International Joumnal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016), pp.293-310
http://dx.doi.org/10.14257/ijmue.2016.11.1.28

A Survey on Phase Change Memory-Aware Cache Management

Kaimeng Chen®?2, Peiquan Jin®?" and Lihua Yue!:

1School of Computer Science and Technology, University of Science and
Technology of China, 230027, Hefei, China
’Key Laboratory of Electromagnetic Space Information, Chinese Academy of
Sciences, Hefei 230027, China
jpq@ustc.edu.cn

Abstract V :

PCM (phase change memory) has been regarded as one of the most pro 'si?NVRAM.
Due to its excellent features including high access speed, good ity, byte

addressability, and low idle power, PCM is expected aﬁ alt 0 DRAM or
flash memory in the future. So far, many differen s of rchl re have been
proposed to merge PCM into the memory hierarc . For PCM-based
computer systems, considering that PCM has var rope es ring with DRAM and
conventional storage media, traditional cache nagement p based on DRAM and
disks have to be re-designed. In this paper, esenta saevey on the cache management
policies for PCM-based systems that e:@ PCM as'wain memory or as secondary
storage. Specially, for different PC d arc 't@res, we explain how PCM-aware
cache management policies exploi ’s ad j‘gges and overcome PCM s drawbacks
like asymmetric read/write Ig‘ﬁ :

Keywords: Phase chan@emory ycache management policy

1. Introductlon

Recently, wi @ncrease %scale in modern servers and application, the problem
of the gap n high speed CPU and slow 1/O access speed storage become more
serious. Conventionally M is used as main memory to cache data from storage and
bridge the gap betwe and storage. But in the face of nowadays large data scale and
large capacity me equirement, DRAM suffers from its limited scalability and high
energy consumptioh:” Therefore, new memory technology that has low access latency,
high densé\:n low energy consumption become an urgent need. Under the
circumst ynon-volatile memory technologies gain extensive attention of industry and

acaderm

“volatile memory is a new kind of storage medium aiming to solve the problem due
to isadvantages of DRAM and disk. The characteristics of non-volatile memory are
persistent, byte-addressability, fast access speed and high density. Compared with disk or
flash memory, the access latency of non-volatile memory is much lower. Compared with
DRAM, non-volatile memory has advantages of scalability and no leakage energy.

Some non-volatitle memory technologies have already emerged and develop rapidly in
recent years, such as MRAM, STT-RAM, RRAM, FeRAM and PCM. Among these
technologies, due to its performance and potential of access latency and density, PCM is
considered to be a promising candidate to substitute DRAM [1-6]. Table 1 shows the
comparison between DRAM and PCM.

PCM has many excellent properties: the read performance of PCM is similar to that of
DRAM; PCM’s density is expected to be considerably large because its feature size can
be very small and each PCM cell can store multiple bits [2-3, 6-8]; and PCM has low idle
energy consumption. But PCM also suffer from two critical disadvantages: first, PCM

ISSN: 1975-0080 IUMUE
Copyright © 2016 SERSC

mailto:llyue%7d@ustc.edu.cn

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

has read-write cost asymmetry problem, access latency and energy consumption of write
operation are much higher than that of read operation; second, PCM has endurance
problem, each PCM cell can only be set and reset for limited times (about 10%).

Considering PCM’s unique performance profile, PCM can be merged into different
hierarchy of current computer system. First, PCM can be merged into main memory to
completely replace DRAM and build non-volatile main memory system [3, 5, 9]. Second,
PCM can be used in combination with DRAM to build hybrid memory system [4, 10-14].
Final, there are also some studies based on using PCM as storage device to replace disk
and flash SSD [15-19].

Merging PCM into conventional computer system brings new problems for cache
management at the corresponding memory levels. Traditional cache management policies
[20-27] are based on conventional CPU cache-DRAM-disk architecture. In convgentional
architecture, there is a great gap of access latency and capacity between differg?%ry

hierarchies, and the write cost and read cost are equal at each level. So traditi cache
management policy focus on improving the hit ratio of the cache. But(P as write
endurance problem and asymmetric read/write

management policy should not consider hit ratio only. h%

increase PCM’s lifetime and improve the overal
account.

so be taken into

ance SNJI)&
e tect@{es designed for PCM-

There are already some studies that summayize
based system [28-30]. But these studies do specla% ntion to cache management
problems on PCM system. In this pa e focus rveying PCM-aware cache
management policies for different PC dsy e chltectures The remainder of this
survey is organized as follow. Se intr e different types of PCM system
architecture and the new challe cache% ement policy. Section 3 summarizes
the cache management polic or Iast leyel-cache based on PCM main memory and

hybrid memory. Section escribes, t gn and management of DRAM cache for
PCM main memory. Segti prese age management and replacement algorithms on

PCM main memor. brid memory. Section 6 presents the studies on DRAM main
ic m@M storage. Finally, Section 7 presents the conclusion

memory manage
of this paperQ%

CPU CPU

Cace |
i3 i3 i

"
PCM ||DRAM PCM Main Memory

DISK/SSD DISK/SSD DISK/SSD

0 Storage Storage Storage PCM Storage
@ (b) © ()

Figure 1. Different PCM System Architecture

2. PCM System Architecture

In this section, we introduce different types of PCM system architectures that merge
PCM into different memory hierarchy and adopt PCM in different ways. For each type of
architecture, we discuss how PCM brings changes to conventional computer system
architecture and challenges to cache management policies of the corresponding memory
levels.

294 Copyright © 2016 SERSC

International Jourmnal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

2.1 Pure PCM Main Memory

To satisfy the requirement of big capacity main memory system, PCM is expected to
be a substituent of DRAM due to PCM’s great scalability, so the PCM system architecture
that replace DRAM totally with PCM is proposed [3, 5, 9], as shown in Figure 1(a).
Compared with DRAM, PCM main memory can have much larger memory capacity and
low idle power consumption. But consider the much higher write latency of PCM,
replacing DRAM with PCM can still degrade the overall performance. So many studies
are proposed to reduce the write operation cost of PCM main memory [5, 31-36].

PCM main memory also bring challenges to DRAM-based cache management policies
for last-level cache (LLC) and main memory, due to PCM’s asymmetric read/write cost
problem and limited endurance problem that do not exist in DRAM.

LLC management: Based on DRAM main memory, to mitigate the acces:ﬁyc’y
gap between CPU cache and the main memory, cache management polic
focus on identifying cache blocks with high likely to be re-referenced p those
blocks in cache to improve hit ratio [26, 37, 38]. But based«on PCM @T\ory, LLC
management problem is similar to DRAM cache ma ent pro%i or flash SSD
storage [63-68]. Due to PCM’s poor write perf e the overall
performance, the cache management policy shou er n onlinthe hit ratio but also
reducing write-backs from LLC to PCM.

Main memory management: cache managément polici é& DRAM do not need to
consider the location of the pages since D oes ndt@ the endurance problem. For
PCM main memory, due to the limited ount o CM cell, so the policy should

care about the physical address whe eis dx to PCM from storage or a page in
PCM is replaced with one oth r from in order to prevent wearing PCM
partial regions too much. 4 %

performance of sy e o achi better main memory system with large capacity and
low latency, SRAM cac hitecture that adopts PCM as main memory and adopts
DRAM as cé or PCM n proposed [4, 10, 11], as shown in Figure 1(b) DRAM
cache is an in-house ¢ hICh is managed by memory controller and hidden to the
operation system. B ng write accesses in DRAM cache, PCM main memory gets

low write latency reased lifetime.
Since OS is are of DRAM cache, cache management policies of LLC and main

memory Cx%l egard the DRAM cache architecture as PCM main memory. But the

ent policy of DRAM cache should be specially designed. Due to PCM’s
ead/write cost, serving a write access in DRAM cache benefits main memory
ce more than serving a read access in DRAM cache, so the policy for DRAM
ca hould consider the tradeoff between write access hit ratio and overall hit ratio of
the cache.

