
International Journal of Multimedia and Ubiquitous Engineering

V ol.11, No.1 (2016), pp.221-228

http://dx.doi.org/10.14257/ijmue.2016.11.1.22

ISSN: 1975-0080 IJMUE

Copy right ⓒ 2016 SERSC

Research of Structural Risks of Object-Oriented Software Based

on Ripple Degree of Software Network

 1Shujuan Cui, 1Sheng Bin and 2Gengxin Sun

1 Software Technical College of Qingdao University, Qingdao, China
2 International College of Qingdao University, Qingdao, China

qdu_csj@163.com

Abstract

Object-oriented software systems emerge from mere keystrokes to form intricate
functional networks connecting many collaborating objects. In this paper, building on
complex networks, software collaboration networks contained within several open-source
software systems have been examined. Because of the association between objects, the
ripple effect exists in those software networks. The distributions of forward and reversal
ripple degree in software networks are analyzed, and focusing on high ripple degree
nodes, a metric formula that evaluates the significance is presented. According to our
metric, the fragile nodes, rigid nodes and a “hidden danger” node in software system can
be selected, which can be used to provide guidance for design and remodeling of software
systems.

Keywords: Software network, ripple degree, complex network, software structure

1. Introduction

Structural complexity, which arise functional complexity of software systems, makes
the control methods of traditional software quality to get good effect difficultly. Object-
oriented software systems are represented as complex networks, which to date have
received more and more attention in software structure field. From 2002, a large number
of class diagram of object oriented software systems are studied by researchers of
complex system and statistical physics. Relationships between classes are represented as a
directed graph, then the overall properties of software network were studied through
network topologies, it is the method that structure of software systems are researched by
complex network theories [1-2].

With the development of large-scale distributed software system based on Internet,
there are more and more researchers who pay close attention to the change of software
function. Bohner [3-4] proposed a process analysis framework of software change, which
firstly used “ripple effect” to describe impact of software change. Ahmed Breech [5-7]
studied effect of entity (function or variable) changes on other related entities in view of
entity changes of software systems. Chen [8] proposed a model of the effect of software
change based objects and its attributes.

During the process of software development and maintenance, the rationality of system
internal structure would reduce software risk and reduce cost of system maintenance. In
this paper, ripple effect which is caused by nodes change in object-oriented software
network is analyzed, ripple scope and rule of nodes are determined. Our works can predict
the risk of possible structural defects in the system, and provide guidance for the design
and maintenance of software.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

V ol.11, No.1 (2016

222 Copy right ⓒ 2016 SERSC

2. Ripple Effect in Software Network

Object-oriented software systems are the main research objects in this paper, the
process of establishing of software systems network model as follows: Firstly, source
code would be abstracted as class diagram, then class is regarded as node in network,
relationship between classes is edge between nodes. Thus, the topology model of software
network can be constructed.

The relationships between classed include Generalization, Realization, Association,
Aggregation, Usage, Dependency, and so on. The close degrees of relationships between
classes are different with different relationships , in order to more accurately describe the
structure of software system, the different weights are given to edges of software network.
Software weighting network model is defined as follows.

(, , ,)N V A T W (1)

Where { | 1, 2 , ..., }
i

V v i n  represents nodes set of network, each node corresponds

to a class in the software system, { | { , , } }T t t G U D  , where G represents

Generalization relationship, U represents Usage relationship, D represents

Dependency relationship. { (, ,) | , , , }
i j i j

A v v t v V v V t T i j     represents edges

set of network, each edge corresponds to a relationship between two classes in the
software system. But the relationship between two classes may not be the only in actual
software system, for example, there is not only dependency relationship but also usage

relationship between class A and class B. So the type of each edge t is a stowed value,

{ | m a x (()) , }W w w w t t T   represents weight of each edge. The size of the weights

is decided by the close degree according to the mutual connection between two nodes. In
the weighted software network, the weight of edge is larger, the interaction between two
nodes is more closely.

In the UML class diagrams there are 9 relationships between classes, but there are no
significant differences among aggregation relationship, usage relationship,
association relationship, they can only be distinguished by the semantic , the above
several relationships are unified into the usage relationship in this paper, at the same
time, realization relationship and generalization relationship are unified into the
generalization relationship. According to the close degree of relationship between
classed in UML class diagrams, the weight of dependency relationship is assigned to
0.1, the weight of usage relationship is assigned to 0.4, and the weight of
generalization relationship is assigned to 0.7. If there are two or more than two kinds
of relationship between two nodes, the weight is the maximum one.

