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Abstract 

PCM (phase change memory) has been regarded as one of the most promising NVRAM. 
Due to its excellent features including high access speed, good scalability, byte 
addressability, and low idle power, PCM is expected to be an alternative to DRAM or 
flash memory in the future. So far, many different kinds of architecture have been 
proposed to merge PCM into the memory hierarchy of computer systems. For PCM-based 
computer systems, considering that PCM has various properties differing with DRAM and 
conventional storage media, traditional cache management policies based on DRAM and 
disks have to be re-designed. In this paper, we present a survey on the cache management 
policies for PCM-based systems that employ PCM as main memory or as secondary 
storage. Specially, for different PCM-based architectures, we explain how PCM-aware 
cache management policies exploit PCM’s advantages and overcome PCM’s drawbacks 
like asymmetric read/write latencies. 

 
Keywords: Phase change memory, DRAM, cache management policy 
 

1. Introduction 

Recently, with the increase of data scale in modern servers and application, the problem 
of the gap between high speed CPU and slow I/O access speed storage become more 
serious. Conventionally, DRAM is used as main memory to cache data from storage and 
bridge the gap between CPU and storage. But in the face of nowadays large data scale and 
large capacity memory requirement, DRAM suffers from its limited scalability and high 
energy consumption. Therefore, new memory technology that has low access latency, 
high density and low energy consumption become an urgent need. Under the 
circumstance, non-volatile memory technologies gain extensive attention of industry and 
academia. 

Non-volatile memory is a new kind of storage medium aiming to solve the problem due 
to the disadvantages of DRAM and disk. The characteristics of non-volatile memory are 
persistent, byte-addressability, fast access speed and high density. Compared with disk or 
flash memory, the access latency of non-volatile memory is much lower. Compared with 
DRAM, non-volatile memory has advantages of scalability and no leakage energy.  

Some non-volatitle memory technologies have already emerged and develop rapidly in 
recent years, such as MRAM, STT-RAM, RRAM, FeRAM and PCM. Among these 
technologies, due to its performance and potential of access latency and density, PCM is 
considered to be a promising candidate to substitute DRAM [1-6]. Table 1 shows the 
comparison between DRAM and PCM. 

PCM has many excellent properties: the read performance of PCM is similar to that of 
DRAM; PCM’s density is expected to be considerably large because its feature size can 
be very small and each PCM cell can store multiple bits [2-3, 6-8]; and PCM has low idle 
energy consumption.  But PCM also suffer from two critical disadvantages: first, PCM 
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has read-write cost asymmetry problem, access latency and energy consumption of write 
operation are much higher than that of read operation; second, PCM has endurance 

problem, each PCM cell can only be set and reset for limited times (about ).  
Considering PCM’s unique performance profile, PCM can be merged into different 

hierarchy of current computer system. First, PCM can be merged into main memory to 
completely replace DRAM and build non-volatile main memory system [3, 5, 9]. Second, 
PCM can be used in combination with DRAM to build hybrid memory system [4, 10-14]. 
Final, there are also some studies based on using PCM as storage device to replace disk 
and flash SSD [15-19].  

Merging PCM into conventional computer system brings new problems for cache 
management at the corresponding memory levels. Traditional cache management policies 
[20-27] are based on conventional CPU cache-DRAM-disk architecture. In conventional 
architecture, there is a great gap of access latency and capacity between different memory 
hierarchies, and the write cost and read cost are equal at each level. So traditional cache 
management policy focus on improving the hit ratio of the cache. But PCM has write 
endurance problem and asymmetric read/write problem, so PCM-based cache 
management policy should not consider hit ratio only. Reducing PCM write overhead to 
increase PCM’s lifetime and improve the overall performance should also be taken into 
account. 

There are already some studies that summarize the technologies designed for PCM-
based system [28-30]. But these studies do not pay special attention to cache management 
problems on PCM system. In this paper, we focus on surveying PCM-aware cache 
management policies for different PCM-based system architectures. The remainder of this 
survey is organized as follow. Section 2 introduces the different types of PCM system 
architecture and the new challenges to cache management policy. Section 3 summarizes 
the cache management policies for last-level-cache based on PCM main memory and 
hybrid memory. Section 4 describes the design and management of DRAM cache for 
PCM main memory. Section 5 presents page management and replacement algorithms on 
PCM main memory and hybrid memory. Section 6 presents the studies on DRAM main 
memory management policies for PCM storage. Finally, Section 7 presents the conclusion 
of this paper. 

 

 

Figure 1. Different PCM System Architecture 

2. PCM System Architecture 

In this section, we introduce different types of PCM system architectures that merge 
PCM into different memory hierarchy and adopt PCM in different ways. For each type of 
architecture, we discuss how PCM brings changes to conventional computer system 
architecture and challenges to cache management policies of the corresponding memory 
levels. 
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2.1 Pure PCM Main Memory 

To satisfy the requirement of big capacity main memory system, PCM is expected to 
be a substituent of DRAM due to PCM’s great scalability, so the PCM system architecture 
that replace DRAM totally with PCM is proposed [3, 5, 9], as shown in Figure 1(a). 
Compared with DRAM, PCM main memory can have much larger memory capacity and 
low idle power consumption. But consider the much higher write latency of PCM, 
replacing DRAM with PCM can still degrade the overall performance. So many studies 
are proposed to reduce the write operation cost of PCM main memory [5, 31-36]. 