2.2 PCM Main Memo DRA
The poor write %nce El& main memory significantly degrades the overall

2.3 Hybrid DRAM and PCM Memory Architecture

To exploit the advantages of DRAM and PCM, hybrid DRAM and PCM memory
architecture that adopts both DRAM and PCM as main memory is proposed [12-14], as
shown in Figure 1(c). Hybrid PCM and DRAM memory manages PCM space and DRAM
space together as main memory space, and different types of space can be identified
according to physical address and managed by the OS.

Unlike traditional main memory system that all the space has uniform access time,
hybrid DRAM and PCM memory architecture has heterogeneous memories with different
access time. Cache management policies for hybrid memory must be aware of the
difference between PCM and DRAM.

Copyright © 2016 SERSC 295

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

For LLC management, consider that DRAM-based LLC management and PCM-based
LLC management have different requirements, the policy for LLC should manage data
from DRAM and data from PCM in different ways, and properly partition cache size for
DRAM data and PCM data, to take both the hit ratio and write-backs to PCM into account.

For main memory management, similar to data allocation between HDD and SSD for
hybrid storage architecture [69-71], page allocation between PCM and DRAM
significantly affect the overall performance of hybrid memory architecture. In order to
efficiently exploit DRAM to hide PCM’s poor write performance, the policy for hybrid
main memory should be able to predict page’s access pattern, and allocate write-intensive
pages to DRAM to reduce write access count on PCM.

2.4 PCM Storage o
Compared with flash memory, PCM performs much better on acces ime” and
reliability. The cost per bit of PCM is promising to be approach the Cost [39] and

as one storage candidate and an alternative to flash as S n Figure 1(d).
Since PCM storage has the main-memory-level acce vel capacity, it
blurs the strict boundaries between memory and s

As shown in Figure 1(d), DRAM is still the maip_n emort%l}tM storage. Since the
read access latency of PCM is similar to th DRAM, the“gost of missing a page in
DRAM is not unacceptable, but the cos cachln age in DRAM need to be
considered if the cached page is cI re- re in DRAM before evicting.
Consider PCM’s write cost and endu the nagement policy for DRAM need
to keep hot-dirty pages in P ﬁﬂprov@ﬂ ratio of write accesses to reduce
write-backs to PCM from ev y pages

3. Last-level Cac agemeh@échnology

3.1 Last-Level Cac anage Based on PCM Main Memory

When a di e block i C is evicted, the block should be written back to the
main memor r PC in memory that suffers from the long write latency and high
write energy cost, evjcgg” dirty cache blocks frequently can degrade the overall
performance and inc energy consumption of main memory system. So PCM-aware
cache manageme ies of LLC should consider the different cost of evicting a clean
block and evicti dirty block to balance the tradeoff between the hit ratio of LLC and
the write me{;qhgad of PCM, for the overall performance of the system. Since there are

e management policies

also some@c

a al. [41] present a read-write aware replacement algorithm RWA and its
i

e

the density of PCM is expected to reach the storage level [4Q]. So PC @E Isoconsidered
e

version I-RWA for PCM main memory. RWA and I-RWA are designed to
LLC, and DRAM cache if PCM main memory adopts it. These algorithms are
based on RRIP [26]. Like RRIP, RWA set a Re-reference Prediction Value (RRPV) to
each cache block. For n-way cache, when a read request misses in the cache, RWA set
RRPV of the new data line to n-2; when a write-back from the upper-level cache misses,
RWA set RRPV of the new data line to 0. Once a data line hits in the cache, its RRPV is
reset to 0. To select a victim to evict, RWA randomly select one of the data lines with
RRPV n-1, if there is no data line with RRPV n-1, RWA will increase the RRPV of all
data lines in that set until one data line’s RRPV reach n-1. Since hot-dirty data lines
always have smaller RRPVs, RWA can keep hot-dirty data lines staying in cache to
reduce write-backs to PCM.
RWA has the problem that it also keeps single-use dirty lines in cache fora long time,
because RWA gives new dirty lines RRPV 0 when they are loaded on cache. This does
not help to reduce write-backs to PCM and waste cache capacity. As the improved version,

296 Copyright © 2016 SERSC

International Jourmnal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

I-RWA change the way of setting RRPV. For a n-way cache, the new line is set to n-3
when a read miss, and is set to n-2 when a write-back miss. When a data line hits, its
RRPV is setto 3 for read hit and is set to O for write-back hit. I-RWA policy filters single-
use dirty lines , only multiple-used dirty lines have smaller RRPVs are protected from
evicting.

Zhou et al. [42] proposed write-back-aware cache partitioning (WCP) and write-queue
balancing (WQP) replacement policy. WCP and WQP policy are designed for multi-core
environment. WCP aims to allocate different cache space size to different cores to reduce
write-backs to PCM with maintaining hit ratio. WCP first design monitors to record hit
and write-back information for each core. For M-way cache, WCP set M hit counters and
M avoidable write-back counters to each core. For each core, its i-th hit counter record the
number of additional hits and i-th avoidable write-back counter record the number of
write hits on cache’s i-th way, when the i-th way is available. Based on the infor mation of
hit counters and avoidable write-back counters of each core, WCP can ma ah&cache
space allocation to different cores. The allocation should maximizes @ of the
number of hits and and the weighted number of avpidable®write he weight
determines the relative importance of reducing write-b i

WQB replacement policy aims to averagely distr
to avoid frequently fulfill one write queue and r the de to write-backs from
LLC. When a dirty line evict from LLC, it enters corresé% g write queue. When a
cache miss occurs and no invalid entry caﬁ&ed WQP_scans from LRU to MRU to
find a clean victim or a victim mapped tb load Wr eue.

Wang et al. [43] present a Wrw/ are dy ic cache management technique

WADE. WADE predicts the freq ritt locks in LLC and classifies LLC
sets into a frequent write-back a non- t write-back list, as shown in Figure
2. Since the size of the freque rite- bap a ect performance significantly, to get the
best performance by balanging reductio te-backs from LLC to PCM with reduction
of cache miss, WADE n effo &bﬁe p proper segment size of frequent write-back
list in the LLC.

inguish fre ntly written cache blocks, WADE designed a
r freque wrltten blocks. To find proper size of frequent write-
back list for e ormanc E adopts a segment predictor [44] to dynamically
adjust the o% size of uent write-back list for each cache set WADE set different
miss penalty for clean lock and dirty cache block, and the segment predictor can
determines the opti e depending on the miss penalty. When a cache miss occurs,
WADE evict a bl non-frequent write-back list if the size of frequent write-back list
is not higher thafithe optimal size, else a block in frequent write-back list is evicted.

shevel Cache Frequent Write-back List With Size M and The Optimal Size N
© SET | Evict, f M>N
O—n
SET 3 = Evict, f M<=N
SET 4

Non-frequent Write-back List

Figure 2. The Overview of Frequent Write-Back List and Non-Frequent
Write-Back List Mechanism

Yoo et al. [45] present the least-dirty-first (LDF) cache replacement policy. LDF
is adopted to on-chip LLC and it reduces PCM write traffic by taking advantages of
cache line dirtiness management. The LLC architecture in LDF is shown as Figure 3.
For each cache block, LDF set dirty bits to its all cache lines. When a cache line is
flushed from L2 cache, its dirty bit is set. The more dirty cache lines a cache block
has, the more PCM writes will be incurred when the block is evicted. In order to
reduce PCM writes from LLC and maintain cache’s hit ratio, LDF evicts the block

Copyright © 2016 SERSC 297

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

with the least number of dirty cache lines among blocks less likely to be referenced
again. To find these candidate blocks, LDF maintains one or more reference bits to
each cache block, and adopts cache replacement algorithms such as NRU [46] and
RRIP. Compared with original NRU and RRIP, NRU and RRIR that be incorporated
with LDF reduce PCM writes while maintain cache performance.

