
International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.9 (2015), pp.309-318

http://dx.doi.org/10.14257/ijmue.2015.10.9.32

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

In-Block Level Redundancy Management for Flash Storage

System

Seung-Ho Lim

Division of Computer and Electronic Systems Engineering

Hankuk University of Foreign Studies

slim@hufs.ac.kr

Abstract

Recently, the density of Flash memory has dramatically increased by moving to smaller

geometries and storing more bits per cell with enhanced memory technologies. However,

with the density increasing rapidly, the error rate of Flash memory is also increasing

rapidly. To improve the reliability issue of upcoming flash memory, usually, redundancy

techniques were adopted in both of architecture and operations for flash memory based

systems. For outside the flash memory page, several reliability schemes were proposed

which employ Redundant Array of Inexpensive Disks (RAID). In this paper, we propose

in-block level redundancy scheme for providing reliability of flash memory while

minimizing maintaining overhead of the redundancy. In the proposed scheme, the

redundancy is generated in a flash memory block level. During the programming stage of

a flash block, the redundancy is kept in Dram memory. If a block is exhausted with last-1

page to record incoming data, the in-keeping redundancy is flushed to last page of the

block. By doing this, block level redundancy is maintained with minimal overhead.

Keywords: Flash Memory, Block, Page, Parity, Bit Error Rate

1. Introduction

Recently, with the help of low power consumption, low density, high capacity, and

high IO bandwidth, NAND flash memory-based nonvolatile memory has become a main

storage media for mobile embedded systems. Nowadays, NAND Flash memory-based

storage devices such as Solid State Drive (SSD) [2], embedded Multimedia Cards

(eMMC) [3], and USB memory sticks are widely used in variety of computing systems.

In flash memory, there is a floating gate (FG) insulated all around by an oxide layer.

The FG is interposed between the CG and the MOSFET channel. Because the FG is

electrically isolated by its insulating layer, electrons placed on it are trapped until they are

removed by another application of electric field [1]. The density of Flash memory has

increased by moving to smaller geometries and storing more bits per cell. In each cell in

flash memory, the FG represents stored values, i.e., one or zero, according to the trapped

electrons level. Therefore, if one bit is represented by one cell, there are two levels in the

one cell, and if four bits are represented by one cell, there are four levels in the one cell,

and so on. Currently, three-level cell (TLC) is main stream for NAND flash storage.

However, with the density increasing rapidly, the error rate of Flash memory is also

increasing rapidly. The growth of number of states per cell raises interference between

states since the quantized decision levels of the cell are getting close between adjacent

states, which makes errors of detection. Moreover, the Program/Erase cycles (P/E cycles)

have come down rapidly with the density increasing. The bit error rate is abruptly

increased from some levels of P/E cycles, which in turn reveals the bit error rate is

strongly correlated to the P/E cycles levels. In summary, the error rates occurred in the

flash memory is getting worse as the density of flash memory is getting better.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.9 (2015)

310 Copyright ⓒ 2015 SERSC

To mitigate and improve the reliability issue of upcoming flash memory, usually,

redundancy techniques were adopted in both of architecture and operations for flash

memory based systems. Inside the flash memory page, Error Correction Code (ECC) is

stored in the out-of-band region within a flash memory page, which we call page-level

redundancy. Several ECC schemes were applied to flash memory chip as hardware

components. Even ECC exists and it can cover one bit correction, or even several bit

corrections according to its complexity, outside-page level Errors cannot be covered. For

outside the flash memory page, several reliability schemes were proposed which employs

Redundant Array of Inexpensive Disks (RAID) [7-10]. Outside the page level, the

redundancies are generated with cluster of several pages. The pages can be grouped

across the blocks or chips to spread out the redundancies. However this spread out of

redundancy generation and distributed places of these cause additional complex and

operational overhead in both memory and IO operations.

In this paper, we propose in-block level redundancy scheme for providing reliability of

flash memory based storage system. In the proposed scheme, the redundancy is generated

in flash memory block level and the generated redundancy is stored at the end page of a

flash block. Usually, the programing operation of flash memory has a logging manner,

which means that the write of pages in a flash block is from first page to last page. During

the programming stage of a flash block, the redundancy is kept in Dram memory. The in-

keeping redundancy is used to re-calculated up-to-date redundancy with incoming data. If

a block is exhausted with last-1 page to record incoming data, the in-keeping redundancy

of main memory is flushed to last page of the block.

The remainder of this paper is organized as follows. In Section 2, background and

related work is described. The proposed in-block level redundancy scheme is explained in

Section 3, and its performance evaluation is described in Section 4. Section 5 concludes

this paper.

2. Background and Related Work

In this Section, the backgrounds and related work are illustrated. Most of the

background is referred by our previous work [11].

