
International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.10 (2016), pp.33-44

http://dx.doi.org/10.14257/ijmue.2016.11.10.03

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2016 SERSC

The Interactive Mechanism of Static and Dynamic Analysis in the

Reverse Analysis of Embedded Software

Liu Tie-ming
1,*

, Jinag Lie-hui
1
, Zhu Jing-si

2
 and Meng Gang

1

1
The State Key Laboratory of Mathematical Engineering and Advanced

Computing, Zhengzhou, 450000, P. R. China;
2
ZhengZhou University of Science and Technology, Zhengzhou, 450064, P. R.

China

{fxliutm, jingliehui }@163.com, {zjs006, zzxdmg}@126.com
*
Corresponding Author: LIU Tie-ming(fxliutm@163.com)

Abstract

Because the software reverse analysis method which combined the dynamic and static

analyses lacks normative interactive mode, the work of the software reverse analysis is

inefficient, and its reusability is poor. Based on dynamic and static analysis process of the

embedded software, three kinds of interactive mechanism are proposed, including Static

To Dynamic (STD), Dynamic To Static (DTS), Static and Dynamic simultaneous (SDM),

and has also presented the method of realizing these three interaction mechanisms in

detail. The test results show that interactive mechanisms of STD, DTS and SDM are

suitable for correction of abnormal nodes in the results of static analysis, optimization of

dynamic information extraction, identification of hidden codes and so on. It can greatly

improve work efficiency of the embedded software reverse analysis.

Keywords: software reverse analysis; embedded software; static analysis; dynamic

analysis; dynamic and static combination; interactive mechanism\

1. Introduction

The technology of combined the dynamic and static analyses can be divided into three

types by analytical approaches: static analysis, dynamic analysis and combination of both

static and dynamic analyses, and it is usually used in the fields of binary-translation,

decompilation, vulnerability detection, malicious behavior analysis and so on. Due to the

lack of run-time information, static analysis can't accurately analyze indirect branch

statements, having the shortcomings of false analysis and omissive analysis[1-2];

Dynamic analysis has the problems of incomplete analysis and detection over the codes

because it can't traverse all the possible execution paths of the codes [3]; the method of

the software reverse analysis can integrate the results of dynamic analysis and the results

of static analysis, effectively lowering the probability of false analysis and omissive

analysis. It has been widely used in the combined the dynamic and static analyses on

common platforms. However, it lacks an uniform information interaction mechanism

between the dynamic and static. The reusability of the analysis work is not strong and the

analysis efficiency is relatively low.

With the development of software technology and embedded technology, various

software vulnerabilities and malicious attacks based on software vulnerability gradually

spread from such common platforms as x86 to such embedded platforms as ARM, MIPS,

PPC [4]. Because of large differences among hardware architectures of the embedded

platform, the system software can be arbitrarily cut freely, so the software reverse analysis

tools in universal platform are unsuitable in embedded platform. Therefore, the reverse

analysis work of embedded software is facing severe challenges [5]. Based on the

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.10 (2016)

34 Copyright ⓒ 2016 SERSC

dynamic and static analysis process of the embedded software, the interaction mechanism

of static and dynamic analysis which is applicable to the reverse analysis of embedded

software has been put forward in this paper, so as to provide support for improvement of

accuracy and efficiency of combined the dynamic and static analyses of the embedded

platform.

2. Static and Dynamic Analysis Process of the Embedded Software

Because the hardware architectures of the embedded platforms are different, even for

the same architecture with different series, the Instruction Set Architecture (ISA) can be

different. In addition, because the versions of embedded operating systems are various,

and can be cut any part and the running time circumstances are different, so it is very

difficult to provide the united static disassembler and decompiler for the software of the

embedded platform for static analysis. And it is difficult to provide the united dynamic

execution engine for dynamic analysis, too. Figure 1 is the interaction mechanism of static

and dynamic analysis aiming at the reverse analysis of embedded software, in which the

static analysis section consists of the relevance platform transparent processing and static

multidimensional graphs extraction, and dynamic analysis section consists of multi-

architecture dynamic execution engine and platform-independent dynamic information

extraction.

