International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016), pp.33-44
http://dx.doi.org/10.14257/ijmue.2016.11.10.03

The Interactive Mechanism of Static and Dynamic Analysis in the
Reverse Analysis of Embedded Software

Liu Tie-ming™”, Jinag Lie-hui*, Zhu Jing-si’ and Meng Gang*

'The State Key Laboratory of Mathematical Engineering and Advanced
Computing, Zhengzhou, 450000, P. R. China;
2ZhengZhou University of Science and Technology, Zhengzhou, 450064, P. R.
China
{lixliutm, jingliehui }@163.com, {zjs006, zzxdmg}@126.com
Corresponding Author: LIU Tie-ming(fxliutm@163.com)

Abstract ?\
Because the software reverse analysis method which combined the dy. @nd static
sé"an

analyses lacks normative interactive mode, the work of ftvare 4ev; alysis is
inefficient, and its reusability is poor. Based on dynamic.a[te, static analysisfrocess of the
embedded software, three kinds of interactive mech m are prop including Static

To Dynamic (STD), Dynamic To Static (DTS), St d Dyn%;&multaneous (SDM),

and has also presented the method of realizing thESe three intégaction mechanisms in
detail. The test results show that interactive@chanisa@STD, DTS and SDM are
suitable for correction of abnormal nodes @ results of $tatic analysis, optimization of
dynamic information extraction, identifi N of hid codes and so on. It can greatly
improve work efficiency of the embe ftwar;‘Q analysis.

Keywords: software rev%@sis;.e ded software; static analysis; dynamic
analysis; dynamic and static cOmbinatign;ai ctive mechanism\

1. Introduction, QQ \
. \&ombin

eq@ namic and static analyses can be divided into three

types by an al approaches: Static analysis, dynamic analysis and combination of both
static and @ IC an ,gand it is usually used in the fields of binary-translation,
decompilatior*vulnera etection, malicious behavior analysis and so on. Due to the
lack of run-time i ion, static analysis can't accurately analyze indirect branch

Dynamic analysis¥as the problems of incomplete analysis and detection over the codes
because i, cén't traverse all the possible execution paths of the codes [3]; the method of
the soft
of stati

statements, h@@ shortcomings of false analysis and omissive analysis[1-2];

everse analysis can integrate the results of dynamic analysis and the results
alysis, effectively lowering the probability of false analysis and omissive
It has been widely used in the combined the dynamic and static analyses on
on platforms. However, it lacks an uniform information interaction mechanism
betiveen the dynamic and static. The reusability of the analysis work is not strong and the
analysis efficiency is relatively low.

With the development of software technology and embedded technology, various
software vulnerabilities and malicious attacks based on software vulnerability gradually
spread from such common platforms as x86 to such embedded platforms as ARM, MIPS,
PPC [4]. Because of large differences among hardware architectures of the embedded
platform, the system software can be arbitrarily cut freely, so the software reverse analysis
tools in universal platform are unsuitable in embedded platform. Therefore, the reverse
analysis work of embedded software is facing severe challenges [5]. Based on the

ISSN: 1975-0080 IJMUE
Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016)

dynamic and static analysis process of the embedded software, the interaction mechanism
of static and dynamic analysis which is applicable to the reverse analysis of embedded
software has been put forward in this paper, so as to provide support for improvement of
accuracy and efficiency of combined the dynamic and static analyses of the embedded
platform.

2. Static and Dynamic Analysis Process of the Embedded Software

Because the hardware architectures of the embedded platforms are different, even for
the same architecture with different series, the Instruction Set Architecture (ISA) can be
different. In addition, because the versions of embedded operating systems are various,
and can be cut any part and the running time circumstances are different, so it is very
difficult to provide the united static disassembler and decompiler for the software of the
embedded platform for static analysis. And it is difficult to provide the united dynamic
execution engine for dynamic analysis, too. Figure 1 is the interaction mechanis o&?’c’
and dynamic analysis aiming at the reverse analysis of embedded software, in% he
static analysis section consists of the relevance platform transparent procesgin static
multidimensional graphs extraction, and dynamic analysisy section S f multi-
architecture dynamic execution engine and platform—inﬁ&ent d ie information

