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Abstract 

The parameters of support vector machine have a great influence on the learning 
ability and generalization ability, so an improved ant colony optimization algorithm is 
proposed to optimize the parameters of SVM, then an optimized SVM classifier (IMACO-
SVM) is proposed for data classification. In the IMACO-SVM, the adaptive adjustment 
pheromone strategy is used to make relatively uniform pheromone distribution and the 
improved pheromone updating method is used to submerge the heuristic factor by the 
residual pheromone information, in order to effectively solve the contradiction between 
expanding search and finding optimal solution. The selection of parameters of the SVM is 
regarded as a combination optimization of parameters in order to establish the objective 
function of combination optimization. The improved ACO algorithm with good robustness 
and positive feedback characteristics and parallel searching is used to search for the 
optimal value of objective function. In order to validate the classification effectiveness of 
the IMACO-SVM algorithm, some experimental data from the UCI machine learning 
database are selected in this paper. The classification results show that the proposed 
IMACO-SVM algorithm has higher classification ability and classification accuracy. 
 

Keywords: Ant colony optimization algorithm; support vector machine; data 
classification; parameter optimization; kernel function 
 

1. Introduction 

Data classification is an important work in the field of data mining and machine 
learning by deducing the unknown classes of samples using the learning of the 
known classes of samples [1]. In recent years, a lot of algorithms have been 
proposed to directly complete data classification [2], such as decision tree, Bayes, 
neural network, genetic algorithm, support vector machine , random forest, Adaboost, 
and so on. These algorithms can effectively solve the discrete attribute  data with the 
low dimension. However, in the real world database, a large number of continuous 
valued attributes exist. If the data is continuous attributes , then the data are 
discretized in order to be classified. So it is practical significance  to research data 
classification. 