Analyzed

code 1

Analyzed

code 2

Analyzed

code n
 …

 Platform transparent

processing

 Intermediate

 Code

 Static multi- dimensional

graphs extraction

 High- level semantic analysis

 Control

structure

recovery

 Data

structure

recovery

 Code

structure

recovery

Vulnerability

discovery

Multi- architecture

dynamic execution engine

Malicious

behavior

detection

 Platform - independent

dynamic information

extraction

Intermediate

 Code Extension

 Static analysis process Dynamic analysis process

Analyzed

code 3

Figure 1. Process of Static and Dynamic Analysis in Embedded Software

Platform transparent processing means a process of using formalized methods to

abstract and describe the attributes related to the Instruction Set Architecture (ISA) and

the system development platform ABI in the analyzed codes on various analysis platforms,

and then converting the binary codes on various platforms to the unified intermediate

language codes form by code conversion on the basis of the abstract description (the

universal disassembler[6] and the intermediate code converter [7-8]).

Static multidimensional graphs extraction is a process based on unified intermediate

language codes, which adopts various static analysis algorithms [1,8] to complete the

analysis of control flow and data flow and generate the dependency diagram, the control

flow diagram, the structure diagram, the calls diagram and so on under the granularity of

statement level, basic block level, structure level, function level and so on, and then

display them in a graphical manner.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.10 (2016)

Copyright ⓒ 2016 SERSC 35

The multi-architecture dynamic execution engine refers to the generation platform that

applies the multi-architecture simulators like QEMU [9], through the proper configuration

to set up a simulation platform that is suitable for the execution of various embedded

software, which is a virtual execution environment provided for the dynamic execution of

embedded software.

Whereas platform-independent dynamic information extraction is based on the

multi-architecture dynamic execution engine, through the intermediate language extension,

to establish the instrument interface based on intermediate language, and meanwhile to

provide the API (sentence level, basic block level, function level, etc.) of dynamic

information extraction with different granularities, which is the run-time information

extraction interface during the dynamic execution process of embedded software offered

to users.

Through static analysis process, the users can get a series of graphs in intermediate

language codes; through dynamic analysis process, the users can get run-time information

of intermediate language codes layers with different granularities. However, in order to

better combine the two organically and better provide service for the high-level semantic

analysis such as vulnerability discovery and malicious activity detection, an effective

information interaction mechanism must be established between the static and dynamic

analyses.

3. Interactive Mechanism of Static and Dynamic Analysis

After intensively researching the analysis cases of the software reverse analysis on the

current platform which is used universally, it is discovered that the graphs got in the static

analysis can be applied to guide the path which should be covered during the dynamic

information extraction, and the information extracted from the dynamic analysis can be

applied to correct the inaccurate places in the results of the static analysis. Building up an

interactive mechanism between static analysis and dynamic analysis process, integrating

the results of dynamic and static analyses, can greatly improve the accuracy and

efficiency of the high-level semantic analysis. The interactive mechanism, according to

the order of dynamic and static analysis, combined with the target of analysis, can be

categorized into three basic types: Static To Dynamic (STD) interaction mechanism used

to amend results of static analysis, Dynamic To Static (DTS) interaction mechanism used

in quick analysis of the code behavior, and Static and Dynamic simultaneous

mechanism(SDM) used in identifying hidden code.

3.1. Static to Dynamic Interactive Mechanism (STD)

The interactive mechanism of Static To Dynamic is called STD mechanism for short,

which is usually used to dynamically correct the results of static analysis (for example, the

correction on static decompilation results, etc.), and is the common way of combined the

dynamic and static analyses on present common platforms. STD mechanism first utilizes

modules including static analysis process and platform transparent processing through

static multidimensional graphs extraction to get all kinds of analysis graphics based on the

unified intermediate language code, and then uses methods of combining the abnormal

nodes that appear in the graph (such as statements that appear in the nodes without being

recognized and that are marked as unknown(string,τ), jump statements that the jump

target is not within the derived API or the code section, as well as particularly

complicated memory read-write statements and particularly complicated expression

statements) and utilizing symbol execution and solving with constraint path to generate

testcase; Then based on the testcase start dynamic analysis procedure, running code on

dynamic execution engine, and use relative dynamic information extraction interface to

proceed dynamic tracing. Finally, use the dynamic extraction information to correct the

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.10 (2016)

36 Copyright ⓒ 2016 SERSC

inaccurate places in the results of the static analysis abnormal nodes. The sketch map of

STD interaction mechanism is as shown in Figure 2.