extraction. \/

O

Analyzed

1
: Analyzed
H code 2

code 1

Platform - independent
dynamic information
extraction

High- level semantic analysis

Data Code Malicious
structure structure behavior

recovery recovery | | detection discovery

1
1
Vulnerability :
i
1

Figure\@'ocess of Static and Dynamic Analysis in Embedded Software

PVI& transparent processing means a process of using formalized methods to
t and describe the attributes related to the Instruction Set Architecture (ISA) and
%stem development platform ABI in the analyzed codes on various analysis platforms,
and then converting the binary codes on various platforms to the unified intermediate
language codes form by code conversion on the basis of the abstract description (the
universal disassembler[6] and the intermediate code converter [7-8]).

Static multidimensional graphs extraction is a process based on unified intermediate
language codes, which adopts various static analysis algorithms [1,8] to complete the
analysis of control flow and data flow and generate the dependency diagram, the control
flow diagram, the structure diagram, the calls diagram and so on under the granularity of
statement level, basic block level, structure level, function level and so on, and then
display them in a graphical manner.

34 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016)

The multi-architecture dynamic execution engine refers to the generation platform that
applies the multi-architecture simulators like QEMU [9], through the proper configuration
to set up a simulation platform that is suitable for the execution of various embedded
software, which is a virtual execution environment provided for the dynamic execution of
embedded software.

Whereas platform-independent dynamic information extraction is based on the
multi-architecture dynamic execution engine, through the intermediate language extension,
to establish the instrument interface based on intermediate language, and meanwhile to
provide the API (sentence level, basic block level, function level, etc.) of dynamic
information extraction with different granularities, which is the run-time information
extraction interface during the dynamic execution process of embedded software offered
to users.

Through static analysis process, the users can get a series of graphs in intermediate
language codes; through dynamic analysis process, the users can get run-time inforgations
of intermediate language codes layers with different granularities. However, i &W)
better combine the two organically and better provide service for the high-I :?ﬁntic
analysis such as vulnerability discovery and malicious activity detectio@ fective
information interaction mechanism must be established& en the dynamic

analyses. \/

3. Interactive Mechanism of Static and I@'ch

After intensively researching the analysis ¢ of the are‘reverse analysis on the
current platform which is used universally, @covere he graphs got in the static
analysis can be applied to guide the pat ch be*covered during the dynamic
information extraction, and the infor ext m the dynamic analysis can be
applied to correct the inaccurate p the re he static analysis. Building up an
interactive mechanism betwee S analys ynamic analysis process, integrating
the results of dynamic a tlc analy an greatly improve the accuracy and
efficiency of the high-lev emantlc . The interactive mechanism, according to
the order of dynamic r@atlc anal combmed with the target of analysis, can be
categorized into th types: | 0 Dynamic (STD) interaction mechanism used
to amend results o ana amic To Static (DTS) interaction mechanism used
in qwck apalysi f the behavior, and Static and Dynamic simultaneous

@ useddin @tlfymg hidden code.

3.1. Static to Dyna eractive Mechanism (STD)

The interacti anism of Static To Dynamic is called STD mechanism for short,
which is usuallynysed to dynamically correct the results of static analysis (for example, the
correctio tatic decompilation results, etc.), and is the common way of combined the
dynami static analyses on present common platforms. STD mechanism first utilizes
mod cluding static analysis process and platform transparent processing through

Itidimensional graphs extraction to get all kinds of analysis graphics based on the

d intermediate language code, and then uses methods of combining the abnormal
nodes that appear in the graph (such as statements that appear in the nodes without being
recognized and that are marked as unknown(string,t), jump statements that the jump
target is not within the derived APl or the code section, as well as particularly
complicated memory read-write statements and particularly complicated expression
statements) and utilizing symbol execution and solving with constraint path to generate
testcase; Then based on the testcase start dynamic analysis procedure, running code on
dynamic execution engine, and use relative dynamic information extraction interface to
proceed dynamic tracing. Finally, use the dynamic extraction information to correct the

Copyright © 2016 SERSC 35

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016)

inaccurate places in the results of the static analysis abnormal nodes. The sketch map of
STD interaction mechanism is as shown in Figure 2.