Way 1 Way 2 Way 3 Way N
SET[block [block [block | ----i--iorc- [Block |
A
[
RlDID]|-emeeeen D
~FaE —| R:REFERENCEBIT
s L]

Al1l { | D:DIRTYBIT V
GIN|N|......... N

E|E E

12

Figure 3. The LLC Set Mech@n w&%}
L

Rodriguez et al. [47] present several n LC management
policies. DRRIP [26] can be resolved intothree sub-po msertlon sub-policy
that initialize the state of new cache %@promo b policy that update a
cache block’s state when it is hit, and mization pollcy that select a victim
by comparing states of blocks. The icies mg SD, PL, PM, VL and VM,
change the different sub-policie RIP, ce the number of evicting dirty
blocks. SD change the ins.ekiﬁj -policy, 1usSe the number of write-backs instead
of the number of cache mis eterminqgiéhi h insertion policy (SRRIP or BRRIP)
should be employed to insert a ne lock. PL and PM change the promotion

sub-policy by updatj RPV ferent ways. VL and VM change the
victimization su g:v a preference to evict clean blocks. The
st

performance eva of d| t policies-combination schemes shows that PM-
VH-SD schermenteports the reduction of PCM write traffic.
Barcelo e [48] nt two energy efficient LLC replacement policy AL and

VL. AL is designed t blocks that have been written for more times in cache,
based on the obser that the more time a cache block has been written, the
more bits in the have been changed, so the more time and energy is needed to
write the bloc k to PCM when the block is evicted. AL set a Time-To-Live
(TTL) valteto ach blocks in LLC. Each time a block in LLC hits by write request
from the@ r-level cache, the TTL of the block increases. When a cache miss
occur: evicts the least-recently-used block among the blocks with minimum

decreases the TTL of all blocks to avoid keeping cold blocks in the cache
for ®Aong time. So hot-dirty blocks have higher TTL and stay in LLC. VA set an
‘“age” to each blocks in cache, each time a request access LLC, VA increase the ages
of all blocks. For a clean page, the age increases by 1; for a dirty page, the age
increases by 1/c, ¢ is according to the average cost of writing a block to PCM. VA
evicts the block with the highest age, so clean blocks is preferred to be evicted since
their ages increase faster than dirty blocks’ ages.

3.2 Last-level Cache Management Based on Hybrid PCM-DRAM Memory

Due to the different characteristics of PCM and DRAM, hybrid memory-based
cache management policies of LLC should be aware of cache blocks from DRAM
and cache blocks from PCM and manage different types of blocks in different ways.

Weiwei et al. [49] proposed a new performance metric TMPKI to measure the
performance of LLC for hybrid PCM-DRAM memory, and a hybrid-memory-aware

298 Copyright © 2016 SERSC

International Jourmnal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

LLC space management policy called HAP. TMPKI is based on current performance
metric MPKI, but it takes into account the different cache miss cost of DRAM data

miss and PCM data miss. If the access latency of PCM is L,.:i, times higher than
that of DRAM, TMPKI think that the cost of a PCM data miss is L,.4:i. times higher
than that of a DRAM data miss and add a weight to each PCM data miss, so TMPKI
present a metric T,,. to measure total miss cost. T, is calculated as follow
(Do and Ny, means the number of DRAM data misses and PCM data misses):

Tme = Dine + None % Lyario

HAP manages LLC by properly partition LLC space for DRAM data and PCM
data, according to experiment observation: both too many DRAM data misses and
too many PCM data miss will decrease performance. HAP set a data type bit éo each

cache line to identify where the data is from, and two threshold values nd
Thign 10 restrict cache size for PCM. For different workloads, Tig,, an L are
dynamically adjusted according to current TMPKI. HAP adjust fac ize for
DRAM and PCM by evicting different types of li when cement is

triggered: if PCM lines count is higher than ngh, icts RAM line; if
PCM lines count is lower than T;,..,, HAP evic M%)else, a LRU line
of all lines in cache will be evicted.

4. DRAM Cache Management , Q

DRAM cache of PCM main melm;#] is desi Nor serve the page accesses,
especially write accesses to B\@lmprove the hit ratio, cache
management policies of D é che co ?&r prefetching data from PCM. To
serve more write accesses educe, %e acks to PCM, the policies should be
able to identify the writgsintensive bl and give them more chance to stay in

cache.

Ferreira et al. [50 ent a cleamspreferred victim selection policy (CLP) called
N-Chance to ma é%we for PCM main memory. N-chance policy is
based on LR prefe ose clean cache block to evict. The policy setan
parameter ntro t rence to select clean pages as victims. When a miss
occur in cache, N-cha Iected the oldest clean cache block as victim among the
last N least recentl blocks in LRU list, if there is no such block, the LRU
block is selecte ance policy decrease cache’s hit ratio, but it reduce write-
back to PCM. to PCM’s high write cost, N-chance policy reduce latency and

energy by“ading write-backs to reads.

Bian e 1] proposed a flexible DRAM buffer (FDB) for PCM main memory.
FDB &RAM as an adapting buffer between LLC and PCM main memory to
r M writes and LLC miss penalty. When a dirty block is evicted from LLC,
the"glock is first written back to FDB. Consider that the block in FDB is likely to be
fetched to LLC and written again, FDB reduces write-backs to PCM and hides the
write latency of PCM. When a cache miss occurs in LLC, while the requested block
is transmitted to the LLC, its next one block is prefetched into FDB. Due to the
spatial locality, the prefetched block in FDB is likely to be fetched into the LLC
later, so FDB hide the read latency of PCM and reduce LLC miss penalty. When
FDB is full, it uses FIFO policy to evict a page, and the dirty evicted pages are
written back to PCM.

Copyright © 2016 SERSC 299

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

fetch super ASB
block from Super block 1 | Page 1 | Page 2 | | Pagen |
PCM
——>| Super block 2 | Page 1 | Page 2 | | Pagen |
Super block n |Page 1 | Page 2 | | Pagen |
write hit: move to WB and transmit LLC read hit move to AFB
and transmit LLC
* | FIFOEVICT | —%£
| Page | I Page I “l Page | | Page |
WB AFB
wLRU EVICT °
Figure 4. The Overview of DRAM Buffer Consisting of ASB, WB B

main memory accesses to reduce buffer miss rate As shown in
Figure 4, the DRAM buffer is divided into thre glo ggressive streaming

buffer (ASB), write buffer (WB) and adaptiv mg%{‘ FB). To improve

Choi et al. [52] proposed a DRAM buffer managem s he e%)c&nize PCM
wr
S

buffer’s hit ratio, the DRAM management schete explor tial locality by using
ASB to pre- fetch a superblock consistin certal er of pages each time,
and exploits temporal locality by usin B to e the recently referenced
pages in the LRU list. To reduce P rites, page in ASB hits by write
request, the page is moved to WBAjrst’and gvi 0 AFB later, so the dirty pages
are delayed to be written int . The buffer scheme works as follow:
when a page request frorn*ﬁ& hit the buffer, if the requested page is in
ASB, the page is moved to AFB for rea %uest or WB for write request; If WB has
no free space, FIFO r ment used to evict a page to AFB; If AFB has
no free space, the L ge IS evi to PCM; when a miss occurs in the DRAM
buffer, a superbl ta|n|n e requested data is pre-fetched into ASB, if ASB
has no free s %e victi cted with FIFO.