2.1. NAND Flash Memory Basics

NAND flash memory is array of memory cells that consist of floating-gate

transistors. There are three commands used in NAND flash memory; read, program

(write), and erase. The read and program command are related with data transfer

between host and Flash devices, whose data unit is Page. The erase command has no

data transfer between host and Flash, and the erase is operated at the Block-based.

In NAND flash memory, the size of one Page is 4KB and doubles as manufacturing

process advances and a Block is composed of 64 or 128 Pages, typically. Due to the

size mismatch between write and erase operation, write operation should consider

efficient erase operation. Typically, read for one Page consumes about 125us,

including Page read to internal chip register and bus transfer from chip register to

host side. As a same manner, write for one Page consumes about 200us~400us.

The physical limitation of NAND flash memory is covered by special firmware called

Flash Translation Layer (FTL) [4-6]. The NAND flash-based devices such as Solid State

Disk (SSD) [2] and Multimedia Card (MMC) [3] embed FTL inside their systems as a

form of firmware, so FTL runs on controller within the devices. FTL manages address

mapping between file system and NAND flash memory, and does GC (Garbage

Collection) [5]. File systems can treat Flash device just like usual storage media with the

logical block address supported by FTL, and FTL hides internal mapping information and

management schemes from host file systems.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.9 (2015)

Copyright ⓒ 2015 SERSC 311

FTL manages address mapping table between logical address of host part and

physical address of Flash memory. Indeed, except the mapping management, FTL

does many other roles, including wear leveling, garbage collection, bad block

management, and request queuing and caching, and so on. However, the mapping

management is most important job among many FTL's roles, and others are mostly

dependent on the mapping management scheme. The FTL keeps track of the address

mapping information between the logical address and the physical address. In this

manner, the FTL prevents in-place updates of data and hides the latency of the erase

operation. When the number of free pages is insufficient for write operations, free

pages should be made by garbage collection (GC), where GC is the process that

makes available free region by selecting one Block, moving data of valid Pages to

other region, and erasing the Block. Thus, the selected victim Block should have

minimum valid Pages for more efficient garbage collection.

2.2. Related Work

Typical approach against the short endurance and increasing errors is the use of well-

known Error Correction Codes (ECC), or parity schemes like RAID technique used by

legacy storage systems. Inside the flash memory page, Flash memory employs Error-

Correcting Codes (ECC) to provide error correction for one bit or several bits per page

during page read operation. The ECC data is stored in out-of-band region of flash memory

page. For the ECC coding scheme, low-density parity check (LDPC) codes are considered

as the choice for current flash memory controller due to their superior error correction

capabilities.

While ECC can prevent data error inside a page, there is another approach for

preventing data error outside a page with redundancy. RAID [7] enhances the

reliability by using redundant data. In the RAID technique, the parity generation is

relatively simple than ECC code algorithm, it generates more additional read and

write requests, as well as space for redundancy data. In addition, since the parity

data are generated across the flash memory chips, the coordination of each data

write processing channel is required for efficient parity management, which

degrades read and write latency. Among many RAID levels, RAID-4 and RAID-5

use an extra redundant parity block to hold redundant information of clustered

blocks. The parity is generated by bitwise exclusive-or operations between blocks

that belong to same cluster, thus, parity update usually requires two block reads and

two block writes in traditional storage system. However, in flash-based storage

devices, due to the flash memory characteristics, i.e., out-of-place update, the

approach of RAID techniques is different, which is mainly focus on reducing write

requests for designing flash-based RAID scheme.

There are many previous works for RAID schemes for flash memory based

embedded devices, which are mainly for SSD systems. Im [8] presents partial parity

caching technique to reduce the number of read operations required to calculate

parity, while Kim et al addresses the dynamic forms of a variable size stripe based

on the arrival order of write requests without any parity cache [9]. In [10], they

utilize built-in NVRAM to cache the parity data update for minimal write to flash

memory.

3. In-Block Level Redundancy Scheme

In case of errors, another redundancy that exist out-of-the page are required to

recover proper data. The out-of-the page redundancies would be generated like

RAID technique, where parity page with regard to a group of pages clustered exists.

The parity is calculated as a bitwise exclusive-or operation among pages of cluster,

so it is also a complex computation job. The issue is that how to make up cluster of

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.9 (2015)

312 Copyright ⓒ 2015 SERSC

pages. In our design, the parity group is cluster of the pages within same flash

memory block, as a result, parity page is the last page of the flash memory block,

which we call it in-block redundancy. The in-block redundancy makes it possible to

make parity be generated and recovered independently for each block, each chip,

and each core as well.

The In-block level redundancy scheme is described in Figure 1. In our scheme, a Flash

memory block consists of one parity page and remaining pages are used for data. The last

page is preserved for parity page. With this composition, the redundancy generation is as

follows. When data is arrived from host system, its corresponding address is logical

address, so, at first in Storage system, FTL translate logical address to physical address.