Start static analysis Start dynamic analysis
"""""" | | I Dynamic information
Static analytic process Y -

extraction process

Platform transparency Dynamic execution

engine based on QEMU

Static
multidimensional
graphs extraction

Platform-independent
dynamic information
extraction

r
1
1
1
1
1
1
: processing
1
1
1
1
1
1
1
1
1
1

‘\/
Dynamic in&t generation — Dynamic path extraction 0

* N7

Figure 2. STD Interactive Mech@ ag m

If SS is used to represent starting the static an proces%ofrepresents dynamic
input generation, SD represents starting d& anaIyS|s rocess, and WB represents

dynamic message write-back, then th tic-to- d%&B information interactive
mechanism can be simply represented B)+. The symbol "+" means

that this process can be repeated for that after one STD information
interactivity, the results of static al % ill be d once. If there are new reachable

code blocks after the updatl g,th r ation interactivity is started again for

the new code blocks. The ss is repK ntil there are no more reachable code
blocks.
3.2. Dynamic to StatQQeractl % anism (DTS)

The interactiveyne anlsm mic to Static is called DTS mechanism for short,

which is uss d to analysis and feature extraction of the code behavior.
First, start € phic ana é’ocess to run the executable program on the dynamic engine.
Meanwhile dynamic i%matlon extraction module is used to record the dynamic
execution path; Th sed on the dynamic execution path, starting the static analysis
process, namely, s tic analysis process module in platform transparent processing to
change the cede® in dynamic path into intermediate language code, and use
multidimeg%al graphs extraction module to optimize it, to generate dynamic path's
corresp varies collections of graphs, and to realize the user's rapid analysis and
judg& code behavior. The sketch map of DTS mechanism is shown as Figure 3.

represents starting dynamic analysis, TT represents dynamic path extraction, CS
%ents calling static analysis algorithm, and TO represents dynamic path optimization,
then the dynamic-to-static information interactive mechanism can be simply represented
by (SD, TT, CS, TO).

36 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016)

Calling static analytic algorithm Start dynamic analysis

Dynamic information

Static analytic process -
yticp extraction process

Platform transparency Dynamic execution

processing engine based on QEMU

Static
multidimensional
graphs extraction

Platform-independent
dynamic information
extraction

Dynamic path optimization

extrilction

\ 2
Figure 3. DTS Interactive Mechanism Diagram QE
3.3. Static and Dynamic Simultaneous Interactive \ﬂm

The interactive mechanism of Static and |c si egus is called SDM

mechanism for short, which is usually used to ide self-m
codes. First, we need to call static anal rocess DTS interactive process
respectively, and finish the static analy the co havior analysis from the
dynamic state to the static state; The the generated by the static analysis
and dynamic analysis, and throug{t mat out and identify the possible
atic anal \nd

dynamic analysis and then mark
this interactive mechanism, the dynamic
alysis need to be submitted to the static
analysis process for han(m namel ize DTS mechanism. But the static analysis
process and the DTS tive megchamism don't affect each other, they only take the
results gained se I\ for m g analysis. Figure 4 is the sketch map of SDM
interactive mech p%n

differences between the results Of%

the differences as possible %
path analyzed and extracted the

Calling static

. . Start dynamic
Iysis analytic algorithm

analysis

i
@_‘

. : 1 r . _T T
)
: Stasic analytic pgocess : : Dynaml; information :
1 ' ' | | extraction process |
i i S ! I
% H tPlaform transpei' ency 1 {| Dynamic execution |1
Ll [Ll

O 1, ! processing ' 1lengine based on QEMU|1
1 'l 1 1
[ttt et 1 1 1
— :] ! I
1 N ' 1 1 . 1
1 v Static ' 1 1| Platform-independent |y
H nu Itldlmensmnal ! | dynamic information !
1 gTraphs extraci.mn 1 1 extraction 1
1 ' 1 1 1
1 + 1 1 1
L IR L S }- ------ '