Jang et prop data classification management scheme to manage
DRAM buffe or hyb C/M LC PCM main memory. As shown in Figure 5, the
DRAM buffer is dj into two buffer regions: aggressive fetching superblock
buffer (AFSB) elective filtering buffer (SFB). The AFSB caches the
superblocks fro&:m the size of a superblock is the same as the page unit
managed Ap{mam memory and storage by OS. Each superblock in AFSB is
partitione@lo%'a certain number of sub-pages, the size of a sub-page is the same as
the ca ck of LLC. Each sub-page’s access count is recorded in AFSB, and the
ccess count of all sub-pages of a superblock is set as the threshold to
cla the superblock’s high-accessed sub-pages and low-accessed sub-pages. To
maintain the hit ratio of DRAM buffer, when a superblock is evicted from AFSB,
SFB caches the superblock’s all high-accessed sub-pages to give these sub-pages a
second chance. The DRAM buffer scheme works as follow: when a sub-page is
requested from LLC, AFSB and SFB are checked for the requested sub-page, if the
sub-page exists in AFSB or SFB, the sub-page is fetched into LLC; when a miss
occurs in both AFSB and SFB, the superblock that contains the requested sub-page
is fetched into AFSB, if AFSB has no free space, a superblock with the lowest
average access count of its all sub-pages is evicted, and the victim superblock’s
high-accessed sub-pages are fetched into SFB.

300 Copyright © 2016 SERSC

International Jourmnal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

AFSB SFB

fetch super

block from | Super block 1 [black 1 | block2 | [blockn | block

PEM Super block 2 [block 1 |b|oc|-c2 [[block n | block

block

T i block
i Super block n [block 1 | block 2 [...... [block n |
R B oL I N | [

Park et al. [54] proposed a weal-level replaceme t ofithm 40 ge DRAM
buffer for PCM main memory. The algorithm con ing PCM write

re
count and uniform PCM write count distributig e’DR D&gér is divided into
y LRU both clean blocks

two layers: in the first layer, blocks are manag@d
and dirty blocks; in the second layer, dirtyblocks and blocks are managed
separately, dirty blocks are maintained i&é\ﬂ/rlte £r ncy list according to their
corresponding PCM blocks> write coll lean b are managed by LRU list.
When the DRAM buffer is full, to e write ks to PCM, the algorithm first

evicts the least recently used cle ayer if no clean block exists in
the second layer, to even o t erte c he dirty block with the least write
count of its correspondlng block isCeyic ed if the dirty blocks have the same
write count, the least rec used glir k is evicted.

5. Main Memo .b&agem

5.1 Pure PC@MemMa agement
Each page of P ows limited write operation count. To prevent too many

write accesses foc e same PCM location due to page placement and
replacement, cac agement policies of PCM main memory should care about
the physical ad@when a page is placed or replaced on PCM.

Yi Ou gtqal. 55] proposed several wear-aware page replacement algorithms
includin , LFM and LRM for PCM-based database buffer pools. The
algorit@re designed for PCM wear leveling. LFM and LPM monitors PCM
p "ear status at the page-level. When page fault occurs and a victim is needed,
@elects the least frequently modified (including page update and page
replacement) PCM page, while LRM selects the least recently modified PCM page.
LPW consider that the different parts inside a PCM page have different wear status,
monitoring wear status at the page-level (number of writes on each page) is not
sufficient. LPW splits pages in PCM into a number of wear units. The page wear of
a PCM page is defined as the total write count of all wear units in the page. When a
page updated, the page wear increases by the number of updated wear units. When a
page replacement occurs, the page wear of the buffer page where the victim resided
increases by the number of wear units in the page. For PCM wear-leveling, when
page fault occurs, LPW evicts the page having the smallest page wear count. Since
the algorithms achieve PCM wear leveling, they lower the hit ratio of PCM buffer
compared to LRU algorithm.

Copyright © 2016 SERSC 301

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

5.2 Hybrid PCM-DRAM Memory Management

To improve the overall performance of hybrid memory, the ideal situation is that
DRAM can serve as more write accesses as possible. Cache management policies of
hybrid memory pay attention to predict pages’ access pattern and classify pages into
write-hot page and read-hot page (or write-cold page). By performing page
allocation and page migration between PCM and DRAM, the policies keep write-hot
pages in DRAM and read-hot pages (or write-cold pages) in PCM to serve more
write accesses on DRAM.

Seok et al. [56] proposed an LRU-based page management algorithm for hybrid
main memory (thereinafter the algorithm is called MIG). MIG adopts a prediction
mechanism to identify read-intensive pages and write-intensive pages according to
pages’ access pattern, and a page migration mechanism to migrate read- i&r?ﬂe
pages to PCM and write-intensive pages to DRAM. The prediction mech
weight value to each page, the weight value increases when the pa |t% by read
request, and decreases when the page hits by write re st, For p CM and
DRAM, the algorithm classified them into read que erte accordlng to
the weight value, and all pages in hybrid memory &u th U list. When
a page fault occurs and page eviction is need gor hm ts the LRU page

in the LRU list. When a page hits, the algori calc page’s new weight
value according to the type of the request, { judge if the ge should be moved to
the other queue in the same memory ,or ted td ther memory according to

migration occurs, the mlgratlon t uId have enough space for the

migrated page. If DRAM pace to place the migrated page,

DRAM evicts the LRU pag&l_n ead que;%“f PCM is full, PCM evicts the LRU

page of its write queue for the |gral'e%e e. Figure 6 shows an example of page
P

migration in MIG. SincelMIG caw CM writes, it has some problems that
affect performancebf IG ev&g ages not only when page fault occurs, but

the two thresholds Trg and Trmig 5 re set e algorithm. When a page
ve e

also when page noccu thls extra page releases will introduce more page
faults and de rati er that the latency of second storage such as disk
and SSD is @v magn itu hlgher than PCM write latency, sacrificing hit ratio
to reduce P rites lower the overall performance; Second, MIG migrates

read-intensive pages @ DRAM to PCM, that may cause more write traffic on
PCM due to pag’eig@ment and migration for read-tendency workloads.

promotion

(. |
é\' MRU l P1HP2HP3HP4HP5HP6 HP7 HP8| LRU

0 -
DRAM READ P14 P2 PCMREAD |ps 4 PR
QUEUE QUEUE
DRAM WRITE L PCM WEITE L
QUEUE T P3P QUEUE 1 Pls
migrate
DRAM PCM
P1([|P2||P3]||P4 P5||P6||PT || P8
L3 [
evict | migrate |

Figure 6. An Example of Page Migration in MIG

302 Copyright © 2016 SERSC

International Jourmnal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

Lee et al. [57] present a CLOCK-based write-history-aware page replacement
algorithm CLOCK-DWF. CLOCK-DWF manages DRAM pages and PCM pages in
separate circular lists. Each page in hybrid memory has a reference bit and a dirty
bit. Dirty bit is used to identify the frequently written pages in DRAM, a DRAM
page’s dirty bit is set to 1 when the page hits by a write request. CLOCK-DWF
keeps write-intensive pages in DRAM as follow: when a page fault occurs, CLOCK-
DWEF put the requested page in DRAM if the request is a write request, otherwise
the page is put on PCM; when a page in PCM hits by a write request, the page
should be migrated to DRAM immediately. To get a free frame on DRAM when
DRAM is full, CLOCK-DWF scan the DRAM circular list to selects a write-cold
page in DRAM and migrate the page to PCM. To get a free frame on PCM when
PCM is full, traditional CLOCK algorithm is used on PCM circular list togevictsa
non-recently used page. Figure 7 shows an example of page migration when
page hit by write request. CLOCK-DWF also have some problems: F'Est,

DWEF does not always evict the least recently used page in hybr
compared with original CLOCK or LRU, CLOCK; may gher page
fault count; Second, CLOCK-DWEF does not consid hether D% is full or not
when it performs page migration from PCM t \ M, mi rﬁgg)a PCM page to a
full DRAM causes migrating a DRAM page @; oP this page exchange is

unnecessary if the PCM page is only Writtés one time, ay cause more page

exchange between DRAM and PCM in t re if the_page migrated to PCM hits

by write request; Third, CLOCK-DW ces fault ges only according to the
type of requests, it may causzﬁrwrit t@g‘ic on PCM in read-intensive
workloads due to page placemen pla Fe* nd it may waste hybrid memory
capacity and consequently infko more% aults, an extreme example is that
for a read-only application “stieh\as seaxcr%gi e, only PCM capacity is used.