In software network, ripple effect indicates that when a node arise failure or
change, which would grow like a weed with association with other nodes , then it
would influence other parts of the system. From the view of definition of ripple
effect, node in software network can become the makers of ripple effect, also can be
affected object by ripple effect. So ripple effect on a node is divided into forward
ripple degree and reverse ripple degree.

Definition 1: forward ripple degree: from node
i

v of software network, the product of

weight on the shortest path of all nodes along the forward edge can be reached. It can be
defined as follows.

()()

() ,

m n F ijj i
w S Pv T F v

W G i ij i j m n

j i i j

R F v W W w



 

   (2)

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

V ol.11, No.1 (2016)

Copyright ⓒ 2016 SERSC 223

Where ()
i

T F v is a set which includes nodes can be reached from node
i

v along

the forward edge.
i j

W is the total weight of node
i

v with one node
j

v in ()
i

T F v , it

can be calculated by the product of weight on the shortest path between node
i

v and

node
j

v along the forward edge. When the out-degree of node
i

v is zero,

() 0
W G i

R F v  .

Forward ripple degree reflects affected level of a node by other nodes in the
network, the nodes whose forward ripple degree are large easily lead to Fragility of
software system, they should be highly concerned about in the design of software
structure.

Definition 2: reverse ripple degree: from node
i

v of software network, the product of

weight on the shortest path of all nodes along the reverse edge can be reached. It can be
defined as follows.

()()

() ,

m n R ijj i
w S Pv T R v

W G i ij i j m n

j i i j

R R v W W w



 

   (3)

Where ()
i

T R v is a set which includes nodes can be reached from node
i

v along

the reverse edge.
i j

W is the total weight of node
i

v with one node
j

v in ()
i

T R v , it

can be calculated by the product of weight on the shortest path between node
i

v and

node
j

v along the reverse edge. When the in-degree of node
i

v is zero,

() 0
W G i

R R v  .

Reverse ripple degree reflects affected level of a node for other nodes in the network, it
most directly reflects the ripple effect. Ordinarily those nodes whose reverse ripple
degrees are large may lead to rigidity of software system, they should be highly
concerned about in the design and maintenance of software structure

3. Software Ripple Degree Analysis

According to definition of ripple degree, 125 open source software samples are
selected to ripple degree analysis. These software samples are all object-oriented software,
they cover the development tools, application software, system software, entertainment
software and compile software etc. Programming languages include C++, Java and C#.

Firstly, according to definition of forward ripple degree and reverse ripple degree,
ripple degree of each node in software network is calculated, the interval distribution
frequency of node ripple degree were analyzed statistically by 0.5 as interval. We found
that with increasing of interval value, occurences frequency of forward ripple degree and
reverse ripple degree all present changing trend of quick decline firstly and approaching
zero at last.

According to definition of forward ripple degree, we can know that those nodes whose
forward ripple degree are large mostly located in the higher level of software system, they
depend on a large number of other nodes from the view of software structure and become
weak links of software system. Therefore, the number of such nodes can not be too much
in the whole system for avoiding fragility appearance. On the contrary, those nodes whose
reverse ripple degree are large mostly are base class or interface which located in the
lower level of software system, if those nodes change, it would lead to nodes in a large
range to make corresponding adjustments. So the number of such nodes also can not be
too much in the whole system for avoiding rigidity appearance.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

V ol.11, No.1 (2016

224 Copy right ⓒ 2016 SERSC

From the above analysis, we can see that distribution law of ripple degree reflect
commendably design principles of software. For a node, if its forward ripple degree is
larger, it means that it reuse a large number of low lever nodes and would be easy to
suffer ripple effect. In order to avoid a greater range of ripple effect, such nodes should be
tried to avoid reusing or associating, so their reverse ripple degree should not be too large.
Likewise, for nodes whose reverse ripple degree are larger, it is very important to
maintain their stable structure because of their important position in software system, so
these nodes should be located outside the ripple range of other nodes as far as possible, it
means that their forward ripple degree should not be too large. It can be seen that there is
disassortative between forward ripple degree and reverse ripple degree of the same node.

To prove the point, joint distribution of forward ripple degree and reverse ripple degree
are counted statistically for various software system, statistics results reveal that reverse
ripple degree of those nodes whose forward ripple degree are larger are not too large and
vice versa. Taking Firefox for example, its joint distribution of forward ripple degree and
reverse ripple degree are shown as Figure 1.