Match the results of Dynaric path

static analysis and eXtriction
dynamic analysis

Figure 4. SDM Interactive Mechanism Diagram

Copyright © 2016 SERSC 37

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016)

If SS is used to represent starting the static analysis process, DTS is used to represent
starting up analysis process from dynamic state to static state and MACH is used to
represent the matching process of results of dynamic and static analysis, then SDM
information interactive mechanism can be simply represented by (SS,DTS, MACH).

4. Realization of Interactive Mechanism in Static and Dynamic Analysis

Actually, three kinds of interactive mechanism are the control of reverse analysis in
embedded software. The key to realize mechanism of static and dynamic analysis is how
to integrate the results of static and dynamic analysis.

4.1. Realization of STD Mechanism

In essence, the Static to Dynamic Mechanism guides the path of the dynamic analysis
by using the abnormal nodes in the static analysis, and then uses the information ex acte
by dynamic analysis to modify the abnormal results. So firstly we shoul
abnormal nodes of the static analysis to provide input examples for the dy ?ﬁtlon
making the dynamic analysis can cover the abnormal nodes; Then complet raction
of information on the dynamic path by using extract gﬁm Fi orrect the
abnormal nodes by using the extracted run-time mform

4.1.1. Dynamic Input Generation Based on the ‘mal Weﬁnmon 1

Abnormal Node
A node in control flow graph (CFG) g Gﬁ by sta lysis process is called an
g

abnormal node ,if it matches one of the con

(1) A node in which statementst lde tl marked as unknown(string, T)
appear; g\‘

(2) A node in which jump nts wh e Ju p target doesn’t exist in the derived

API or in the code area app
(3) A node in which j p statem \all statements whose destination address is

marked as [] ([mea tlnatlon Ss is arbitrary);
(4) Anode i |n ticularl mplex memory read-write statements or particularly
m

complex expre55| en
|aI Path: sequence of instructions that satisfy the following

—t

t, -, inst} is called a partial path, denoted as: T"
inst,

constraint
@ Inst, is the entry point, and

2 vi(0<i st inst;,,) < E , E is the set of the edges in CFG.

Definitiop 3 ®onstruct the Set of Partial Path: Construct all Partial Path from the
entry poi I Abnormal Node in CFG which gained based on static analysis.

It us adopts the reverse depth-first search algorithm to construct the set of partial

h mely first from the beginning of the largest abnormal nodes number, backward

or the current node precursor, and choose one from its precursor list to continue
hing (if the precursor is an Abnormal Node, it will be selected in priority), until
reaching the entry point (note: in this case, the node is the basic block).

Attention: When constructing the set of partial path, if there exists a loop in the paths,
we will get different paths if the loop times are different. And generally the loop
executing times cannot be determined by static analysis, so it’s necessary to take a
reasonable strategy to process the loops [10] when constructing the set of partial path.

After the partial path set is obtained, at first, the whole partial paths should be scanned
from the entry point; When encountering conditional jump statements, the conditional
expression Expr in the current conditional statements is required to be figured out, then let
Expr = True or False (namely, the constraint condition that partial paths should meet to

is an Abnormal Node;

38 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016)

jump on current conditions); Combining all the constraint conditions corresponding to
every branch statement, the path constraint condition that covers the current partial path
should be obtained; Finally, using the constraint solving tool STP[11] to automatically
work out a group of inputs satisfying the constraint conditions. These inputs are utilized to
enable the program to execute along a given path and cover the abnormal nodes.