Q) ' to DRAM o
/ Write hit
N
MY NS
DRAM Migrate write-cold PCM

\LV Page to PCM

0 Figure 7. An Example of Page Migration In MIG

wet al. [58] proposed a page replacement algorithm APP-LRU. Unlike MIG
and CLOCK-DWF, APP-LRU aims to reduce PCM writes without degrading the hit
ratio of hybrid memory. APP-LRU maintains three lists: a LRU list to manage all
pages in hybrid memory, a DRAM-list to queue DRAM pages in order of read count
and a PCM-list to queue PCM pages in order of write count. To reduce PCM writes,
APP-LRU determines putting the requested page on DRAM or PCM according to
the page’s history accesses in memory when page fault occurs. To achieve this goal,
APP-LRU maintains a metadata table to record a page’s history accesses when the
page is evicted. When a page request misses, APP-LRU selects the LRU page in
hybrid memory as victim. If the location of the victim is not fit for the requested
pages, for DRAM (PCM) victim, APP-LRU frees the victim and migrates the head
page of PCM-list (DRAM-Ilist) is migrated to the free frame, then put the requested
page on the befitting memory. Figure 8 gives an example of APP-LRU page

Copyright © 2016 SERSC 303

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

replacement for a requested page that should be put on DRAM. APP-LRU has the
same hit ratio as original LRU since APP-LRU evicts the LRU page and does not
release extra pages. But APP-LRU only perform page migration during page
replacement, that will cause two problems: first, for large capacity memory with
little page faults, APP-LRU takes little effect, even no effect if no page fault occurs;
Second, if a PCM pages become write-intensive and hits by multiple write requests,
APP-LRU doesn’t works to reduce PCM writes for this situation.

MRU

AR
msert into PCM list
evict N
PCM hst V
N

insert into
LRU fist

P9 should be
put to DRAM

DRAM list

DRAM)\
RRRIRD RN
Put on L
DRAM [{ :

migratejto PCHI

Figure 8. An Example of AP%RU Page&gcement

Chen et al. [59] proposed a page I ment alg\rt m MHR-LRU. MHR-LRU
considers that the most recently pa I@ high possibility to be written
aéi

again, to reduce PCM writes, I@ ge f rs, the requested page should be
put on DRAM if the requesjq.&w write. LRU queues all pages in a LRU list,
and queues all DRAM pages

order %thelr most recent write reference time.
When a page request mi RU position of LRU list is selected as
victim. For a write ke

) It the |s on PCM, instead of putting the requested
page on PCM, M

moves the Ieast recently written page in DRAM to PCM
and put the requ age M as shown in Figure 9. Like APP-LRU, MHR-
LRU has th@ hit ratlo LRU, but takes little or no effect if the hit ratio is
very high.
Request: Wi MRU LRU

—|P1 H P2 H P3 P4 HP5HP6 HP7 P8
sert mto

&., LRU fist Veviet
Q DRAM write-aware LRU list

, P1 H P2 HP3 P4 ——Remove
Insert into
@ DRAM st
DRAM PCM
Put on DRAM| | P1 || P2 || P3| |P4 P5||P6||P7||P8
I
| || o
migrate ,l,ewct

Figure 9. MHR-LRU Page Migration to Put the Requested Page on DRAM

Heish et al. [60] proposed a double circular page management scheme DCCS.
DCCS maintains DRAM pages and PCM pages separately in a DRAM circular LRU
listand a PCM circular LRU list. DCCS set an operation bit to each page in DRAM
and PCM, the operation bit is set to record the last request type performed on the
page. DCCS identifies read-bound pages according to their operation bits. To avoid
frequent writes to PCM due to page replacement, DCCS only use DRAM to serve

304 Copyright © 2016 SERSC

International Jourmnal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

page faults. When page fault occurs, the requested page is put on DRAM. When a
page in PCM hits by write request, DCCS migrates the page to DRAM. If DRAM
has no enough space, DCCS evicts the LRU page in DRAM and moves the most
recently used read-bound page to PCM. If PCM has no enough space, DCCS evicts
the LRU page in PCM. Figure 10 shows how DCCS get free pages on DRAM.
DCCS also have some problems: first, DCCS evict the LRU page in DRAM, not the
LRU page in hybrid memory, that affect the hit ratio; second, when DRAM and
PCM are full, a page fault will make both the LRU page in DRAM and the LRU
page in PCM evicted, that introduces more page faults; third, DCCS determines
read-bound pages only depend on their last request type, the metric is not accurate
to reflect page’s access pattern.

Migrate most recently read page to PCM V °
P

DRAM ° O PCM %
Figure 10. DCCK%}S Fre&@ges on DRAM

< : @efa’ence Bit&}m Bit
Hot dirty e R=1.d= old dirty page: R=0, D=1;

H@eaﬂ page: R=1, ;Cold clean page: R=0, D=0;

PCM pages hit by write
request: Lazy Migration

T~

RAM Evict cold-clean pages PCM Evict

\L, Figure 11. The Overview of M-CLOCK

Lee . [61] proposed a migration-optimized page replacement algorithm M-

7 M-CLOCK aims to reduce PCM writes while have a high hit ratio and

re unnecessary migration that causes migration-thrashing. The overview of M-
CLOCK is shown in Figure 11. To reduce PCM writes, M-CLOCK place all faulted
pages on DRAM and keep write-intensive pages in DRAM. To classify write-
intensive pages, M-CLOCK set a reference bit and a dirty bit to each page, when a
dirty page in DRAM with the reference bit 1 is re-referenced again, the page is
considered as a write-intensive page. M-CLOCK manages write-intensive pages in
DRAM by a clock-hand called D-hand and manages other pages in DRAM by a
clock-hand called C-hand. When the DRAM s full, to get a free page, M-CLOCK
first uses D-hand to scan write-intensive pages to degrade a write-intensive page
into cold dirty page, then uses C-hand to search for a hot-clean page or a cold-dirty
pages in DRAM to be migrated to PCM, or a cold clean pages in DRAM to be
evicted. To reduce unnecessary page migrations, M-CLOCK uses a lazy migration
policy depending on setting a lazy bit to each page in PCM. When a page in PCM

Copyright © 2016 SERSC 305

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

hits by write request, if no free page exists in DRAM and the page’s lazy bit is unset,
the page is updated in-place and its lazy bit is set; otherwise, the page should be
migrated to DRAM.

6. DRAM Memory Management Based on PCM Storage

Unlike disk and flash memory SSD, there is not huge access latency gap between
PCM storage and DRAM. Since the cache miss cost is not unacceptable, and
caching pages from PCM into DRAM also cause the system overhead, so traditional
policies that cache all referenced pages from storage into memory need to be
rethought. Besides, to reduce write-backs from DRAM to PCM, the page
replacement policy of DRAM should also be rethought.