PCM main memory also bring challenges to DRAM-based cache management policies 
for last-level cache (LLC) and main memory, due to PCM’s asymmetric read/write cost 
problem and limited endurance problem that do not exist in DRAM. 

LLC management: Based on DRAM main memory, to mitigate the access latency 
gap between CPU cache and the main memory, cache management policies of LLC 
focus on identifying cache blocks with high likely to be re-referenced and keep those 
blocks in cache to improve hit ratio [26, 37, 38]. But based on PCM main memory, LLC 
management problem is similar to DRAM cache management problem for flash SSD 
storage [63-68]. Due to PCM’s poor write performance, to improve the overall 
performance, the cache management policy should consider not only the hit ratio but a lso 
reducing write-backs from LLC to PCM.  

Main memory management: cache management policies for DRAM do not need to 
consider the location of the pages since DRAM does not have the endurance problem. For 
PCM main memory, due to the limited write count on each PCM cell, so the policy should 
care about the physical address when a page is cached into PCM from storage or a page in 
PCM is replaced with one other page from storage, in order to prevent wearing PCM 
partial regions too much. 

 

2.2 PCM Main Memory with DRAM Cache 

The poor write performance of PCM main memory significantly degrades the overall 
performance of system. To achieve a better main memory system with large capacity and 
low latency, the DRAM cache architecture that adopts PCM as main memory and adopts 
DRAM as cache for PCM has been proposed [4, 10, 11], as shown in Figure 1(b) DRAM 
cache is an in-house cache which is managed by memory controller and hidden to the 
operation system. By serving write accesses in DRAM cache, PCM main memory gets 
low write latency and increased lifetime.  

Since OS is not aware of DRAM cache, cache management policies of LLC and main 
memory can still regard the DRAM cache architecture as PCM main memory. But the 
cache management policy of DRAM cache should be specially designed. Due to PCM’s 
asymmetric read/write cost, serving a write access in DRAM cache benefits main memory 
performance more than serving a read access in DRAM cache, so the policy for DRAM 
cache should consider the tradeoff between write access hit ratio and overall hit ratio of 
the cache. 
 

2.3 Hybrid DRAM and PCM Memory Architecture 

To exploit the advantages of DRAM and PCM, hybrid DRAM and PCM memory 
architecture that adopts both DRAM and PCM as main memory is proposed [12-14], as 
shown in Figure 1(c). Hybrid PCM and DRAM memory manages PCM space and DRAM 
space together as main memory space, and different types of space can be identified 
according to physical address and managed by the OS. 

Unlike traditional main memory system that all the space has uniform access time, 
hybrid DRAM and PCM memory architecture has heterogeneous memories with different 
access time. Cache management policies for hybrid memory must be aware of the 
difference between PCM and DRAM.  
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For LLC management, consider that DRAM-based LLC management and PCM-based 
LLC management have different requirements, the policy for LLC should manage data 
from DRAM and data from PCM in different ways, and properly partition cache size for 
DRAM data and PCM data, to take both the hit ratio and write-backs to PCM into account. 

For main memory management, similar to data allocation between HDD and SSD for 
hybrid storage architecture [69-71], page allocation between PCM and DRAM 
significantly affect the overall performance of hybrid memory architecture. In order to 
efficiently exploit DRAM to hide PCM’s poor write performance, the policy for hybrid 
main memory should be able to predict page’s access pattern, and allocate write-intensive 
pages to DRAM to reduce write access count on PCM. 

 

2.4 PCM Storage 

Compared with flash memory, PCM performs much better on access time and 
reliability. The cost per bit of PCM is promising to be approach the cost of disks [39] and 
the density of PCM is expected to reach the storage level [40]. So PCM is also considered 
as one storage candidate and an alternative to flash memory, as shown in Figure 1(d). 
Since PCM storage has the main-memory-level access time and storage-level capacity, it 
blurs the strict boundaries between memory and storage. 

As shown in Figure 1(d), DRAM is still the main memory for PCM storage. Since the 
read access latency of PCM is similar to that of DRAM, the cost of missing a page in 
DRAM is not unacceptable, but the cost that caching a page in DRAM need to be 
considered if the cached page is clean not re-referenced in DRAM before evicting. 
Consider PCM’s write cost and endurance, the cache management policy for DRAM need 
to keep hot-dirty pages in PCM and improve the hit ratio of write accesses to reduce 
write-backs to PCM from evicting dirty pages.  
 