4.1.2. Plug-Ins for Extracting Dynamic Path

At present, the relatively widely used plug-ins for extracting dynamic path are mostly
on the instruction level [12]. To trace a tiny process dynamically, it usually takes a dozens
of gigabytes on hard disk to record the path information and it often needs to filter the
path according to the specific analysis content. Therefore, a kind of multi-granularity
plug-ins for extracting dynamic route is designed here which can set the granularity of
path extraction according to the need of analysis, and provide support for the analyzer to
carry out the work more purposefully. The major performance function list includew’
multi-granularity dynamic path extracting plug-ins is as shown in Table 1:

Table 1. Major Function List Included in the Multi-G nularlty 5@0 Path
Extracting Plug-lns

Granularity Function name

. . pid, and record the
User Statement trace_inst_user(int extracted statement path mf ion in the file pointed by

level pid, char *tracefile) ~ tracefile, not ng the sy, code
Oracess whoseNi@”humber is pid, and record the

User Basic trace_bb_user(int extrac ad *. -blo k- path information in the file pointed
block level pid, char *tracefile) by tg he system code

] tr the process whose id number is pid, and record the
User Function trace_func_user. tedf -level path information in the file pointed by
level pid, char *tracefll racef uding the system code

Monl e process whose id number is pid and record the
Whole system trace ﬂ&!@‘mt thacted statement-level path information in the file pointed by

Statement level pid, ¢ efl'%a ile, including the system code
Q onitor the process whose id number is pid and record the

Whole syste
Basic b)llockr@e bb_ d, extracted basic-block-level path information in the file pointed
level ar *trac by tracefile, including the system code

extracted function-level path information in the file pointed b
Function Ievel p *traceflle) P P y

Whole system tr ws(int Monitor the process whose |_d numb(_er is pid and re(_:ord the
'ii i:: tracefile, including the system code

Whe@rs need dynamic path information of different granularities, they can just use

t ormance function of the corresponding granularity. Functions in different

% rities not only need to use instrumentation interface *_stub_enable() of different

grarularities, but also need to determine whether the entry address and exit address of the
code basic block are in the user's virtual address space, in order to make sure that whether
it is necessary to record the path information of system functions. In addition, the
recording format of path files is stored according to the fixed data structure . When you
need to display the path files, just read them in accordance with the format of the data
structure.

Attention: Make use of instrumentation interface of the intermediate language to
realize the extraction of dynamic path, the information stored in the file path does not
include the information of the intermediate code and still only records the information of
machine instructions corresponding to the intermediate language, which takes the

Copyright © 2016 SERSC 39

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016)

efficiency of storage and convenience of reading into consideration. What’s more, the
binary coding of machine instructions obtained from the file path can be transformed into
the corresponding assembly instructions and the intermediate language instruction by
calling the universal disassembler, so there is no need to store intermediate codes in the
file path.

4.1.3. Corrections of Abnormal Nodes

According to the abnormal node type, path extraction functions of different
granularities are called and trace files that record the path information are obtained. Then,
search the path information corresponding to abnormal nodes according to the
information recorded in the trace files.

The path information includes virtual address corresponding to dynamic execution
statement as well as the register information and the memory units information when the
statements are executed. Based on the address range of sentences correspon y
abnormal nodes in the results of static analysis, search the corresponding contgfityin¥the
path information, and the corresponding abnormal nodes are rewritten, na ish the
corrections of abnormal nodes. Suppose the addressing of target E@of jump
instruction in address A is register indirect addressing, G&&s’mark@ormal. Then
through the construction of partial paths and paths geefistraint golvi the input of
dynamic execution can be obtained. The basic-b avel pa eﬁ%ng plug-ins are
used to get dynamic path information. By means O ching l\aﬁinformation whose
address is "A" in the path file, reading numeric Malue™"addr" stored in the
corresponding register. In addition, read o e data SR\ memory address "addr"
through the memory access interface. E@I y, the_data®is used to replace the target

address of jump instruction. % ‘\
4.2. Realization of DTS Mech n@ s\\
CAS

The dynamic-to-static me mism "W ed to optimize dynamic path information
and help users accomplijsh, analysis @\better. So first of all, using dynamic path
extraction plug-ins unj ract the path*information, and then call the algorithm in the
static multidimensi Qﬁphs exteadtion algorithms to optimize accordingly.

