows that synchronization of the two
systems has been achieved.
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3. Conclusion

In summary, we investigated a new three-dimensional fractional-order chaotic system
which had five parameters. By observing the system phase diagram and the attractor
figure in different order, we have judged whether the system appeared chaotic
phenomenon. The characteristic of the new fractional order chaotic system has been
analyzed from the stability of the system’s equilibrium points and the dissipative.
Theoretically it proved that the new system was chaotic. Then the control of the new
chaotic system has been realized by designing proper controller based on Laplace
transform. Numerical simulations were used to verify the effectiveness of the proposed
controller .In the last, we took the new system as an example to achieve the projective
synchronization between a high dimension fractional order chaotic system and a low
dimension fractional order chaotic system by reducing the dimension. Compared with
other synchronizations, the key to achieve synchronization is how to choose the projection,

|M

factor S and how to set up the value of matrix P . With the numerical sim%’ f
Vv

Matlab, the results show that the synchronization of the two systems has beeg-ac din
a short period of time. &

el,e2,e3

Figure 8.®nchronization Error Curve of System (7) and (8)
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