3. Last-level Cache Management Technology  
 

3.1 Last-Level Cache Management Based on PCM Main Memory 

When a dirty cache block in the LLC is evicted, the block should be written back to the 
main memory. For PCM main memory that suffers from the long write latency and high 
write energy cost, evicting dirty cache blocks frequently can degrade the overall 
performance and increase energy consumption of main memory system. So PCM-aware 
cache management policies of LLC should consider the different cost of evicting a clean 
block and evicting a dirty block to balance the tradeoff between the hit ratio of LLC and 
the write overhead of PCM, for the overall performance of the system. Since there are 
also some cache management policies 

Zhang et al. [41] present a read-write aware replacement algorithm RWA and its 
improved version I-RWA for PCM main memory. RWA and I-RWA are designed to 
manage LLC, and DRAM cache if PCM main memory adopts it.  These algorithms are 
based on RRIP [26]. Like RRIP, RWA set a Re-reference Prediction Value (RRPV) to 
each cache block. For n-way cache, when a read request misses in the cache, RWA set 
RRPV of the new data line to n-2; when a write-back from the upper-level cache misses, 
RWA set RRPV of the new data line to 0. Once a data line hits in the cache, its RRPV is 
reset to 0. To select a victim to evict, RWA randomly select one of the data lines with 
RRPV n-1, if there is no data line with RRPV n-1, RWA will increase the RRPV of all 
data lines in that set until one data line’s RRPV reach n-1. Since hot-dirty data lines 
always have smaller RRPVs, RWA can keep hot-dirty data lines staying in cache to 
reduce write-backs to PCM.  

RWA has the problem that it also keeps single-use dirty lines in cache for a long time, 
because RWA gives new dirty lines RRPV 0 when they are loaded on cache. This does 
not help to reduce write-backs to PCM and waste cache capacity. As the improved version, 
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I-RWA change the way of setting RRPV. For a n-way cache, the new line is set to n-3 
when a read miss, and is set to n-2 when a write-back miss. When a data line hits, its 
RRPV is set to 3 for read hit and is set to 0 for write-back hit. I-RWA policy filters single-
use dirty lines , only multiple-used dirty lines have smaller RRPVs are protected from 
evicting. 

Zhou et al. [42] proposed write-back-aware cache partitioning (WCP) and write-queue 
balancing (WQP) replacement policy. WCP and WQP policy are designed for multi-core 
environment. WCP aims to allocate different cache space size to different cores to reduce 
write-backs to PCM with maintaining hit ratio. WCP first design monitors to record hit 
and write-back information for each core. For M-way cache, WCP set M hit counters and 
M avoidable write-back counters to each core. For each core, its i-th hit counter record the 
number of additional hits and i-th avoidable write-back counter record the number of 
write hits on cache’s i-th way, when the i-th way is available. Based on the information of 
hit counters and avoidable write-back counters of each core, WCP can make a valid cache 
space allocation to different cores. The allocation should maximizes the sum of the 
number of hits and and the weighted number of avoidable write-backs. The weight 
determines the relative importance of reducing write-backs and raising hit ratio.  

WQB replacement policy aims to averagely distribute write-backs among write queues 
to avoid frequently fulfill one write queue and reduce the delays due to write-backs from 
LLC. When a dirty line evict from LLC, it enters the corresponding write queue. When a 
cache miss occurs and no invalid entry can be used, WQP scans from LRU to MRU to 
find a clean victim or a victim mapped to a light load write queue. 

Wang et al. [43] present a write-back-aware dynamic cache management technique 
WADE. WADE predicts the frequently written back blocks in LLC and classifies LLC 
sets into a frequent write-back list and a non-frequent write-back list, as shown in Figure 
2. Since the size of the frequent write-back list affect performance significantly, to get the 
best performance by balancing reduction of write-backs from LLC to PCM with reduction 
of cache miss, WADE make an effort to keep proper segment size of frequent write-back 
list in the LLC. To distinguish frequently written cache blocks, WADE designed a 
predictor called FWP for frequently written blocks. To find proper size of frequent write-
back list for the performance, WADE adopts a segment predictor [44] to dynamically 
adjust the optimal size of frequent write-back list for each cache set. WADE set different 
miss penalty for clean cache block and dirty cache block, and the segment predictor can 
determines the optimal size depending on the miss penalty. When a cache miss occurs, 
WADE evict a block in non-frequent write-back list if the size of frequent write-back list 
is not higher than the optimal size, else a block in frequent write-back list is evicted. 

            

Figure 2. The Overview of Frequent Write-Back List and Non-Frequent 
Write-Back List Mechanism 

Yoo et al. [45] present the least-dirty-first (LDF) cache replacement policy. LDF 
is adopted to on-chip LLC and it reduces PCM write traffic by taking advantages of 
cache line dirtiness management. The LLC architecture in LDF is shown as Figure 3. 
For each cache block, LDF set dirty bits to its all cache lines. When a cache line is 
flushed from L2 cache, its dirty bit is set. The more dirty cache lines a cache block 
has, the more PCM writes will be incurred when the block is evicted. In order to 
reduce PCM writes from LLC and maintain cache’s hit ratio, LDF evicts the block 
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with the least number of dirty cache lines among blocks less likely to be referenced 
again. To find these candidate blocks, LDF maintains one or more reference bits to 
each cache block, and adopts cache replacement algorithms such as NRU [46] and 
RRIP. Compared with original NRU and RRIP, NRU and RRIR that be incorporated 
with LDF reduce PCM writes while maintain cache performance. 