Figure 1. Joint Distribution of Forward and Reversal Ripple Degree of
Firefox

From Figure 1 we can see that forward and reversal ripple degree of most nodes are
small, those nodes located in the lower left corner of the figure.

In some other software, there would be another kind of nodes, whose forward and
reversal ripple degree are all larger. For example, joint distribution of forward ripple
degree and reverse ripple degree of eMule are shown as Figure 2. Several nodes of eMule
are such nodes whose forward and reversal ripple degree are all larger. This kind of nodes
should be avoided in software design.

Figure 2. Joint Distribution of Forward and Reversal Ripple Degree of Emule

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

V ol.11, No.1 (2016)

Copyright ⓒ 2016 SERSC 225

Through analysis of node ripple degree distribution, we can found that there are most
nodes whose forward and reverse ripple degree are all smaller in software system, there
are only a small part of nodes whose forward or reverse ripple degree is larger, there are
scarcely any nodes whose forward and reverse ripple degree are all lager. Those nodes
whose forward and reverse ripple degree are all lager are “hidden danger” nodes, which
should be avoided in software design.

4. Significant Measures of Ripple Degree

In the process of nodes ripple degree analysis of sample software, we found that a wide
variation in the max value of nodes forward and reverse ripple degree of each software.
Then we fit the software scale with average value and max value of forward and reverse
ripple degree, the results show that there are no significant correlation between the
software scale and average ripple degree. In order to find fragile nodes, rigid nodes and
“hidden danger” nodes in software structure, significant measures are used to judge above
three kinds of nodes in this paper.

4.1. Significant Measures of Forward Ripple Degree

Because numerical range of forward ripple degree is very different for different
software, in order to find those nodes whose forward ripple degree are larger, signif icant
measure formula of forward ripple degree is proposed, it can be used to measure node
forward ripple degree.

()

()
w

W G W G

WR F v

S D

R F v R F a v g
Z

R F


 (4)

Where ()
W G

R F v represents forward ripple degree of node,
W G

R F avg represents

average forward ripple degree of the whole software system,
S D

R F represents standard

deviations of forward local ripple degree.
Six sample software are randomly selected to calculate significant measure of forward

ripple degree according to eq. (4), the statistical results are shown as Figure 3.

Figure 3. Statistics of Forward Ripple Degree’s Significant Measure

In Figure 3, abscissa represents significant measure of forward ripple degree, ordinate
represents the proportion of those nodes whose forward ripple degree are greater than

()
R F

Z v in the total number of nodes. From Figure 3 we can see that distribution curves of

software forward ripple degree' significant measure show the similar trend, that is, with
increasing of measure value, node ratio decreased rapidly, when measure value is greater
than 2.5, change trend of node ration would be stable. The same measure have been done
for the remaining samples in software sample, the same statistical results have been got.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

V ol.11, No.1 (2016

226 Copy right ⓒ 2016 SERSC

Through access to relevant software source code and its open development document,
we found that those nodes whose measure value is greater than 2.5 depend on or correlate
with a large number of other classes, and they belong to fragile nodes and should be paid
special attention by relevant personnel in later software maintenance.

4.2. Significant Measures of Reverse Ripple Degree

Similarly to forward ripple degree, numerical range of node reverse ripple degree is
very different for different software, so significant measure formula of node reverse ripple
degree is proposed.

()

()
w

W G W G

WR R v

S D

R R v R R a v g
Z

R R


 (5)

Where ()
W G

R R v represents reverse ripple degree of node,
W G

R R a vg represents

average reverse ripple degree of the whole software system,
S D

R R represents standard

deviations of reverse local ripple degree.
We also select six sample software randomly to calculate significant measure of

reserve ripple degree according to eq. (5), the statistical results are shown as Figure 4.

Figure 4. Statistics of Reverse Ripple Degree’s Significant Measure

From Figure 3 we can see that with increasing of measure value, firstly node ratio
decreased rapidly, then it would flatten out. When measure value of node is greater than
2.5, the proportion of nodes reduces to below 3%.

Through access to relevant software source code, we found that those nodes whose
measure value is greater than 2.5 are all base classes or interfaces in software system, they
would be inherited, depended or used by a great deal of nodes. They belong to rigid nodes
and should be ensured their stability, and try to minimize the change in the latter
maintenance process.

4.3. Significant Measures of Joint Ripple Degree

Those nodes whose forward and reverse ripple degree are all larger are the key nodes
in the structure of software system. For such nodes, the formula of node joint ripple
degree is proposed.