The dynamic jog xtracti&@o is using extracting plug-ins of the dynamic path
introduced jj= 0 perform exwaction, that is, calling different dynamic path extraction
functions a @ ng to the ularity of dynamic tracing. As the information stored in the
path file incltdes only the Wstruction binary codes and does not include the corresponding

efefore, the binary codes corresponding to all the path information
need be extracteg the path information, then deliver the binary codes to platform

Call th\gesponding algorithms in the algorithms library of different granularities in

static imensional graphs extraction framework for optimization according to the

grané@ of the extraction path information. For example, by calling constant

ion and using definition analysis in the statement-level algorithms library, we can
délefe the dead codes and reduce the number of statements. Furthermore, the
reconstruction algorithm of control flow graph in the basic block-level algorithms library
is used to get the control process of the dynamic path and can easily find and recover the
loop body and the loop count according to the address of the basic block.

4.3. Realization of SDM Mechanism

The mechanism of SDM can be used to discover hidden codes. Static analysis part of
the executable program is completed by platform transparent and static multidimensional
graphs extraction. Dynamic analysis part makes use of the plug-ins for dynamic path
extraction to accomplish the extraction of statement-level (generally refers to user

40 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016)

statement level, only refers to system statement level in analyzing system code) path
information; Then deliver the path information to the part of static analysis, and calls
universal disassembler, intermediate code convertor and the optimization algorithms in
static multidimensional graphs extraction framework, to complete the static optimization
of the dynamic results. Finally, the results of static and dynamic analysis will be matched.

The matching method is mainly using the mapping relationship between addresses,
namely the path file extracted dynamically recording the corresponding virtual address of
each instruction, and the record in the static analysis of each statement address is a virtual
address. Therefore, for the virtual address dva of any statement in a dynamic path, the
virtual address of its corresponding static code va = dva.

Suppose(NS’ E,) denotes the static abstract control flow graph and(Nd Eq) denotes
the dynamic abstract control flow graph. Ns and Nd denotes the node collection and Es
and Ed denotes the side collection, DVA() denotes the instruction virtual address,_ in the
dynamic extraction path file and VA() denotes the virtual address of the nodes in,th
analysis. During the matching process, the following non-match situation may oc

1) For (@8 €Ey 8 eNVAGS) =DVAM@) o

a S|d(J’X trngfrom
3 ,VA(Sx) * DVA(dJ'), which means the dynamic pa \% %ﬂwhlch is not
recognized by the static control flow graph; \/
(d;,d,) € Ey,s;,s, € N, VA(S;) = DVA(d ‘) D

(2) For w but (S8 ¢ E
which means the dynamic path reach a non-e side i in %tat ¢ control flow graph.

3 The dynamic and static control ro can be ed, and there is at least a
node "n" in dynamic control flow gra that t% statement which node "n"
contains is different from the code ed j \ rresponding node in the statrc

control flow graph.
When the first situation occ @means ta ode block which is not identified by
the static analysis has bee . The ¢ nalysis can be carried out again from

address DVAW)) . Wher@ second wn occurs, it means that a side which has not

been identified b a ¢ analysisthas been found, we can add (5118 to the E, set;
When the third s occu eans that the codes corresponding to the node "n" are

modified a‘ time. ey e the real codes and can replace the sentences in the

correspond tic noé

5. Test
5.1. Test of the Interactive Mechanism

As th interactive mechanism is mainly applied to modify the abnormal nodes in
the static analysis, and improve the accuracy of decompilation. Therefore, we

mal nodes and C++ program: pointer.cpp and funcpp.cpp which containing pointers

irtual functions for the test. After cross-compilation the program is converted into an
executable program in ARM platform. The number of instructions and the number of
processes obtained through the universal disassemble are listed in Table 2. First make use
of the framework of static multidimensional graphs extraction to extract the CFG (control
flow graph) and count the number of abnormal nodes. Then use partial path constraint
solving to get the dynamic input. Through the dynamic execution and calling the
basic-block-level extracting plug-ins of the dynamic path, we can get the
basic-block-level path information. After that, through matching the path information
with the result of static analysis, the corresponding abnormal node information can be
modified. The test results are shown in Table 3.