 

 

Figure 3. The LLC Set Mechanism in LDF 

Rodríguez et al. [47] present several new DRRIP-based LLC management 
policies. DRRIP [26] can be resolved into three sub-policies: insertion sub-policy 
that initialize the state of new cache blocks, promotion sub-policy that update a 
cache block’s state when it is hit, and victimization sub-policy that select a victim 
by comparing states of blocks. These policies, including SD, PL, PM, VL and VM, 
change the different sub-policies of DRRIP to reduce the number of evicting dirty 
blocks. SD change the insertion sub-policy, it use the number of write-backs instead 
of the number of cache miss to determine which insertion policy (SRRIP or BRRIP) 
should be employed to insert a new cache block. PL and PM change the promotion 
sub-policy by updating RRPV in different ways. VL and VM change the 
victimization sub-policy by giving a preference to evict clean blocks. The 
performance evaluation of different policies-combination schemes shows that PM-
VH-SD scheme reports the highest reduction of PCM write traffic. 

Barcelo et al. [48] present two energy efficient LLC replacement policy AL and 
VL. AL is designed to keep blocks that have been written for more times in cache, 
based on the observation that the more time a cache block has been written, the 
more bits in the block have been changed, so the more time and energy is needed to 
write the block back to PCM when the block is evicted. AL set a Time-To-Live 
(TTL) value to each blocks in LLC. Each time a block in LLC hits by write request 
from the upper-level cache, the TTL of the block increases. When a cache miss 
occurs, AL evicts the least-recently-used block among the blocks with minimum 
TTL, and decreases the TTL of all blocks to avoid keeping cold blocks in the cache 
for a long time. So hot-dirty blocks have higher TTL and stay in LLC. VA set an 
“age” to each blocks in cache, each time a request access LLC, VA increase the ages 
of all blocks. For a clean page, the age increases by 1; for a dirty page, the age 
increases by 1/c , c is according to the average cost of writing a block to PCM. VA 
evicts the block with the highest age, so clean blocks is preferred to be evicted since 
their ages increase faster than dirty blocks’ ages. 

 

3.2 Last-level Cache Management Based on Hybrid PCM-DRAM Memory 

Due to the different characteristics of PCM and DRAM, hybrid memory-based 
cache management policies of LLC should be aware of cache blocks from DRAM 
and cache blocks from PCM and manage different types of blocks in different ways.  

Weiwei et al. [49] proposed a new performance metric TMPKI to measure the 
performance of LLC for hybrid PCM-DRAM memory, and a hybrid-memory-aware 
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LLC space management policy called HAP. TMPKI is based on current performance 
metric MPKI, but it takes into account the different cache miss cost of DRAM data 

miss and PCM data miss. If the access latency of PCM is  times higher than 

that of DRAM, TMPKI think that the cost of a PCM data miss is  times higher 
than that of a DRAM data miss and add a weight to each PCM data miss, so TMPKI 
present a metric   to measure total miss cost.  is calculated as follow 

(  means the number of DRAM data misses and PCM data misses): 

 

HAP manages LLC by properly partition LLC space for DRAM data and PCM 
data, according to experiment observation: both too many DRAM data misses and 
too many PCM data miss will decrease performance. HAP set a data type bit to each 
cache line to identify where the data is from, and two threshold values  and 

 to restrict cache size for PCM. For different workloads,  and  are 

dynamically adjusted according to current TMPKI. HAP adjust cache size for 
DRAM and PCM by evicting different types of lines when a replacement is 

triggered: if PCM lines count is higher than , HAP evicts a LRU DRAM line; if 

PCM lines count is lower than , HAP evicts a LRU PCM line; else, a LRU line 
of all lines in cache will be evicted.  

 

4. DRAM Cache Management 

DRAM cache of PCM main memory is designed for serve the page accesses, 
especially write accesses to main memory. To improve the hit ratio, cache 
management policies of DRAM cache consider prefetching data from PCM. To 
serve more write accesses and reduce write-backs to PCM, the policies should be 
able to identify the write-intensive blocks and give them more chance to stay in 
cache. 

Ferreira et al. [50] present a clean-preferred victim selection policy (CLP) called 
N-Chance to manage DRAM cache for PCM main memory. N-chance policy is 
based on LRU but  it prefers to choose clean cache block to evict. The policy set an 
parameter N to control the preference to select clean pages as victims. When a miss 
occur in cache, N-chance selected the oldest clean cache block as victim among the 
last N least recently used blocks in LRU list, if there is no such block, the LRU  
block is selected. N-chance policy decrease cache’s hit ratio, but it reduce write-
back to PCM. Due to PCM’s high write cost, N-chance policy reduce latency and 
energy by trading write-backs to reads. 