Platform transparency

processing

Static

multidimensional

graphs extraction

Dynamic execution

engine based on QEMU

Platform-independent

dynamic information

extraction

Start static analysis Start dynamic analysis

Dynamic input generation Dynamic path extraction

Static analytic process
 Dynamic information

extraction process

Figure 2. STD Interactive Mechanism Diagram

If SS is used to represent starting the static analysis process, DIG represents dynamic

input generation, SD represents starting dynamic analysis process, and WB represents

dynamic message write-back, then the static-to-dynamic information interactive

mechanism can be simply represented by (SS, DIG, SD, WB)+. The symbol "+" means

that this process can be repeated for many times, which is that after one STD information

interactivity, the results of static analysis will be updated once. If there are new reachable

code blocks after the updating, then the STD information interactivity is started again for

the new code blocks. The process is repeated until there are no more reachable code

blocks.

3.2. Dynamic to Static Interactive Mechanism (DTS)

The interactive mechanism of Dynamic to Static is called DTS mechanism for short,

which is usually used to the rapid analysis and feature extraction of the code behavior.

First, start dynamic analysis process to run the executable program on the dynamic engine.

Meanwhile dynamic information extraction module is used to record the dynamic

execution path; Then based on the dynamic execution path, starting the static analysis

process, namely use static analysis process module in platform transparent processing to

change the code in dynamic path into intermediate language code, and use

multidimensional graphs extraction module to optimize it, to generate dynamic path's

corresponding varies collections of graphs, and to realize the user's rapid analysis and

judgment of code behavior. The sketch map of DTS mechanism is shown as Figure 3.

If SD represents starting dynamic analysis, TT represents dynamic path extraction, CS

represents calling static analysis algorithm, and TO represents dynamic path optimization,

then the dynamic-to-static information interactive mechanism can be simply represented

by (SD, TT, CS, TO).

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.10 (2016)

Copyright ⓒ 2016 SERSC 37

Platform transparency

processing

Static

multidimensional

graphs extraction

Dynamic execution

engine based on QEMU

Platform-independent

dynamic information

extraction

Start dynamic analysis

Dynamic path optimization Dynamic path

extraction

Static analytic process
 Dynamic information

extraction process

 Calling static analytic algorithm

Figure 3. DTS Interactive Mechanism Diagram

3.3. Static and Dynamic Simultaneous Interactive Mechanism (SDM)

The interactive mechanism of Static and Dynamic simultaneous is called SDM

mechanism for short, which is usually used to identify self-modifying codes or hidden

codes. First, we need to call static analysis process and DTS interactive process

respectively, and finish the static analysis and the code behavior analysis from the

dynamic state to the static state; Then match the results generated by the static analysis

and dynamic analysis, and through the match, find out and identify the possible

differences between the results of the static analysis and dynamic analysis and then mark

the differences as possible hidden codes. Under this interactive mechanism, the dynamic

path analyzed and extracted from the dynamic analysis need to be submitted to the static

analysis process for handling, namely to utilize DTS mechanism. But the static analysis

process and the DTS interactive mechanism don't affect each other, they only take the

results gained separately for matching analysis. Figure 4 is the sketch map of SDM

interactive mechanism.