% some procedures in the open source suite coreutils8.20 which may contain

Copyright © 2016 SERSC 41

International Journal of Multimedia and Ubiquitous Engineering

Vol.11, No.10 (2016)

Table 2. Basic Information about the Test Cases

Test object _Numbe_r of Number of
instructions processes
Dd 2303 36
factor 2531 35
install 1002 19
Join 1185 26
Ls 4882 78
Cat 783 6
pointer 312 4
funcpp 549 8

Table 3. STD Interactive Test

0?\/

Number of Number of Number of
Number
Test abnormal abnormal . corrected
: of partial
object nodes nodes aths aknogmal
y=3) (y=4) P N\odes
dd 4 6 2N \\\',,
factor 2 3
install 1 2 \
join 2 1 2 3
Is 4 Q 9 ¢ 611
cat 1 . 2 \ 2
pointer 1 3
funcpp 1 1 ’\ 2

Qi (N

Judging from the static—%gnc inter@ction mechanism, the two main abnormal
nodes in the tested program Ty ype 4(definition in 4.1.1), namely the
indirect jump address ¢ t be det%, and the expressions for storing operation
address are too comp&er dynamic¥hformation extraction, we have corrected all the
abnormal nodes anqm ccurac O(Xe control flow graphs have been improved.

5.2. Testo

DTS ma
part of the program

Interaetive Mechanism

ize the path file extracted dynamically. We choose to use
open source suite coreutils8.20 for DTS interactive mechanism
of test and cross- e it to the executable programs in PPC platform. First of all, run it
on dynamic e@n engine, and use the user statement-level path extracting plug-ins
extract pathgfile. Then extract the corresponding binary codes and optimize the codes by

calling ess of static analysis. Test program information and test results are shown
in Ta
@ Table 4. Test Results of DTS
Test object Number o_f dynar_nlc executing Number of process Number of_|ns_tru<_:t|ons
Instructions after optlmlzatlon
pr 5716 38 2109
ptx 4253 22 1985
sort 8967 96 4513
tail 4420 32 3254
tr 3968 35 1256
pr 5925 38 2784
42 Copyright © 2016 SERSC

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016)

ptx 4369 22 2241
sort 9458 96 5087

It can be seen from the results that, after static optimization, route number of dynamic
execution are reduced obviously, which can reduce the work amounts of analysis
personnel to a large extent.

5.3. Test of SDM Interactive Mechanism

SDM interactive mode is mainly used to discover the hidden codes, therefore we
choose selfmodifyl.c and selfmodify2.c, which are written by ourselves and contain
self-modified codes, as the targets of test. Utilizing gcc4.3 to compile the test objects to
executable programs on x86, and then use static and dynamic respectively to analyze, and
send the dynamically extracted instruction binary codes which correspond tg paths
information to the static analysis part to have another analysis. Finally matc M)
results of static analysis. The test program and the final results are shown in %

According to the test results we can see that just once matching usm ay not
find self-modifying codes. The reason is that dynaml cutlon and the

self-modifying codes may not be covered.
Table 5. Test Resul.g %y
n -

Number of Wh he'static results

. . L . Number of dyrgntically i Nonmatch

Test object instructions in static . the dynamic

- executgd ions types
analysis results

Selfmodify1 345 6&@ No 1. 3
Selfmodify2 216 (‘K\ No 1
6. Conclusion A

This paper systemati studle\@ombmatlon mode between the static and
dynamic mteractlve ’ |sm st es three kinds of interactive mechanism
including Static o\Dynamic 5‘& Dynamic To Static (DTS), Static and Dynamic
S|multaneous (SBV In am&@w by analyzing different interactive mechanisms'

N hiS paper gives detailed methods and realizes mutual

supplement modifi between the dynamic information and static information,
which has provided Sé support in finding the hidden codes, exploiting vulnerability
e

effectively, and im g analysis efficiency, etc.