Bian et al.  [51] proposed a flexible DRAM buffer (FDB) for PCM main memory. 
FDB uses DRAM as an adapting buffer between LLC and PCM main memory to 
reduce PCM writes and LLC miss penalty. When a dirty block is evicted from LLC, 
the block is first written back to FDB. Consider that the block in FDB is likely to be 
fetched to LLC and written again, FDB reduces write-backs to PCM and hides the 
write latency of PCM. When a cache miss occurs in LLC, while the requested block 
is transmitted to the LLC, its next one block is prefetched into FDB. Due to the 
spatial locality, the prefetched block in FDB is likely to be fetched into the LLC 
later, so FDB hide the read latency of PCM and reduce LLC miss penalty. When 
FDB is full, it uses FIFO policy to evict a page, and the dirty evicted pages are 
written back to PCM. 
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Figure 4. The Overview of DRAM Buffer Consisting of ASB, WB and AFB 

Choi et al.  [52] proposed a DRAM buffer management scheme to minimize PCM 
main memory accesses to reduce buffer miss rate and PCM writes. As shown in 
Figure 4, the DRAM buffer is divided into three buffer region: aggressive streaming 
buffer (ASB), write buffer (WB) and adaptive filtering buffer (AFB). To improve 
buffer’s hit ratio, the DRAM management scheme exploits spatial locality by using 
ASB to pre-fetch a superblock consisting of a certain number of pages each time, 
and exploits temporal locality by using AFB to manage the recently referenced 
pages in the LRU list. To reduce PCM writes, when a page in ASB hits by write 
request, the page is moved to WB first and evicted to AFB later, so the dirty pages 
are delayed to be written into PCM. The DRAM buffer scheme works as follow: 
when a page request from LLC hit the DRAM buffer, if the requested page is in 
ASB, the page is moved to AFB for read request or WB for write request; If WB has 
no free space, FIFO replacement policy is used to evict a page to AFB; If AFB has 
no free space, the LRU page is evicted to PCM; when a miss occurs in the DRAM 
buffer, a superblock containing the requested data is pre-fetched into ASB, if ASB 
has no free space, the victim is selected with FIFO. 

Jang et al. [53] proposed a data classification management scheme to manage 
DRAM buffer for hybrid SLC/MLC PCM main memory. As shown in Figure 5, the 
DRAM buffer is divided into two buffer regions: aggressive fetching superblock 
buffer (AFSB) and selective filtering buffer (SFB). The AFSB caches the 
superblocks from PCM, the size of a superblock is the same as the page unit 
managed in main memory and storage by OS. Each superblock in AFSB is 
partitioned into a certain number of sub-pages, the size of a sub-page is the same as 
the cache block of LLC. Each sub-page’s access count is recorded in AFSB, and the 
average access count of all sub-pages of a superblock is set as the threshold to 
classify the superblock’s high-accessed sub-pages and low-accessed sub-pages. To 
maintain the hit ratio of DRAM buffer, when a superblock is evicted from AFSB, 
SFB caches the superblock’s all high-accessed sub-pages to give these sub-pages a 
second chance. The DRAM buffer scheme works as follow: when a sub-page is 
requested from LLC, AFSB and SFB are checked for the requested sub-page, if the 
sub-page exists in AFSB or SFB, the sub-page is fetched into LLC; when a miss 
occurs in both AFSB and SFB, the superblock that contains the requested sub-page 
is fetched into AFSB, if AFSB has no free space, a superblock with the lowest 
average access count of its all sub-pages is evicted, and the victim superblock’s 
high-accessed sub-pages are fetched into SFB. 
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Figure 5. The Overview of DRAM Buffer Consisting of AFSB and SFB 

Park et al.  [54] proposed a weal-level replacement algorithm to manage DRAM 
buffer for PCM main memory. The algorithm considers both reducing PCM write 
count and uniform PCM write count distribution. The DRAM buffer is divided into 
two layers: in the first layer, blocks are managed by LRU list with both clean blocks 
and dirty blocks; in the second layer, dirty blocks and clean blocks are managed  
separately, dirty blocks are maintained in the write frequency list according to their  
corresponding PCM blocks’ write count, and clean blocks are managed by LRU list.  
When the DRAM buffer is full, to reduce write-backs to PCM, the algorithm first 
evicts the least recently used clean block in second layer; if no clean block exists in 
the second layer, to even out PCM write count, the dirty block with the least write 
count of its corresponding PCM block is evicted; if the dirty blocks have the same 
write count, the least recently used dirty block is evicted.  

 

5. Main Memory Management 
 

5.1 Pure PCM Main Memory Management 

Each page cell of PCM allows limited write operation count. To prevent too many 
write accesses focus on the same PCM location due to page placement and 
replacement, cache management policies of PCM main memory should care about 
the physical address when a page is placed or replaced on PCM. 