Platform transparency

processing

Static

multidimensional

graphs extraction

Dynamic execution

engine based on QEMU

Platform-independent

dynamic information

extraction

Start dynamic

analysis

Dynamic path

extraction

Static analytic process
 Dynamic information

extraction process

 Calling static

analytic algorithm
Start static

analysis

Match the results of

static analysis and

dynamic analysis

Figure 4. SDM Interactive Mechanism Diagram

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.10 (2016)

38 Copyright ⓒ 2016 SERSC

If SS is used to represent starting the static analysis process, DTS is used to represent

starting up analysis process from dynamic state to static state and MACH is used to

represent the matching process of results of dynamic and static analysis, then SDM

information interactive mechanism can be simply represented by (SS,DTS, MACH).

4. Realization of Interactive Mechanism in Static and Dynamic Analysis

Actually, three kinds of interactive mechanism are the control of reverse analysis in

embedded software. The key to realize mechanism of static and dynamic analysis is how

to integrate the results of static and dynamic analysis.

4.1. Realization of STD Mechanism

In essence, the Static to Dynamic Mechanism guides the path of the dynamic analysis

by using the abnormal nodes in the static analysis, and then uses the information extracted

by dynamic analysis to modify the abnormal results. So firstly we should use the

abnormal nodes of the static analysis to provide input examples for the dynamic execution,

making the dynamic analysis can cover the abnormal nodes; Then complete the extraction

of information on the dynamic path by using extraction plug-in; Finally, correct the

abnormal nodes by using the extracted run-time information.

4.1.1. Dynamic Input Generation Based on the Abnormal Nodes: Definition 1

Abnormal Node

A node in control flow graph (CFG) generated by static analysis process is called an

abnormal node ,if it matches one of the following conditions:

(1) A node in which statements that is not identified and marked as unknown(string, )

appear;

(2) A node in which jump statements whose jump target doesn’t exist in the derived

API or in the code area appear;

(3) A node in which jump statements or call statements whose destination address is

marked as  ( means the destination address is arbitrary);

(4) A node in which particularly complex memory read-write statements or particularly

complex expression statements appear.

Definition 2 Partial Path: A sequence of instructions that satisfy the following

constraint conditions 0 1{ , , , }kinst inst inst
 is called a partial path, denoted as:

PT

(1) 0inst
 is the program entry point, and kinst

 is an Abnormal Node;

(2) 1(0)(,)i ii i k inst inst E   
, E is the set of the edges in CFG.

Definition 3 Construct the Set of Partial Path: Construct all Partial Path from the

entry point to all Abnormal Node in CFG which gained based on static analysis.

It usually adopts the reverse depth-first search algorithm to construct the set of partial

paths: namely first from the beginning of the largest abnormal nodes number, backward

search for the current node precursor, and choose one from its precursor list to continue

searching (if the precursor is an Abnormal Node, it will be selected in priority), until

reaching the entry point (note: in this case, the node is the basic block).

Attention: When constructing the set of partial path, if there exists a loop in the paths,

we will get different paths if the loop times are different. And generally the loop

executing times cannot be determined by static analysis, so it’s necessary to take a

reasonable strategy to process the loops [10] when constructing the set of partial path.

After the partial path set is obtained, at first, the whole partial paths should be scanned

from the entry point; When encountering conditional jump statements, the conditional

expression Expr in the current conditional statements is required to be figured out, then let

Expr = True or False (namely, the constraint condition that partial paths should meet to

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.10 (2016)

Copyright ⓒ 2016 SERSC 39

jump on current conditions); Combining all the constraint conditions corresponding to

every branch statement, the path constraint condition that covers the current partial path

should be obtained; Finally, using the constraint solving tool STP[11] to automatically

work out a group of inputs satisfying the constraint conditions. These inputs are utilized to

enable the program to execute along a given path and cover the abnormal nodes.