Support vector machine (SVM) is a new learning technique  based on the 
structural risk minimization principle [3]. It likes a neural network that can 
approximate any complex nonlinear system. It can better solve these classification 
problems with small sample, nonlinear and high dimensional number , and has good 
generalization ability. And it well solves the nonlinear, dimension disaster, local 
optimal solution of neural network. So it has widely been applied in the field of 
pattern recognition, regression estimation and so on. The SVM is a new machine 
learning method, which exists some improvements in practical application. The 
fitting precision and generalization ability of SVM depend on the selection of 
relevant parameters. The selection results of parameters will directly relate to the 
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classification effect. Therefore, selection parameters of SVM is a bottleneck 
problem in the practical application. At present, a lot of optimization methods are 
proposed to select parameters of SVM, such as experimental method, the grid 
method, gradient descent algorithm, genetic algorithm, ant colony optimization 
algorithm, particle swarm optimization algorithm and so on.  Rätsch et al.  [4] 
exemplified this translation procedure for a new algorithm-one-class leveraging-
starting from the one-class support vector machine (1-SVM). Pang et al. [5] 
proposed a method for authenticating an individual's membership in a dynamic 
group without revealing the individual's identity and without restricting the group 
size and/or the members of the group. Brudzewski et al. [6] proposed the 
application of support vector machine  (SVM) neural approach to the calibration of 
the electronic nose arrangement for milk recognition. Kalatzis et al. [7] proposed an 
SVM-based computer classification system or discriminating depressive patients 
from healthy controls. Pang et al.  [8] proposed a new membership authentication 
method by face classification using a support vector machine (SVM) classification 
tree, in which the size of membership group and the members in the membership 
group can be changed dynamically. Mavroforakis and Theodoridis [9] proposed a 
geometric approach for the support vector machine (SVM) classification problem to 
provide an intuitive ground for the understanding and the application of geometric 
optimization algorithms. Hao et al. [10] proposed a novel hierarchical classification 
method that generalizes support vector machine learning that is based on the results 
of support vector clustering method, and are structured in a way that mirrors the 
class hierarchy. Ghoggali and Melgani [11] proposed a novel methodological 
solution based on semi-supervised multi-temporal classification method. Lin et al.  
[12] proposed an integrated model for recognizing power-quality disturbances (PQD) 
using a novel wavelet multiclass support vector machine (WMSVM). Yan et al. [13] 
proposed an effective mutual information-based feature selection approach for 
EMG-based motion classification task.  Cho et al.  [14] proposed a two-stage scheme 
for the classification of NIR spectra data.  Avci and Varol [15] proposed a new 
methodology based on invariant moments and multi-class support vector machine 
(MCSVM) for classification of human parasite eggs in microscopic images.  Chen et 
al. [16] proposed an adaptive binary tree (ABT) to reduce the test computational 
complexity of multiclass support vector machine (SVM). Eristi and Demir [17] 
proposed a new approach for automatic classification of power quality events, 
which is based on the wavelet transform and support vector machines.  Deselaers et 
al. [18] proposed a new technique that employs support vector machines (SVMs) 
and Gaussian mixture densities (GMDs) to create a generative/discriminative object 
classification technique using local image features. Pang et al. [19] proposed a new 
concept of a knowledgeable neighborhood and a transductive Support Vector 
Machine (SVM) classification tree (t-SVMT) for PTL.  Zhao et al. [20] proposed a 
weighted maximum margin criterion to optimize the data -dependent kernel, which 
makes the minority class more clustered in the induced feature space. Fu and Lee 
[21] proposed a general approach to utilize decision values in SVM to identify 
indistinguishable documents. Tian et al.  [22] proposed an improved KPCA/GA-
SVM classification model for plant leaf disease recognition. Maji et al. [23] 
proposed a class of nonlinear kernel SVMs admits approximate classifiers with 
runtime and memory complexity that is independent of the number of support 
vectors. Soroor and Hossein [24] hybridized the gravitational search algorithm 
(GSA) with support vector machine (SVM) and make a novel GSA-SVM hybrid 
system to improve classification accuracy with an appropriate feature subset in 
binary problems. Liu et al. [25] proposed a multi-fault classification model based on 
the kernel method of support vector machines (SVM) and wavele t frame. Chen et al.  
[26] proposed a novel classification algorithm of hyper-spectral imagery based on 
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ant colony compositely optimizing support vector machine in spatial and spectral 
features. Wang et al. [27] proposed a novel kNN scheme by incorporating a 
structurally regularized support vector machines (SVM). Swarnajyoti, and Lorenzo 
[28] proposed a novel iterative active learning technique based on self-organizing 
map (SOM) neural network and support vector machine (SVM) classifier . Cheng et 
al. [29] proposed a new incremental learning approach to endow a Takagi-Sugeno-
type fuzzy classification model with high generalization ability. Hou et al. [30] 
proposed a novel tensor-based method, i.e. , multiple rank multi-linear SVM 
(MRMLSVM) Maldonado and Montecinos [31] proposed different techniques for 
classification, such as Support Vector Data Description (SVDD) and two-class 
SVMs. Martínez et al. [32] proposed a new classification methodology based on 
binary classifiers constructed using support vector machines and applying a one-
versus-all approach supported by the use of the directed acyclic graphs. Peng et al.  
[33] combined signal-noise ratio (SNR) and under-sampling technique based on K-
means to propose an improved SVM classification method. Li et al. [34] proposed a 
new chaos embedded GSA-SVM (CGSA-SVM) hybrid system based on hybridizing 
chaotic search and gravitational search algorithm (GSA) with SVM to improve 
classification accuracy of SVM. Guo and Wang [35] proposed a multi-class 
classification model that is based on active learning and support vector machines 
(MC-SVMA), which can be used to address unlabeled data. Xu et al. [36] proposed 
online support vector machine (SVM) classification learning algorithms with 
uniformly ergodic Markov chain (u.e.M.c. ) samples.  Yin et al. [37] proposed a 
scene classification approach based on single -layer sparse auto-encoder (SAE) and 
support vector machine (SVM). García-Gutiérrez et al. [38] proposed a novel 
contextual classifier based on a Support Vector Machine (SVM) and an 
Evolutionary Majority Voting (SVM-EMV) to develop thematic maps from LiDAR 
and imagery data. Mrutyunjaya and Ajith [39] proposed a hybrid fuzzy rough with 
K-nearest neighbor (K-NN)-based classifier (FRNN) to classify the patterns in the 
reduced datasets, obtained from the fuzzy rough bio-inspired algorithm search. 

The proposed algorithms can better solve the values of parameters of support 
vector machine, but there exists some problems. The adaptive adjustment pheromone 
strategy is used to make relatively uniform pheromone distribution and an improved 
pheromone updating method is used to submerge the heuristic factor by the residual 
pheromone information, in order to effectively solve the contradiction between expanding 
search and finding optimal solution. Then improved ant colony optimization algorithm is  
obtained to optimize the parameters of SVM in order to propose an optimized SVM 
classifier (IMACO-SVM) for solving data classification problem. And some 
experimental data from UCI machine learning database are selected to test the 
classification performance. 
 

2. The ACO Algorithm 

The ACO algorithm [40] is a metaheuristic inspired by the behavior of real ants in their 
search for the shortest path to food. The ACO algorithm consists of a number of iterations 
of solution construction.  In the ACO algorithm, it simulates the optimization of ant 
foraging behavior. The procedure of the ACO algorithm is given in Figure 1. 
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Figure 1. The Flow of ACO Algorithm 

The procedure of pheromone update rule is shown as follows: 
(1) The transition rule 
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In the formula(1), 
k

p  is the transition probability,  is the intensity of pheromone,  is 

the length of the path, k

r
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the parameter and   are the control parameters. 