Yi Ou et al. [55] proposed several wear-aware page replacement algorithms 
including LPW, LFM and LRM for PCM-based database buffer pools. The 
algorithms are designed for PCM wear leveling. LFM and LPM monitors PCM 
pages’ wear status at the page-level. When page fault occurs and a victim is needed, 
LFM selects the least frequently modified (including page update and page 
replacement) PCM page, while LRM selects the least recently modified PCM page. 
LPW consider that the different parts inside a PCM page have different wear status, 
monitoring wear status at the page-level (number of writes on each page) is not 
sufficient. LPW splits pages in PCM into a number of wear units.  The page wear of 
a PCM page is defined as the total write count of all wear units in the page. When a 
page updated, the page wear increases by the number of updated wear units. When a 
page replacement occurs, the page wear of the buffer page where the victim resided 
increases by the number of wear units in the page. For PCM wear-leveling, when 
page fault occurs, LPW evicts the page having the smallest page wear count. Since 
the algorithms achieve PCM wear leveling, they lower the hit ratio of PCM buffer 
compared to LRU algorithm. 
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5.2 Hybrid PCM-DRAM Memory Management 

To improve the overall performance of hybrid memory, the ideal situation is that 
DRAM can serve as more write accesses as possible. Cache management policies of 
hybrid memory pay attention to predict pages ’ access pattern and classify pages into 
write-hot page and read-hot page (or write-cold page). By performing page 
allocation and page migration between PCM and DRAM, the policies keep write-hot 
pages in DRAM and read-hot pages (or write-cold pages) in PCM to serve more 
write accesses on DRAM. 

Seok et al.  [56] proposed an LRU-based page management algorithm for hybrid 
main memory (thereinafter the algorithm is called MIG). MIG adopts a prediction 
mechanism to identify read-intensive pages and write-intensive pages according to 
pages’ access pattern, and a page migration mechanism to migrate read-intensive 
pages to PCM and write-intensive pages to DRAM. The prediction mechanism set a 
weight value to each page, the weight value increases when the page hits by read 
request, and decreases when the page hits by write request. For pages in PCM and 
DRAM, the algorithm classified them into read queue and write queue according to 
the weight value, and all pages in hybrid memory are queued in the LRU list. When 
a page fault occurs and page eviction is needed, the algorithm evicts the LRU page 
in the LRU list. When a page hits, the algorithm calculate the page’s new weight 
value according to the type of the request, then judge if the page should be moved to 
the other queue in the same memory or migrated to the other memory according to 
the two thresholds Trq and Trmig that are set by the algorithm. When a page 
migration occurs, the migration target memory should have enough space for the 
migrated page. If DRAM does not have enough space to place the migrated page, 
DRAM evicts the LRU page of its read queue. If PCM is full, PCM evicts the LRU 
page of its write queue for the migrated page. Figure 6 shows an example of page 
migration in MIG. Since MIG can reduce PCM writes, it has some problems that 
affect performance: first, MIG evicts pages not only when page fault occurs, but 
also when page migration occurs, this extra page releases will introduce more page 
faults and degrade hit ratio, consider that the latency of second storage such as disk 
and SSD is order of magnitude higher than PCM write latency, sacrificing hit ratio 
to reduce PCM writes may lower the overall performance; Second, MIG migrates 
read-intensive pages from DRAM to PCM, that may cause more write traffic on 
PCM due to page placement and migration for read-tendency workloads. 

 

 

Figure 6. An Example of Page Migration in MIG 
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Lee et al. [57] present a CLOCK-based write-history-aware page replacement 
algorithm CLOCK-DWF. CLOCK-DWF manages DRAM pages and PCM pages in 
separate circular lists. Each page in hybrid memory has a reference bit and a dirty 
bit. Dirty bit is used to identify the frequently written pages in DRAM, a DRAM 
page’s dirty bit is set to 1 when the page hits by a write request. CLOCK-DWF 
keeps write-intensive pages in DRAM as follow: when a page fault occurs, CLOCK-
DWF put the requested page in DRAM if the request is a write request, otherwise 
the page is put on PCM; when a page in PCM hits by a write request, the page 
should be migrated to DRAM immediately. To get a free frame on DRAM when 
DRAM is full, CLOCK-DWF scan the DRAM circular list to selects a write-cold 
page in DRAM and migrate the page to PCM. To get a free frame on PCM when 
PCM is full, traditional CLOCK algorithm is used on PCM circular list to evict a 
non-recently used page. Figure 7 shows an example of page migration when a PCM 
page hit by write request. CLOCK-DWF also have some problems: First, CLOCK-
DWF does not always evict the least recently used page in hybrid memory, 
compared with original CLOCK or LRU, CLOCK-DWF may have a higher page 
fault count; Second, CLOCK-DWF does not consider whether DRAM is full or not 
when it performs page migration from PCM to DRAM, migrating a PCM page to a 
full DRAM causes migrating a DRAM page back to PCM, this page exchange is 
unnecessary if the PCM page is only written one time, and may cause more page 
exchange between DRAM and PCM in the future if the page migrated to PCM hits 
by write request; Third, CLOCK-DWF places faulted pages only according to the 
type of requests, it may causes more write traffic on PCM in read-intensive 
workloads due to page placement and replacement, and it may waste hybrid memory 
capacity and consequently introduce more page faults, an extreme example is that 
for a read-only application such as search engine, only PCM capacity is used.  