4.1.2. Plug-Ins for Extracting Dynamic Path

At present, the relatively widely used plug-ins for extracting dynamic path are mostly

on the instruction level [12]. To trace a tiny process dynamically, it usually takes a dozens

of gigabytes on hard disk to record the path information and it often needs to filter the

path according to the specific analysis content. Therefore, a kind of multi-granularity

plug-ins for extracting dynamic route is designed here which can set the granularity of

path extraction according to the need of analysis, and provide support for the analyzer to

carry out the work more purposefully. The major performance function list included in the

multi-granularity dynamic path extracting plug-ins is as shown in Table 1:

Table 1. Major Function List Included in the Multi-Granularity Dynamic Path
Extracting Plug-Ins

Granularity Function name Function description

User Statement

level

trace_inst_user(int

pid, char *tracefile)

Monitor the process whose id number is pid, and record the

extracted statement-level path information in the file pointed by

tracefile, not including the system code

User Basic

block level

trace_bb_user(int

pid, char *tracefile)

Monitor the process whose id number is pid, and record the

extracted basic-block-level path information in the file pointed

by tracefile, not including the system code

User Function

level

trace_func_user (int

pid, char *tracefile)

Monitor the process whose id number is pid, and record the

extracted function-level path information in the file pointed by

tracefile, not including the system code

Whole system

Statement level

trace_inst_ws(int

pid, char *tracefile)

Monitor the process whose id number is pid and record the

extracted statement-level path information in the file pointed by

tracefile, including the system code

Whole system

Basic block

level

trace_bb_ws(int pid,

char *tracefile)

Monitor the process whose id number is pid and record the

extracted basic-block-level path information in the file pointed

by tracefile, including the system code

Whole system

Function level

trace_func_ws(int

pid, char *tracefile)

Monitor the process whose id number is pid and record the

extracted function-level path information in the file pointed by

tracefile, including the system code

When users need dynamic path information of different granularities, they can just use

the performance function of the corresponding granularity. Functions in different

granularities not only need to use instrumentation interface *_stub_enable() of different

granularities, but also need to determine whether the entry address and exit address of the

code basic block are in the user's virtual address space, in order to make sure that whether

it is necessary to record the path information of system functions. In addition, the

recording format of path files is stored according to the fixed data structure . When you

need to display the path files, just read them in accordance with the format of the data

structure.

Attention: Make use of instrumentation interface of the intermediate language to

realize the extraction of dynamic path, the information stored in the file path does not

include the information of the intermediate code and still only records the information of

machine instructions corresponding to the intermediate language, which takes the

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.10 (2016)

40 Copyright ⓒ 2016 SERSC

efficiency of storage and convenience of reading into consideration. What’s more, the

binary coding of machine instructions obtained from the file path can be transformed into

the corresponding assembly instructions and the intermediate language instruction by

calling the universal disassembler, so there is no need to store intermediate codes in the

file path.

4.1.3. Corrections of Abnormal Nodes

According to the abnormal node type, path extraction functions of different

granularities are called and trace files that record the path information are obtained. Then,

search the path information corresponding to abnormal nodes according to the

information recorded in the trace files.

The path information includes virtual address corresponding to dynamic execution

statement as well as the register information and the memory units information when the

statements are executed. Based on the address range of sentences corresponding to

abnormal nodes in the results of static analysis, search the corresponding content in the

path information, and the corresponding abnormal nodes are rewritten, namely finish the

corrections of abnormal nodes. Suppose the addressing of target address of jump

instruction in address A is register indirect addressing, and it is marked abnormal. Then

through the construction of partial paths and paths constraint solving, the input of

dynamic execution can be obtained. The basic-block-level path extracting plug-ins are

used to get dynamic path information. By means of searching the path information whose

address is "A" in the path file, reading the numeric value "addr" stored in the

corresponding register. In addition, read out the data stored in memory address "addr"

through the memory access interface. Eventually, the data is used to replace the target

address of jump instruction.

4.2. Realization of DTS Mechanism

The dynamic-to-static mechanism is mainly used to optimize dynamic path information

and help users accomplish analysis work better. So first of all, using dynamic path

extraction plug-ins unit to extract the path information, and then call the algorithm in the

static multidimensional graphs extraction algorithms to optimize accordingly.