() () * (1 ())
W G W G W G

R v R R v R F v  (6)

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

V ol.11, No.1 (2016)

Copyright ⓒ 2016 SERSC 227

Where ()
W G

R F v represents forward ripple degree of node, ()
W G

R R v represents

reverse ripple degree of node, 1 ()
W G

R F v represents ripple effect caused by node

v (including itself) . The significant measure formula of node joint ripple degree as
follows.

()

()

W G

W G W G

R v W

S D

R v R a v g
Z

R


 (7)

Where ()
W G

R v represents joint ripple degree of node,
W G

R a vg represents average

joint ripple degree of the whole software system,
S D

R represents standard deviations of

joint local ripple degree.
We measure statistically significant measure of joint ripple degree for all sample

software, statistical results show that distribution law of significant measure of joint ripple
degree for all sample software are nearly consistent. Six random sample software are
taken as example, their distribution of measure value shown as follows.

Figure 5. Statistics of Joint Ripple Degree’s Significant Measure

From Figure 5 we can see that the significant measure of joint ripple degree of all
nodes are higher than -0.5, and measure value of over 80% nodes are located in [-0.5,0.5].

According to the software test report and CVS records, when the significant measure
value of joint ripple degree are higher than 6, the number of appearing problems or
needing be modified are obviously higher than other nodes. So we select 6 as threshold
value of significant measure, when the significant measure value of joint ripple degree are
higher than 6, the node would be regarded as the key node in software system, once it
suffers attack, the whole software network will be seriously threatened, even would cause
the entire software system crashed.

5. Conclusion

Ripple effect of software network reflects interactive influence in software structure. In
the process of software development, the software structure which has been established
make analysis and measurement of ripple effect in time , it can find fragile nodes, rigid
nodes and “hidden danger” nodes in software structure as early as possible so as to reduce
software risk. In this paper through analysis of ripple degree, significant measures of
ripple degree are proposed, according to the significant measures, above three kinds of
nodes would be easy to find in software system.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

International Journal of Multimedia and Ubiquitous Engineering

V ol.11, No.1 (2016

228 Copy right ⓒ 2016 SERSC

References

[1] R. Vasa, J. G. Schneider and C. Woodward, “Detecting structural changes in object oriented software

systems”, Proceedings of the 10th 2005 International Symposium on Empirical Software Engineering,

(2005).

[2] R. Vasa, J. G. Schneider and O. Nierstrasz, “The inevitable stability of software change”, Proceedings of

the International Conference on Software Maintenance, (2007).
[3] S. A. Bohner, “Impact analysis in the software change process: A year 2000 perspective”, Proceedings

of the 1996 International Conference on Software Maintenance, (1996).

[4] S. A. Bohner, “Software change impacts: An evolving perspective”, Proceedings of the International

Conference of software Maintenance, (2002).
[5] A. E. Hassan and C. H. Richard, “Predicting change propagation in software system”, Proceedings of

the 20th IEEE International Conference on Software Maintenance, (2004).

[6] B. Breech, A. Danalis and S. Shindo, “Online impact analysis via dynamic compilation technology”,

Proceedings of the 20th IEEE International Conference on Software Maintenance, (2004).

[7] H. Malik and A. E. Hassan, “Supporting software evolution using adaptive change propagation
heuristics”, Proceedings of the 20th IEEE International Conference on Software Maintenance, (2004).

[8] C. Y. Chen, “An object-based, attribute-oriented approach for software change impact analysis”,

Proceedings of the IEEE International Conference on Industrial Engineering and Engineering

Management, (2007).

Authors

Shujuan Cui, She is currently a lecturer in Software Technology
College of Qingdao University. Her main research interests include
complex networks, web information retrieval and object- oriented
programming.

Sheng Bin, She received her Ph.D. degree in Computer Science
from Shandong University of Science and Technology, China in
2009. She is currently a lecturer in the School of Software
Technology at Qingdao University, China. Her main research
interests include embedded system, operating system, complex
networks, cloud computing and data mining.

Gengxin Sun, He received his Ph.D. degree in Computer
Science from Qingdao University, China in 2013. He is currently an
Associate Professor in the School of Computer Science and
Engineering at Qingdao University. His main research interests
include embedded system, operating system, complex networks,
web information retrieval and data mining.

Onli
ne

 V
ers

ion
 O

nly
.

Boo
k m

ad
e b

y t
his

 fil
e i

s I
LLEGAL.