 

 

Figure 7. An Example of Page Migration In MIG 

Wu et al. [58] proposed a page replacement algorithm APP-LRU. Unlike MIG 
and CLOCK-DWF, APP-LRU aims to reduce PCM writes without degrading the hit 
ratio of hybrid memory. APP-LRU maintains three lists: a LRU list to manage all 
pages in hybrid memory, a DRAM-list to queue DRAM pages in order of read count 
and a PCM-list to queue PCM pages in order of write count. To reduce PCM writes, 
APP-LRU determines putting the requested page on DRAM or PCM according to 
the page’s history accesses in memory when page fault occurs. To achieve this goal, 
APP-LRU maintains a metadata table to record a page ’s history accesses when the 
page is evicted. When a page request misses, APP-LRU selects the LRU page in 
hybrid memory as victim. If the location of the victim is not fit for the requested 
pages, for DRAM (PCM) victim, APP-LRU frees the victim and migrates the head 
page of PCM-list (DRAM-list) is migrated to the free frame, then put the requested 
page on the befitting memory. Figure 8 gives an example of APP-LRU page 
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replacement for a requested page that should be put on DRAM. APP-LRU has the 
same hit ratio as original LRU since APP-LRU evicts the LRU page and does not 
release extra pages. But APP-LRU only perform page migration during page 
replacement, that will cause two problems: first, for large capacity memory with 
little page faults, APP-LRU takes little effect, even no effect if no page fault occurs; 
Second, if a PCM pages become write-intensive and hits by multiple write requests, 
APP-LRU doesn’t works to reduce PCM writes for this situation. 

 

 

Figure 8. An Example of APP-LRU Page Replacement 

Chen et al. [59] proposed a page replacement algorithm MHR-LRU. MHR-LRU 
considers that the most recently written pages have high possibility to be written 
again, to reduce PCM writes, when page fault occurs, the requested page should be 
put on DRAM if the request type is write. MHR-LRU queues all pages in a LRU list, 
and queues all DRAM pages in orders of their most recent write reference time. 
When a page request misses, the page in LRU position of LRU list is selected as 
victim. For a write request, if the victim is on PCM, instead of putting the requested 
page on PCM, MHR-LRU moves the least recently written page in DRAM to PCM 
and put the requested page on DRAM, as shown in Figure 9. Like APP-LRU, MHR-
LRU has the same hit ratio as LRU, but takes little or no effect if the hit ratio is 
very high. 

 

 
Figure 9. MHR-LRU Page Migration to Put the Requested Page on DRAM 

Heish et al.  [60] proposed a double circular page management scheme DCCS. 
DCCS maintains DRAM pages and PCM pages separately in a DRAM circular LRU 
list and a PCM circular LRU list.  DCCS set an operation bit to each page in DRAM 
and PCM, the operation bit is set to record the last request type performed on the 
page. DCCS identifies read-bound pages according to their operation bits. To avoid 
frequent writes to PCM due to page replacement, DCCS only use DRAM to serve 
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page faults. When page fault occurs, the requested page is put on DRAM.  When a 
page in PCM hits by write request, DCCS migrates the page to DRAM. If DRAM 
has no enough space, DCCS evicts the LRU page in DRAM and moves the most 
recently used read-bound page to PCM. If PCM has no enough space, DCCS evicts 
the LRU page in PCM. Figure 10 shows how DCCS get free pages on DRAM. 
DCCS also have some problems: first, DCCS evict the LRU page in DRAM, not the 
LRU page in hybrid memory, that affect the hit ratio; second, when DRAM and 
PCM are full, a page fault will make both the LRU page in DRAM and the LRU 
page in PCM evicted, that introduces more page faults; third, DCCS determines 
read-bound pages only depend on their last request type, the metric is not accurate 
to reflect page’s access pattern. 

 

Figure 10. DCCS Gets Free Pages on DRAM 

 