The dynamic path extraction above is using extracting plug-ins of the dynamic path

introduced in 4.1.2 to perform extraction, that is, calling different dynamic path extraction

functions according to the granularity of dynamic tracing. As the information stored in the

path file includes only the instruction binary codes and does not include the corresponding

intermediate code, therefore, the binary codes corresponding to all the path information

need be extracted from the path information, then deliver the binary codes to platform

independent transparent framework and convert them into unified intermediate language.

Call the corresponding algorithms in the algorithms library of different granularities in

static multidimensional graphs extraction framework for optimization according to the

granularity of the extraction path information. For example, by calling constant

propagation and using definition analysis in the statement-level algorithms library, we can

delete the dead codes and reduce the number of statements. Furthermore, the

reconstruction algorithm of control flow graph in the basic block-level algorithms library

is used to get the control process of the dynamic path and can easily find and recover the

loop body and the loop count according to the address of the basic block.

4.3. Realization of SDM Mechanism

The mechanism of SDM can be used to discover hidden codes. Static analysis part of

the executable program is completed by platform transparent and static multidimensional

graphs extraction. Dynamic analysis part makes use of the plug-ins for dynamic path

extraction to accomplish the extraction of statement-level (generally refers to user

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.10 (2016)

Copyright ⓒ 2016 SERSC 41

statement level, only refers to system statement level in analyzing system code) path

information; Then deliver the path information to the part of static analysis, and calls

universal disassembler, intermediate code convertor and the optimization algorithms in

static multidimensional graphs extraction framework, to complete the static optimization

of the dynamic results. Finally, the results of static and dynamic analysis will be matched.

The matching method is mainly using the mapping relationship between addresses,

namely the path file extracted dynamically recording the corresponding virtual address of

each instruction, and the record in the static analysis of each statement address is a virtual

address. Therefore, for the virtual address dva of any statement in a dynamic path, the

virtual address of its corresponding static code va = dva.

Suppose
(,)s sN E

denotes the static abstract control flow graph and
(,)d dN E

 denotes

the dynamic abstract control flow graph. Ns and Nd denotes the node collection and Es

and Ed denotes the side collection, DVA() denotes the instruction virtual address in the

dynamic extraction path file and VA() denotes the virtual address of the nodes in the static

analysis. During the matching process, the following non-match situation may occur:

(1) For
(,) , , () ()i k d i s j jd d E s N VA s DVA d  

, but for any sid
(,)j xs s

starting from

js
,

() ()x jVA s DVA d
, which means the dynamic path reaches a branch which is not

recognized by the static control flow graph;

(2) For
(,) , , , () ()i k d i k s i id d E s s N VA s DVA d  

,
() ()k kVA s DVA d

, but
(,)i k ss s E

,

which means the dynamic path reach a non-existing side in the static control flow graph.

(3) The dynamic and static control flow graph can be matched, and there is at least a

node "n" in dynamic control flow graph so that the code statement which node "n"

contains is different from the code contained in the corresponding node in the static

control flow graph.

When the first situation occurs, it means that a code block which is not identified by

the static analysis has been found. The static analysis can be carried out again from

address
()iDVA d

; When the second situation occurs, it means that a side which has not

been identified by the static analysis has been found, we can add
(,)i ks s

 to the sE
 set;

When the third situation occurs, it means that the codes corresponding to the node "n" are

modified at running time. They are the real codes and can replace the sentences in the

corresponding static node.

5. Test

5.1. Test of the STD Interactive Mechanism

As the STD interactive mechanism is mainly applied to modify the abnormal nodes in

the results of static analysis, and improve the accuracy of decompilation. Therefore, we

choose some procedures in the open source suite coreutils8.20 which may contain

abnormal nodes and C++ program: pointer.cpp and funcpp.cpp which containing pointers

and virtual functions for the test. After cross-compilation the program is converted into an

executable program in ARM platform. The number of instructions and the number of

processes obtained through the universal disassemble are listed in Table 2. First make use

of the framework of static multidimensional graphs extraction to extract the CFG (control

flow graph) and count the number of abnormal nodes. Then use partial path constraint

solving to get the dynamic input. Through the dynamic execution and calling the

basic-block-level extracting plug-ins of the dynamic path, we can get the

basic-block-level path information. After that, through matching the path information

with the result of static analysis, the corresponding abnormal node information can be

modified. The test results are shown in Table 3.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.10 (2016)