The experimeft st results have proved the efficiency of the three interactive
mechanisms. er, as for the DSM mode, we have currently only conducted test the
matching%%l.ts, without testing the matching time. In the follow-up work, it's necessary
for us duct relevant tests on the time and space complexity of the matching
aIgo@nd further improve the matching algorithm on the basis of the test results.

@nowledgements

This work is supported by National Natural Science Foundation of China and National
High Technology Research and Development Program of China.

References

[1] J. Kinder, “Static Analysis of x86 Executables”, Technische Universitdt Darmstadt, (2010).

[2] B. G Reps and T. Wysinwyx, “What you see is not what you execute”, ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 32, no. 6, (2010), pp.23-24.

[3] E. J. Schwartz, T. Avgerinos and D. Brumley, “All you ever wanted to know about dynamic taint
analysis and forward symbolic execution (but might have been afraid to ask)”, IEEE Symposium on

Copyright © 2016 SERSC 43

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.10 (2016)

Security and Privacy, The Claremont Resort, Okland, California, USA, (2010), pp.317-33.

[4] P. Clarke, “Embedded systems next for hack attacks”, http://www.esmchina.com/
ART_8800125181_1400_2304_3803_0_5f29b1c0-02.HTM, (2015).

[5] DIMITRIOS N Serpanos, ARTEMIOS G Voyiatzis. Security Challenges in Embedded Systems. ACM
Transactions on embedded computing systems (TECS), (2013),12(1s): No.66

[6] J. L. Hui, “Research on Key Techniques for Firm-Code Reverse Analysis”, PH.D thesis, Information
Engineering University, Zhengzhou, China, (2007).

[7] C. Cifuentes, “The University of Queensland Binary Translator (UQBT) Framework”, the University of
Queensland and Sun Microsystems, Inc., (2002).

[8] L. X.Ying, “Research on Technologies of Control Flow Reconstruction and Control Structure Recovery
in Decompilation”, Information Engineering University, M.D. thesis, Zhengzhou, China, (2010).

[91 B. F. Qemu, “A Fast and Portable Dynamic Translator. Proceedings of the FREENIX Track: 2005
USENIX Annual Technical Conference”, Marriott Anaheim, California, USA, (2005), pp.41-46.

[10] L. Dan, “Research on control Flow Reconstruction of Multi-source Decompilation”, M.D. thesis,
Information Engineering University, Zhengzhou, China, (2013).

[11] V. Ganesh and D. L. Dill, “STP: A Decision Procedure for Bit-vectors and Arrays”, Computer Aided
Verification Lecture Notes in Computer Science, vol. 4590, (2007), pp. 519-531.

*
[12] Y. Y. Qiu, “Research and Application on the ARM architecture of full system dynar"iw

technology”, M.D. thesis, Information Engineering University, Zhengzhou, China, (2014).

Authors %,
Liu Tie-ming, received B.S. d \a M
science from Tsinghua Un|v 200 , Beijing, China.
Currently, He is a Ph.D. stu d vice- sor in the State Key
Laboratory of Mathemati Englnefdrgjn Advanced Computing

of China. His resear @ st incl stem reverse engineering
and embedded syste\

Z
AN

ré

e in computer

Jia ie-hui, B.S. degree, M.S. degree and Ph.D
deg in com nce from the State Key Laboratory of
atlcal E ering and Advanced Computing of China,

e zhou ina. Currently, He is a researcher and professor in the
tory of Mathematical Engineering and Advanced
omputm hina. His research interest includes information

se ystem reverse engineering and embedded system.

@Zhu Jing-si, received B.S. degree and M.S. degree in Zhengzhou

niversity of Science and Technology in 2006 and 2009, Zhengzhou,
China. Currently, She is a researcher and assistant professor in
Zhengzhou University of Science and Technology. Her research
interest includes system reverse engineering and Computer-Aided
Design.

Meng Gang, is a M.S. course student in the department of
Computer Science at the State Key Laboratory of Mathematical
Engineering and Advanced Computing of China. He is also assistant
researcher at the Information Engineering University. He is current
research interests are system reverse engineering and embedded
system.

44 Copyright © 2016 SERSC