(2) The pheromone update rule 
The local trail updating formula is described: 
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3. An Improved Ant Colony Optimization Algorithm 

The ACO algorithm is to combine heuristic algorithm and positive feedback 
mechanism of pheromone. The random selection strategy is widely applied in the 
search process. The positive feedback mechanism of pheromone is used to enhance 
the finding optimal solution by ants. The ACO algorithm uses a fixed pheromone 
amount for updating the pheromone. This method exists slow convergence phenomenon, 
resulting in falling into local optimum and causing premature phenomenon. So an 
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adaptive adjustment pheromone strategy is used to make relatively uniform 
pheromone distribution, it can effectively solve the contradiction between expanding 
search and finding optimal solution. 

The real variable function )( tQ  is selected to replace the constant of pheromone 

intensity Q  in the adjusting pheromone 
K
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The real variable function )( tQ  is used to replace the constant termQ  in order to  

continue to maintain the exploration and exploitation balance point between the 
random search of ant and the evocation function of path information under the 
pheromone evaporation or increasing. 

At the same time, an improved pheromone updating method is used to submerge 
the heuristic factor by the residual pheromone information. The pheromone updating 
method with elitist strategy of ACO algorithm is described: 
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4. Support Vector Machine 

Support vector machine (SVM)[3] based on structural risk minimization is one of 
the popular tools in supervised machine learning methods. It is to map the original 
nonlinear data into a higher-dimensional feature space. A hyperplane is constructed 
to maximize the margin of separation between itself and lying nearest points. The 
hyperplane is used to classify these unknown data.  

Give the training sample },,3,2,1|),{( miyxS
ii
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samples, the set 
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Rx }{  represents the input vector, }1,1{y  represents the 

corresponding desired output vector, the input data is mapped into the high 

dimensional feature space by nonlinear mapping function )( .  So the 

classification hyperplane need meet the condition: 
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Where   is Omega vector of superplane, b is offset quantity. Then the classification 
decision function is described as follow: 
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The classification model of LS-SVM model is described by he optimization function 
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where 
i

  is slack variable, b is offset,   is support vector, ),,,(
21 m
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classification parameter in order to balance the fitting error and model complexity. 
The optimization problem transforms into its dual space. Lagrange function is 

introduced to solve it. The corresponding optimization problem of the LS-SVM model 
with Lagrange function is: 
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The following linear equation is obtained: 
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There have linear kernel function, polynomial kernel function, radial basis kernel 
function (RBF), Sigmoid kernel function and Fourier kernel function and so on. For the 
data classification, because the RBF has the advantages of simple form, symmetry radial, 
good smoothness and analyticity, the RBF is selected to be regarded as kernel function of 
the SVM model. The expression of the RBF is given: 
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5. Parameter Optimization of SVM Based on Improved ACO 

The values of parameters in the SVM have a great influence on the learning 
ability and generalization ability, so it is a key to determine the values of parameters 

in the SVM. For RBF kernel function, the tuning parameter C  a compromise 
between the structural risk and sampling error, its value is related to the tolerable 

error. The larger value of tuning parameter C  allows smaller error, the smaller 

value of tuning parameter C  allows larger error. Kernel width   is related to the 
inputting space range or width of samples. If the inputting space range is larger, the 
value of kernel width   is larger. Conversely, if the inputting space range is 

smaller, the value of kernel width   is smaller. The ACO algorithm is a novel 
simulation evolution algorithm, it belongs to a kind of swarm intelligence algorithm. 
In order to solve the parameter optimization of the SVM, an improved ACO 
algorithm is used to optimize the parameters of SVM in order to propose a 
optimized SVM classifier (IMACO-SVM). The improved ACO algorithm has good 
robustness and positive feedback characteristics , and parallel searching advantage. 
The selection of parameters in the SVM is regarded as a combination optimization 
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of parameters in order to establish the objective function of combination 
optimization. The improved ACO algorithm is used to search for the optimal value  
of objective function.  

The specific steps of IMACO-SVM are described as follows: 
Step 1. Initialize  

Set ant size ( m ), the maximum number of iteration ( T ). A smaller value of 
0

 is 

initialized. All ij

d
  are initialized. The first step of all ants is set as 0t . 