42 Copyright ⓒ 2016 SERSC

Table 2. Basic Information about the Test Cases

Test object
Number of

instructions

Number of

processes

Dd 2303 36

factor 2531 35

install 1002 19

Join 1185 26

Ls 4882 78

Cat 783 6

pointer 312 4

funcpp 549 8

Table 3. STD Interactive Test

Test

object

Number of

abnormal

nodes

(ty=3)

Number of

abnormal

nodes

(ty=4)

Number

of partial

paths

Number of

corrected

abnormal

nodes

dd 4 6 7 10

factor 2 3 3 5

install 1 2 2 3

join 2 1 2 3

ls 4 7 9 11

cat 1 1 2 2

pointer 1 2 2 3

funcpp 1 1 2 2

Judging from the static-to-dynamic interaction mechanism, the two main abnormal

nodes in the tested program are Type 3 and Type 4(definition in 4.1.1), namely the

indirect jump address cannot be determined, and the expressions for storing operation

address are too complex. After dynamic information extraction, we have corrected all the

abnormal nodes and the accuracy of the control flow graphs have been improved.

5.2. Test of the DTS Interactive Mechanism

DTS mainly used to optimize the path file extracted dynamically. We choose to use

part of the programs in the open source suite coreutils8.20 for DTS interactive mechanism

of test and cross-compile it to the executable programs in PPC platform. First of all, run it

on dynamic execution engine, and use the user statement-level path extracting plug-ins

extract path file. Then extract the corresponding binary codes and optimize the codes by

calling the process of static analysis. Test program information and test results are shown

in Table 4:

Table 4. Test Results of DTS

Test object
Number of dynamic executing

instructions
Number of process

Number of instructions

after optimization

pr 5716 38 2109

ptx 4253 22 1985

sort 8967 96 4513

tail 4420 32 3254

tr 3968 35 1256

pr 5925 38 2784

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.10 (2016)

Copyright ⓒ 2016 SERSC 43

ptx 4369 22 2241

sort 9458 96 5087

It can be seen from the results that, after static optimization, route number of dynamic

execution are reduced obviously, which can reduce the work amounts of analysis

personnel to a large extent.

5.3. Test of SDM Interactive Mechanism

SDM interactive mode is mainly used to discover the hidden codes, therefore we

choose selfmodify1.c and selfmodify2.c, which are written by ourselves and contain

self-modified codes, as the targets of test. Utilizing gcc4.3 to compile the test objects to

executable programs on x86, and then use static and dynamic respectively to analyze, and

send the dynamically extracted instruction binary codes which correspond to path

information to the static analysis part to have another analysis. Finally match the two

results of static analysis. The test program and the final results are shown in the Table 5.

According to the test results we can see that just once matching using SDM may not

find self-modifying codes. The reason is that dynamic execution is random and the

self-modifying codes may not be covered.

Table 5. Test Results of SDM

Test object

Number of

instructions in static

analysis

Number of dynamically

executed instructions

Whether the static results

match the dynamic

results

Nonmatch

types

Selfmodify1 345 469 No 1、3

Selfmodify2 216 427 No 1

6. Conclusion

This paper systematically studies the combination mode between the static and

dynamic interactive mechanism, establishes three kinds of interactive mechanism

including Static To Dynamic (STD), Dynamic To Static (DTS), Static and Dynamic

simultaneous (SDM). In addition, by analyzing different interactive mechanisms'

applications and functions, this paper gives detailed methods and realizes mutual

supplement and modification between the dynamic information and static information,

which has provided strong support in finding the hidden codes, exploiting vulnerability

effectively, and improving analysis efficiency, etc.

The experimental test results have proved the efficiency of the three interactive

mechanisms. However, as for the DSM mode, we have currently only conducted test the

matching results, without testing the matching time. In the follow-up work, it's necessary

for us to conduct relevant tests on the time and space complexity of the matching

algorithm and further improve the matching algorithm on the basis of the test results.