Yoo et al. [62] proposed a CLOCK-based page replacement algorithN?glf-
CLOCK (least-dirty-first CLOCK) to manage DRAM main memory for ap
device. LDF-CLOCK considers both recency and dirtiness to evic e when
page replacement is needed. Like CLOCK, LDF-CLOCK, also es pages in
DRAM in the circular list and set one reference bit 1‘%99& T rk the dirtiness
level of a page, LDF-CLOCK partition each pa w vew ‘pages, and set
one dirty bit per sub-page. When a write acceé s, LRF-CBOCK sets the dirty
bits of the written sub-pages in the accessed p ol ith more dirty sub-
pages makes more write-backs to PCM W@ it is evicte 0 select a victim, as
shown in Figure 12, LDF-CLOCK usig clock® to scan each page in the

e

circular list, if the page being scann he reference bit of 1, the reference bit is
set to 0 and LDF-CLOCK continu ant age until the clock-hand points
to a page with the reference hit Y After n, LDF-CLOCK selects the page
with least dirty sub-pages a@&? I pag?é;va reference bit of 0. To overcome the

time complexity of finding the least di ge, LDF-CLOCK maintains a multiple
lists structure to keep pages)with r bit of 0 in different lists according to the

number of their dirty s@ages.

.
e Scan CLOCK and reset

1 ‘ 1 reference bit until find a l

page with reference bit 0

0
0 Select the page with the least
dirty sub-pages as victim among

all pages with reference bit 0

Figure 12. Select the Victimin LDF-CLOCK

Lee et al. [63] proposed a cache management scheme called selective cache
bypassing (thereinafter it is abbreviated to SCB) to manage DRAM main memory
for PCM-based storage. SCB rethinks DRAM cache strategy that caching PCM data
selectively in DRAM is more efficient than caching all requested data in DRAM.
Since PCM access latency is slightly slower than DRAM, compared with the cost of
a cache miss, the overhead of caching a page in DRAM should be consider. If a
requested block is caching into DRAM but it is not referenced again before it is
evicted, SCB thinks caching this block has adverse effect on performance, because
it costs more than accessing the page directly on PCM and wastes cache space, so

306 Copyright © 2016 SERSC

International Jourmnal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

this single-accessed block should not be cached. Based on this observation, to filter
out the single-accessed blocks from caching, SCB does not cache a block for its first
access, the block is caching into DRAM after it is accessed again within a certain
number of distance, the default distance is the same as the cache size. The reason to
bypass the first accesses of blocks is that most of blocks are accessed either O or
many times, so the second access within a short time can be an indicator for
multiple-accessed blocks. The performance profit of SCB is determined by the ratio
of single-access blocks of workloads, so SCB adopt adaptive strategy that monitors
the dynamic situations of the workload and adaptively uses R-bypass policy (bypass
read accesses), RW-bypass policy (bypass both read accesses and write accesses), or
NO-bypass.

7. Conclusion
PCM is flexible to be adopted as either main memory or S@Z ut its

advantages and drawbacks are different from both so PCM
systems require special cache management schemes s pap e)survey PCM-
aware cache management policies to manage LL y for different
types of PCM systems. We discuss the new e ges e management in
different PCM system architectures. Then we i duce yze the novel cache

management policies at different memoryQy els for main memory, hybrid
PCM-DRAM memory and PCM storage. ‘

Although there are no widely-acc olutlo to USing PCM in current memory
hierarchy, a general idea for |mpr systems is to reduce writes to
PCM. Using appropriate cac s n3|der n efficient approach for reducing
PCM writes. Since the Iow access late nc of PCM can significantly reduce the

cost of cache misses, PCM -aware cacl:é nagement policy needs to identify the
rc

blocks that are high i be w stead of the blocks that are high likely to
be re-referenced. 'I' future h direction is to study the prediction on
future write- reques

Acknowle@1 nt

This work is partiall
grant (61379037, 6
Universities. Pei

Refe renc'és&y

[1] G. rand B. N. Kurdi, “Overview of candidate device technologies for storage-class memory”.
Bmurnal of Research and Development, vol. 52, no. 4-5, (2008), pp. 449-464.

[Z@Raoux, G. W. Burr and M. J. Breitwisch, “Phase-change random access memory: A scalable

chnology”, IBM Journal of Research and Development, vol. 52, no. 4-5, (2008), pp. 465-479.

[3] B. C. Lee, E. Ipek and O. Mutlu, “Architecting phase change memory as a scalable dram alternative”,
Proceedings of the 36th International Symposium on Computer Architecture, Austin, Texas, USA, June
20-24, (2009).

[4] M. K. Qureshi, V. Srinivasan and J. A. Rivers, “Scalable high performance main memory system using
phase-change memory technology”, Proceedings of the 36th International Symposium on Computer
Acrchitecture, Austin, Texas, USA, June 20-24, (2009).

[5] P. Zhou, B. Zhao, J. Yang and Y. Zhang, “A durable and energy efficient main memory using phase
change memory technology”, Proceedings of the 36th International Symposium on Computer
Architecture, Austin, Texas, USA, June 20-24, (2009).

[6] B.C.Lee, P.Zhou,J. Yang and Y. Zhang, “Phase-change technology and the future of main memory”,
IEEE Micro, vol. 30, no. 1, (2010), pp. 131-141.

[71 H. Yoon, N. Muralimanohar and J. Meza, “Data mapping and buffering in multi-level cell memory for
higher performance and energy efficiency”, CMU SAFARI Tech. Report, (2013).

%)orted by the National Science Foundation of China under the
76) and the Fundamental Research Funds for the Central
n is the corresponding author.

Copyright © 2016 SERSC 307

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

[8] H. Yoon, J. Meza and N. Muralimanohar, “Efficient data mapping and buffering techniques for
multilevel cell phase-change memories”, ACM Transactions on Architecture and Code Optimization,
vol. 11, no. 4, (2014), pp. 40:1-25.

[9] M. K. Qureshi,M. M. Franceschini and L. A. Lastras-Montano, “Improving read performance of phase
change memories via write cancellation and write pausing”, Proceedings of the 16th International
Conference on High-Performance Computer Architecture, Bangalore, India, January 9-14, (2010).

[10] H. G. Lee, S. Baek and C. Nicopoulos, “An energy- and performance-aware DRAM cache architecture
for hybrid DRAM/PCM main memory systems”, Proceedings of the 29th IEEE International
Conference on Computer Design, Amherst, Massachusetts, USA, October 9-12, (2011).

[11] T.J.Ham, B. K. Chelepalli and N. Xue, “Disintegrated control for energy -efficient and heterogeneous
memory systems”, Proceedings of the 19th IEEE International Symposium on High Performance
Computer Architecture, Shenzhen, China, February 23-27, (2013).

[12] G. Dhiman, R. Ayoub and T. Rosing, “PDRAM : A hybrid PRAM and DRAM main memory system”,
Proceedings of the 46th Design Automation Conference, San Francisco, California, USA, July 26-31,

2009

[13] (L E. I)?amos E. Gorbatov and R. Bianchini, “Page placement in hybrid memory systems? gzngs

of the 25th International Conference on Supercomputing, Tucson, Arizona, USA, “Yune 04,

(2011).

[14] H. B. Yoon, J. Meza and R. Ausavarungnirun, “Row buffer locality aware cac géaes for hybrid
memories”, Proceedings of the 30th International IEEE Cor‘%on Cow@e&gn Montreal,

QC, Canada, September 30—October 3, (2012).

[15] E. Lee, J. Jang and H. Bahn, “DTFS: Exploiting th of data Versigns to design a write-
efficient file system in phase-change memory”, Proce of the ACM Symposium on Applied
Computing, Gyeongju, Korea, March 24-28, (2014).