Step 2. For each ant, the formula (6) to formula (8) are executed. 
Step 3. The next visited city is selected according to the formula (1). 
Step 4. When each ant completed one path, the local update rule is executed 

immediately according to the formula (6). 
Step 5. Save the optimal solution in each iteration. During each iteration, the ant with 

most pheromone is saved, then the error value is calculated. Return to Step.2 to continue 
iteration. 

Step 6. Obtain global optimal solution. If the number of iteration meet the maximum 
number of iteration, the search is completed, so as to obtain the best ant, which is 

converted into the tuning parameter C  and kernel width   of the SVM. 

Step 7. Determine the values of the tuning parameter C  and kernel width  , which to 
train the training set in order to generate the objective function. 

Step 8. Calculate the value of corresponding objective function, and the error is 
analyzed. Obtain the IMACO-SVM model. 
 

6. Simulation Experiment 
 

6.1. Data Source 

In order to verify the effectiveness of the proposed IMACO-SVM algorithm for 
data classification, some experimental data from the UCI machine learning database  
are selected in this paper. The data sets are shown in Table1. 

Table 1. The Selected Data Sets 

Index Data Sample number Attribute Class 

1 Auto 392 7 3 

2 Breast 683 9 2 

3 Bupa 345 6 2 

4 Heart 296 13 2 

5 Iris 150 4 3 

6 Glass 214 9 7 

7 Pima 768 8 2 

8 Vehicle 846 18 4 

9 Wine 17813 13 3 

 

6.2. Experimental Environment and Parameters 

The environments are followed: the Pentium CPU 2.40GHz, 4.0GB RAM, 
Windows XP system, Matlab2012b. The initial values of parameters could seriously 
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affect the experiment result, so the most reasonable initial values  of parameters are 
got by testing and modifying them. The obtained initial values of these parameters 

are: ants m =30, pheromone factor  =1.0, heuristic factor  =1.0, evaporation 

factor  =0.80, step length is 0.1, pheromone amount Q =60, maximum iteration 

times
max

T =500. The tuning parameter C  and kernel width  is coded by binary, 

]1000,0[C , ]100,1.0[ , the error of optimal solution 01.0 . Because the 

algorithm takes on the volatility, in order to fairly evaluate the accuracy of the 
algorithms, each data set is executed 30 times. Then the average value is regarded as 
the comparison results. 

 

6.3. Experimental Results and Analysis 

The SVM and PSO-SVM are select to compare with the proposed IMACO-SVM 
algorithm. The data classification result is shown in Table2.   

Table 2. The Data Classification Result 

Index Data 
Sample 

number 

Average classification accuracy(% ) 

SVM PSO-SVM IMACO-SVM 

1 Auto 392 76.79 79.08 81.89 

2 Breast 683 94.73 95.17 96.93 

3 Bupa 345 63.53 69.28 72.20 

4 Heart 296 73.99 78.04 81.77 

5 Iris 150 97.33 98.00 98.67 

6 Glass 214 41.59 53.74 63.08 

7 Pima 768 78.65 84.77 86.98 

8 Vehicle 846 77.78 82.98 86.29 

9 Wine 178 82.02 90.45 92.70 

 
As can be seen from Table2, the proposed IMACO-SVM algorithm can obtain better 

classification results for experimental data from the UCI machine learning database than 
the SVM model and PSO-SVM algorithm. For experimental data of Breast, Iris and Wine, 
the average classification accuracy respectively is 96.93%, 98.67% and 92.70%.  And the 
PSO-SVM algorithm can obtain better classification results than the SVM for 
experimental data. 

In general, the classification results of proposed IMACO-SVM algorithm are more 
better and has higher optimization ability and classification accuracy. 

 

7. Conclusion 

Support vector machine is a simple method to realize the pattern recognition. It 
does not require a long training process. The optimal hyperplane is solved according 
to the initial sample in order to identify other unknown samples.  But the values of 
parameters in the SVM have a great influence on the learning ability and 
generalization ability, so it is a key to determine the values of parameters in the 
SVM. The ACO algorithm is simple, versatile, robust and parallel method. It has 
been successfully applied in quadratic assignment problems, dynamic routing 
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problems, scheduling problems and so on. The positive feedback mechanism of 
pheromone is used to enhance the finding optimal solution by ants. So an improved 
particle swarm optimization algorithm is proposed to optimize parameters of the 
SVM for obtaining a  optimal SVM model(IMACO-SVM). Some experimental data  
from the UCI machine learning database are selected to validate the classification 
effectiveness of IMACO-SVM algorithm. The experimental results show that the 
classification ability of the IMACO-SVM algorithm is better than the SVM and 
PSO-SVM algorithm under the small sample data. The proposed IMACO-SVM 
algorithm has higher classification ability and classification accuracy. 
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