Acknowledgements

This work is supported by National Natural Science Foundation of China and National

High Technology Research and Development Program of China.

References

[1] J. Kinder, “Static Analysis of x86 Executables”, Technische Universität Darmstadt, (2010).

[2] B. G. Reps and T. Wysinwyx, “What you see is not what you execute”, ACM Transactions on

Programming Languages and Systems (TOPLAS), vol. 32, no. 6, (2010), pp.23-24.

[3] E. J. Schwartz, T. Avgerinos and D. Brumley, “All you ever wanted to know about dynamic taint

analysis and forward symbolic execution (but might have been afraid to ask)”, IEEE Symposium on

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.10 (2016)

44 Copyright ⓒ 2016 SERSC

Security and Privacy, The Claremont Resort, Okland, California, USA, (2010), pp.317-33.

[4] P. Clarke, “Embedded systems next for hack attacks”, http://www.esmchina.com/

ART_8800125181_1400_2304_3803_0_5f29b1c0-02.HTM, (2015).

[5] DIMITRIOS N Serpanos, ARTEMIOS G Voyiatzis. Security Challenges in Embedded Systems. ACM

Transactions on embedded computing systems (TECS), (2013),12(1s): No.66

[6] J. L. Hui, “Research on Key Techniques for Firm-Code Reverse Analysis”, PH.D thesis, Information

Engineering University, Zhengzhou, China, (2007).

[7] C. Cifuentes, “The University of Queensland Binary Translator (UQBT) Framework”, the University of

Queensland and Sun Microsystems, Inc., (2002).

[8] L. X. Ying, “Research on Technologies of Control Flow Reconstruction and Control Structure Recovery

in Decompilation”, Information Engineering University, M.D. thesis, Zhengzhou, China, (2010).

[9] B. F. Qemu, “A Fast and Portable Dynamic Translator. Proceedings of the FREENIX Track: 2005

USENIX Annual Technical Conference”, Marriott Anaheim, California, USA, (2005), pp.41-46.

[10] L. Dan, “Research on control Flow Reconstruction of Multi-source Decompilation”, M.D. thesis,

Information Engineering University, Zhengzhou, China, (2013).

[11] V. Ganesh and D. L. Dill, “STP: A Decision Procedure for Bit-vectors and Arrays”, Computer Aided

Verification Lecture Notes in Computer Science, vol. 4590, (2007), pp. 519-531.

[12] Y. Y. Qiu, “Research and Application on the ARM architecture of full system dynamic analysis

technology”, M.D. thesis, Information Engineering University, Zhengzhou, China, (2014).

Authors

Liu Tie-ming, received B.S. degree and M.S. degree in computer

science from Tsinghua University in 2003 and 2006, Beijing, China.

Currently, He is a Ph.D. student and vice-professor in the State Key

Laboratory of Mathematical Engineering and Advanced Computing

of China. His research interest includes system reverse engineering

and embedded system.

Jiang Lie-hui, received B.S. degree, M.S. degree and Ph.D

degree in computer science from the State Key Laboratory of

Mathematical Engineering and Advanced Computing of China,

Zhengzhou, China. Currently, He is a researcher and professor in the

State Key Laboratory of Mathematical Engineering and Advanced

Computing of China. His research interest includes information

security, system reverse engineering and embedded system.

Zhu Jing-si, received B.S. degree and M.S. degree in Zhengzhou

University of Science and Technology in 2006 and 2009, Zhengzhou,

China. Currently, She is a researcher and assistant professor in

Zhengzhou University of Science and Technology. Her research

interest includes system reverse engineering and Computer-Aided

Design.

Meng Gang, is a M.S. course student in the department of

Computer Science at the State Key Laboratory of Mathematical

Engineering and Advanced Computing of China. He is also assistant

researcher at the Information Engineering University. He is current

research interests are system reverse engineering and embedded

system.

Onli
ne

 Vers
ion

 O
nly

.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LL

EGAL.