[16] E. Lee, J.Jangand T. Kim, “On-demand snapsh fficient versioniprg file sy stem for phase-change

memory”, IEEE Transactions on Knowledge a Engim@vol. 25, no. 12, (2013), pp. 2841-
2853.

[17] E. Lee, S. Yoo and J. E. Jang, “Shortcut erte journaling file system for phase change

memory”, Proceedings of the IEEE 28t Mass Storage Systems and Technologies,
Piscataway, NJ, USA, April 16-2 %

[18] G. S. Choi, B. W. On a oi, “PTL:
Microsystems, vol. 37, pp. ZA(NA

[19] S. Im and D. Shin, “Diffe
storage device”, IEEE T,

translation layer”, Microprocessors and

tiated spa for wear leveling on phase-change memory-based

ions on umper Electronics, vol. 60, no. 1, (2014), pp. 45-51.

[20] A. Dan and D ‘An Appro e Analysis of the LRU and FIFO Buffer Replacement
Schemes”, Procee&%u the 199 CM SIGMETRICS conference on Measurement and modeling of
computer syst Ider, TAUSA, May 22-25, (1990).

[21] E. J. O’ ’Neﬂ and um, “The LRU-K Page Replacement Algorithm for Database
Disk Buf , Procegdi f the ACM SIGM OD International Conference on M anagement of Data,
Washington, D C USW% 28, (1993).

[22] Y.ZhouandJ.F.P he Multi-Queue Replacement Algorithm for Second Level Buffer Caches”,
Proceedings of t IX Annual Technical Conference, Boston, Massachusetts, USA, June 25-30,
(2001).

[23] T.Johnson an hasha, “2Q: A Low Overhead High Performance Buffer M anagement Replacement
Algorit Proceedings of 20th International Conference on Very Large Data Bases (VLDB), Santiago
de Ch , September 12-15, (1994).

[24] nd X Zhang, “LIRS: An efficient low inter-reference recency set replacement policy to
"‘e buffer cache performance”, Proceedings of the International Conference on M easurements and

%}elmg of Computer Systems (SIGMETRICS), Marina Del Rey, California, USA, June 15-19,

[25] C. Kim, J. Choi and J. Kim, “LRFU: A spectrum of policies that subsumes the least recently used and
least frequently used policies”, IEEE Transactions on Computers, vol. 50, no. 12, (2001), pp. 1352—
1361.

[26] A. Jaleel, K. Theobald and S. Steely Jr., “High performance cache replacement using re-reference
interval prediction (RRIP)”, Proceedings of the 37th International Symposium on Computer
Acrchitecture, Saint-Malo, France, June 19-23, (2010).

[27] M. Chaudhuri, “Pseudo-LIFO the foundation of a new family of replacement policies for last-level
caches”, Proceedings of the 42st Annual IEEE/ACM International Symposium on M icroarchitecture,
New York, New York, USA, December 12-16, (2009).

[28] S. Mittal, “Energy saving techniques for phase change memory (PCM)”, arXiv: 1309.3785, (2013).

[29] M. K. Qureshi, S. Gurumurthi and B. Rajendran, “Phase Change Memory: From Devices to System”,
Synthesis Lectures on Computer Architecture, vol. 6, no. 4, (2011), pp. 1-134.

[30] O. Zilberberg, S. Weiss and S. Toledo, “Phase-change memory: An architectural perspective”, ACM
Computing Survey, vol. 45, no. 3, (2013), pp. 1-33.

308 Copyright © 2016 SERSC

http://dblp.uni-trier.de/pers/hd/c/Choi:Jongmoo
http://dblp.uni-trier.de/pers/hd/k/Kim:Jong=Hun

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48

[49]

[50]

[51]

[52]

[53]

International Jourmnal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

S. Cho and H. Lee, “Flip-N-Write: A simple deterministic technique to improve PRAM write
performance, energy and endurance”, Proceedings of the 42st Annual IEEE/ACM International
Symposiumon Microarchitecture, New York, New York, USA, December 12-16, (2009).

B. D. Yang, J. E. Lee and J. S. Kim, “A Low Power Phase-Change Random Access Memory using a
Data-Comparison Write Scheme”, Proceedings of the 2007 IEEE International Symposium on Circuits
and Systems, Piscataway, NJ, USA, May 20-27, (2007).

J. Yue and Y. Zhu, “Accelerating write by exploiting PCM asymmetries”, Proceedings of the 19th IEEE
International Symposium on High Performance Computer Architecture, Shenzhen, China, February 23-
27, (2013).

Y. Du, M. Zhou and B. R. Childers, “Bit mapping for balanced PCM cell programming”, Proceedings
of the 40th Annual International Symposium on Computer Architecture, Tel-Aviv, Israel, June 23-27,
(2013).

M. K. Qureshi, M. M. Franceschini and A. Jagmohan, “PreSET: Improving performance of phase
change memories by exploiting asymmetry in write times”, Proceedings of the 39th International
Symposiumon Computer Architecture, Portland, OR, USA, June 9-13, (2014). ‘%) ©

F. Xia, D. Jiang and J. Xiong, “DWC: Dynamic write consolidation for phase change me Sy$péms”,
Proceedings of the 2014 International Conference on Supercomputing, Muenchen, G rr:.%ﬁune 10-
13, (2014).

A. Jaleel, W. Hasenplaugh and M. Qureshi, “Adaptive insertion pdlicigs for m shared caches”,
Proceedings of the International Conference on Parallel A &res & ilation Techniques,
Toronto, Ontario, Canada, October 25-29, (2008).

M. K. Qureshi, A. Jaleel and Y. N. Patt, “Adaptive inserion IICIes fo@erformance caching”,
Proceedings of International Symposium on Computelt cture California, USA, June
9-13, (2007).

R. Freitas and W. Wilcke, “Storage-class me next stor. em technology”, IBM Journal
of Research and Development vol. 52, no. 4, (@W 4391!14

Ru Fang, Hui-1 Hsiao and Bin He, “High p nce databas gmg using storage class memory”,
Proceedings of the 27th International Co e on Data ineering, Hannover, Germany, April 11-

16, (2011).
Zhang Xi, Qian Hu and Dongshén (s} “Rea%,e ware replacement policy for phase change
memory”, Proceedings of the tional conferegeé on Advanced parallel processing technologies,
Shanghai, China, September g@(zon) °

M. Zhou, Y. Du and B. Chijders, “Writg-b re partitioning and replacement for last-level caches
in phase change mam systems ransactions on Architecture & Code Optimization, vol.
8, no. 4, (2012), &5’
Z.Wang, S. Shan ao,

main memory § ACM ons on Architecture & Code Optimization, vol. 10, no. 4, (2013),

«“ %} Write-back-aware dynamic cache management for N VM -based
pp.51:1-
S. M. Khag ang apd . Jimenez, “Decoupled dynamic cache segmentation”, Proceedings of the

18th IEEE Internation osium on High-Performance Computer Architecture, Washington, DC,
USA, February 25-2).
S. Yoo, E. Lee a hn, “LDF (less dirty first): dirtiness-aware cache replacement policy for PCM

main memory” gEleCeronics Letters, vol. 49, no. 25, (2013), pp. 1607-1609.
NRU, “Inside tel Itanium 2 Processor”, HP Technical White Paper, (2002).
R. Rodwidgliez-Rodriguez, F. Castro and D. Chaver, “Reducing writes in phase-change memory
enviro y using efficient cache replacement policies”, Proceedings of the Design, Automation
and Europe, Grenoble, France, March 18-22, (2013).
eIo, M. Zhou and D. Cole, “Energy efficient caching for phase-change memory”, Proceedings of
Design and Analysis of Algorithms - First Mediterranean Conference on Algorithms, Kibbutz Ein

di, Israel, December 3-5, (2012).