Figure 11. The Overview of M-CLOCK 

Lee et al. [61] proposed a migration-optimized page replacement algorithm M-
CLOCK. M-CLOCK aims to reduce PCM writes while have a high hit ratio  and 
reduce unnecessary migration that causes migration-thrashing. The overview of M-
CLOCK is shown in Figure 11. To reduce PCM writes, M-CLOCK place all faulted 
pages on DRAM and keep write-intensive pages in DRAM. To classify write-
intensive pages, M-CLOCK set a reference bit and a dirty bit to each page, when a 
dirty page in DRAM with the reference bit 1 is re-referenced again, the page is 
considered as a write -intensive page. M-CLOCK manages write-intensive pages in 
DRAM by a clock-hand called D-hand and manages other pages in DRAM by a 
clock-hand called C-hand. When the DRAM is full, to get a free page, M-CLOCK 
first uses D-hand to scan write -intensive pages to degrade a write-intensive page 
into cold dirty page, then uses C-hand to search for a hot-clean page or a cold-dirty 
pages in DRAM to be migrated to PCM, or a cold clean pages in DRAM to be 
evicted. To reduce unnecessary page migrations, M-CLOCK uses a lazy migration 
policy depending on setting a lazy bit to each page in PCM. When a page in PCM 
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hits by write request, if no free page exists in DRAM and the page’s lazy bit is unset, 
the page is updated in-place and its lazy bit is set; otherwise, the page should be 
migrated to DRAM. 
 

6. DRAM Memory Management Based on PCM Storage 

Unlike disk and flash memory SSD, there is not huge access latency gap between 
PCM storage and DRAM. Since the cache miss cost is not unacceptable, and 
caching pages from PCM into DRAM also cause the system overhead, so traditional 
policies that cache all referenced pages from storage into memory need to be 
rethought. Besides, to reduce write-backs from DRAM to PCM, the page 
replacement policy of DRAM should also be rethought. 

Yoo et al. [62] proposed a CLOCK-based page replacement algorithm LDF-
CLOCK (least-dirty-first CLOCK) to manage DRAM main memory for PCM swap 
device. LDF-CLOCK considers both recency and dirtiness to evict a page when 
page replacement is needed. Like CLOCK, LDF-CLOCK also manages pages in 
DRAM in the circular list and set one reference bit per page. To mark the dirtiness 
level of a page, LDF-CLOCK partition each page into several sub-pages, and set 
one dirty bit per sub-page. When a write access comes, LDF-CLOCK sets the dirty 
bits of the written sub-pages in the accessed page to 1. A page with more dirty sub-
pages makes more write-backs to PCM when it is evicted. To select a victim, as 
shown in Figure 12, LDF-CLOCK uses the clock-hand to scan each page in the 
circular list, if the page being scanned has the reference bit of 1, the reference bit is 
set to 0 and LDF-CLOCK continue to scan the next page until the clock-hand points 
to a page with the reference bit of 0. After the scan, LDF-CLOCK selects the page 
with least dirty sub-pages among all pages with reference bit of 0. To overcome the 
time complexity of finding the least dirty page, LDF-CLOCK maintains a multiple 
lists structure to keep pages with reference bit of 0 in different lists according to the 
number of their dirty sub-pages.  

 

 

Figure 12. Select the Victim in LDF-CLOCK 

Lee et al. [63] proposed a cache management scheme called selective cache 
bypassing (thereinafter it is abbreviated to SCB) to manage DRAM main memory 
for PCM-based storage. SCB rethinks DRAM cache strategy that caching PCM data 
selectively in DRAM is more efficient than caching all requested data in DRAM. 
Since PCM access latency is slightly slower than DRAM, compared with the cost of 
a cache miss, the overhead of caching a page in DRAM should be consider. If a 
requested block is caching into DRAM but it is not referenced again before it is 
evicted, SCB thinks caching this block has adverse effect on performance, because 
it costs more than accessing the page directly on PCM and wastes cache space, so 
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this single-accessed block should not be cached. Based on this observation, to f ilter 
out the single-accessed blocks from caching, SCB does not cache a block for its first 
access, the block is caching into DRAM after it is accessed again within a certain 
number of distance, the default distance is the same as the cache size. The reason to 
bypass the first accesses of blocks is that most of blocks are accessed either 0 or 
many times, so the second access within a short time can be an indicator for 
multiple-accessed blocks. The performance profit of SCB is determined by the ratio 
of single-access blocks of workloads, so SCB adopt adaptive strategy that monitors 
the dynamic situations of the workload and adaptively uses R-bypass policy (bypass 
read accesses), RW-bypass policy (bypass both read accesses and write accesses), or 
NO-bypass. 

 

7. Conclusion 

PCM is flexible to be adopted as either main memory or storage, but its 
advantages and drawbacks are different from both DRAM and disk, so PCM 
systems require special cache management schemes. In this paper, we survey PCM-
aware cache management policies to manage LLC and main memory for different 
types of PCM systems. We discuss the new challenges for cache management in 
different PCM system architectures. Then we introduce and analyze the novel cache 
management policies at different memory levels for PCM main memory, hybrid 
PCM-DRAM memory and PCM storage. 

Although there are no widely-accepted solutions to using PCM in current memory 
hierarchy, a general idea for improving PCM-based systems is to reduce writes to 
PCM. Using appropriate caches is considered as an efficient approach for reducing 
PCM writes. Since the low read access latency of PCM can significantly reduce the 
cost of cache misses, PCM-aware cache management policy needs to identify the 
blocks that are high likely to be written ins tead of the blocks that are high likely to 
be re-referenced. Thus, a future research direction is to study the prediction on 
future write-request trend. 
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