. Wei, D. Jiang and J. Xiong, “HAP: Hybrid-memory-Aware Partition in shared Last-Level Cache”,
Proceedings of the 32nd IEEE International Conference on Computer Design, Seoul, Korea, October
19-22, (2014).

A. P. Ferreira, M. Zhou and S. Bock, “Increasing PCM main memory lifetime”, Proceedings of the
Design, Proceedings of the Automation and Test in Europe, Dresden, Germany, March 8-12, (2010).

M. Y. Bian, S. K. Yoon and S. D. Kim, “An Effective Interfacing Adapter for PRAM Based Main
Memory via Flexible Management DRAM Buffer”, Proceedings of the International Conference on IT
Convergence and Security, Pyeong Chang, Korea, December 5-7, (2012).

I. S. Choi, S. I. Jang and C. H. Oh, “A dynamic adaptive converter and management for PRAM -based
main memory”, Microprocessors & Microsystems, vol. 37, no. 67, (2013), pp. 554-561.

S. 1. Jang, C. G. Kim and S. D. Kim, “An Efficient DRAM Converter for Non-Volatile Based Main
Memory”, Proceedings of the International Conference on IT Convergence and Security, Pyeong
Chang, Korea, December 5-7, (2012).

Copyright © 2016 SERSC 309

http://dblp.uni-trier.de/pers/hd/f/Fang:Ru
http://dblp.uni-trier.de/pers/hd/h/Hsiao:Hui=I
http://dblp.uni-trier.de/pers/hd/h/He:Bin

International Journal of Multimedia and Ubiquitous Engineering
Vol.11, No.1 (2016)

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

S. K. Park, M. K. Maengand K. W. Park, “Adaptive wear-leveling algorithm for PRAM main memory
with a DRAM buffer”, Acm Transactions on Embedded Computing Systems, vol. 13, no. 4, (2014), pp.
88:1-88:25.

Y. Ou, L. Chen and J. Xu, “Wear-Aware Algorithms for PCM-Based Database Buffer Pools”,
Proceedings of the Web-Age Information Management International Workshops: BigEM, HardBD,
DaNoS, HRSUNE, BIDASYS, Macau, China, June 16-18, (2014).

H. Seok, Y. Park and K. W. Park, “Efficient page caching algorithm with prediction and migration for a
hybrid main memory”, Acm Sigapp Applied Computing Review, vol. 11, no. 4, (2011), pp. 38-48.

S. Lee, H. Bahn and S. H. Noh, “CLOCK-DWEF: A Write-History-Aware Page Replacement Algorithm
for Hybrid PCM and DRAM Memory Architectures”, IEEE Transactions on Computers, vol. 63, no. 9,
(2014), pp.2187-2200.

Z. Wu, P. Jin and C. Yang, “APP-LRU: A New Page Replacement Method for PCM/DRAM-Based
Hybrid Memory Systems”, Proceedings of the Network and Parallel Computing - 11th IFIP WG 10.3
International Conference, Ilan, Taiwan, September 18-20, (2014).

K. Chen, P. Jin and L. Yue, “A Novel Page Replacement Algorithm for the Hybr
Acrchitecture Involving PCM and DRAM ”, Proceedings of the Network and Parallel Co 1th
IFIP WG 10.3 International Conference, Ilan Taiwan, September 18-20, (2014). n%‘r

J. W. Hsieh and Y. H. Kuan, “Double Circular Caching Scheme for DRAM/PR@ Cache”,

Proceedings of the 19th IEEE International Conference on EmBedded and Computing
Systems and Applications, Seoul, Korea, August 19-22, (2012
M. Lee, D. H. Kang and J. Kim, “M-CLOCK: mlgrat|on n: repl ent algorithm for

hybrid DRAM and PCM memory architecture”, Proceedings
Applied Computing, Salamanca, Spain, April 13-17, (
S. Yoo, E. Lee and H. Bahn, “LDF-CLOCK: The Ledst=Dirty- Flfx K Replacement Policy for
PCM-based Swap Devices”, Journal of Semlcond,@,Technol ience, vol. 15, (2015), pp. 68-
76.

S. Park, D. Jung and J. Kang, “CFLRU: a r'e ent a]gorlth flash memory”, Proceedings of the
2006 International Conference on Com% Archi ct%and Synthesis for Embedded Systems,
Seoul, Korea, October 22-25, (2006)

H. Jung, H. Shim and S. Park, Lé mtegra n U and writes sequence reordering for flash

he 30th A ug ACM Symposium on

memory”, IEEE Transactlons er Electroni ol. 54, no. 3, (2008), pp. 1215-1223.
Y. Lv, X. Chen and B. Cui, “A : An Adal ost Aware Cache Replacement Approach for Flash
i 5@ onference on Web-Age Information Management,

Memory”, Proceedlngs of Ae 11th Intgrn
Jiuzhaigou, China, J (2010). %
P. Jin, Y. Ou an r, “ADLRUY Efficient Buffer Replacement Algorithm for Flash-based

Databases”, Data Iedge ineering (DKE), vol. 72, (2012), pp. 83-102.

Z. Li, P. Jin ang , “CCR: “A New Buffer Replacement Algorithm for Flash Memory”, IEEE
Transactig 2 umer Elect ol. 55, no. 3, (2009), pp. 1351-1359.

Y. Ou, ¢ der awn, “CFDC—A Flash-aware Replacement Policy for Database Buffer

M anagement”, Proceed the 5th International Workshop on Daa Management on New Hardware
(DaMoN'09) (in conj n with SIGMOD'09), Providence, Rhode Island, USA, June 29-July 2,
(2009).

I. Koltsidas an iglas, “Flashing up the storage layer”, Proceedings of the VLDB Endowment, vol.
1, no. 1, (2008)Npp~- 514-525.

G. So arajan, V. Prabhakaran and M. Balakrishnan, “Extending SSD Lifetimes with Disk-Based
Write >, Proceedings of the 8th USENIX Conference on File and Storage Technologies, San
Jos SA, February 23-26, (2010).

rnational Workshop on Flash-Based Database Systems (FlashDB) (in conjunction with
SFAA'11), Hong Kong, China, April 22-25, (2011).

[71%. g, P.Jinand L. Yue, “Hybrid Storage with Disk Based Write Cache”, Proceedings of the First

310

Copyright © 2016 SERSC

http://dblp.uni-trier.de/pers/hd/p/Park:Seon=Yeong
http://dblp.uni-trier.de/pers/hd/j/Jung:Dawoon
http://dblp.uni-trier.de/pers/hd/k/Kang:Jeong=Uk
http://dblp.uni-trier.de/pers/hd/j/Jung:Hoyoung
http://dblp.uni-trier.de/pers/hd/s/Shim:Hyoki
http://dblp.uni-trier.de/pers/hd/p/Park:Sungmin
http://dblp.uni-trier.de/pers/hd/l/Lv:Yanfei
http://dblp.uni-trier.de/pers/hd/c/Chen:Xuexuan
http://dblp.uni-trier.de/pers/hd/c/Cui:Bin
http://dblp.uni-trier.de/pers/hd/k/Koltsidas:Ioannis
http://dblp.uni-trier.de/pers/hd/v/Viglas:Stratis
http://dblp.uni-trier.de/pers/hd/s/Soundararajan:Gokul
http://dblp.uni-trier.de/pers/hd/p/Prabhakaran:Vijayan
http://dblp.uni-trier.de/pers/hd/b/Balakrishnan:Mahesh