Since FTL management is out of scope of this paper, we omit the specific description of

the translation mechanism. Please refer to mapping management and recovery process for

page-mapping FTL in [12]. After the FTL translation, the physical address of data is set.

Then, in the in-block level redundancy scheme, the parity data is calculated for the

incoming data. As shown in the Figure 1, the parity data is calculated and maintained in

main memory, where parity data is calculated by bitwise exclusive operation of in-

memory parity and incoming data. The calculated parity data is back to buffer in main

memory, not flushed to NAND flash storage media. The incoming data is then written to

NAND flash memory. If the physical address of the incoming data is above the last-1

page of the block, the parity data is not flushed to NAND flash memory, but just

maintained in the memory.

Figure 1. Parity Update During Incoming Data are Written in the Middle of
Flash Memory Block

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.9 (2015)

Copyright ⓒ 2015 SERSC 313

Figure 2. Parity Flush after Last-a Page is Written to the Flash Memory
Block

Almost all FTL writes data to flash memory block as a log manner, which means data

are written to flash memory block in a sequential order from first page to last, and there is

no update for written area in a block until the block is recycled by GC. For this reason, it

is possible to update parity with just incoming data without retrieval of previously written

data, which is different from parity update of legacy HDD-based RAID system. Thus, the

parity can be only updated by recalculating of incoming data and managed in Dram

memory until all the pages in a block are consumed for incoming data.

When the physical address of incoming data is decided to last-1 page of the block, the

calculated parity data is flushed on last page of the block after updating parity data with

incoming data and writing incoming data, as shown in the Figure 2. After flushing the

parity data, the parity buffer in main memory is cleaned and it is ready for another parity

buffer for another block. The physical address of current incoming data is last-1 page

means all the data pages in that block are consumed for data. In in-block level redundancy

scheme, the last page of the block is used to store parity data in the block. In the parity

page, each bit represents bitwise exclusive-or data of pages above all the data pages in the

block. Even if the page has invalid data, the parity calculation is possible since data is not

deleted physically.

Whether power off is sudden power off or not, if power off is occurred during the

parity page maintained only in the main memory, not storing to NAND flash memory, the

parity data should be recovered. The parity recovery process is held at the end of the

recovery of FTL map. Although recovery of mapping table of FTL is also omitted in this

paper, please refer to the previous work that presents recovery process of page-mapping

FTL [12]. At the end of recovery for mapping table, FTL should find out the block at the

moment of sudden power off by checking FTL’s own mapping management to recover

the mapping management of last used block of previous running time. Likewise, in our

parity scheme, we only need to recover the parity data of the last block, since only one

parity data is maintained in the main memory for the last used block, while others were

stored in the last page in their blocks. The recover process of the last used block at the

moment of power off is described in Figure 3. For the block that was used right before

power-off, each data page is retrieved and parity data is calculated by bitwise exclusive-or

operations. This process is circulated until valid data page is retrieved from the block.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.9 (2015)

314 Copyright ⓒ 2015 SERSC

Figure 3. Recovery Process for Data that was not Flush to NAND Flash
Memory Due to Power Loss

Figure 4 Data Recovery Process for Bit Errors of Data Page

Last, data recovery for broken data is described, which data recovery process is

shown in the Figure 4. When host read some data, the read command is transferred

from host to flash memory, which contains logical address. The logical address is

translated to physical address by FTL, and FTL retrieves data from Flash memory

with specific physical pages address. If there occur errors while reading data page of

the physical address, which means some part of data in the data page were broken.

However, we don’t know which part is broken, and how much broken.

In in-block redundancy scheme, when the error is reported, data recovery process

is done which is similar to the recovery process of parity data. For the block where

data error occurs, each data page as well as parity page, except the error data page,

is read and bitwise exclusive-or calculation is done. By doing this, broken page is

recovered. After the recovery is done, this recovered data should be written to

somewhere of Flash memory block. This is done as like usual incoming data write,

and after the write of recovered data, the mapping table of FTL is also updated.

4. Implementation and Analysis

The proposed in-block redundancy scheme was developed with Linux-based Flash

simulator, with Linux Memory Technology Device (MTD) device driver layer [14]. In the

MTD device driver, there exist FTL layer as block device driver layer, NAND device

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.9 (2015)

Copyright ⓒ 2015 SERSC 315

driver for command interfaces of FTL block layer and read chip device, and NANDsim

simulator for NAND flash simulation. The developed in-block redundancy layer is

implemented in FTL layer. Among several FTL management algorithm published, page-

mapping FTL was adapted in our implementation, although others are applied similarly.

The log-based page mapping and mapping table management of implemented FTL is

described in detail in [12]. In the page-mapping FTL, a block is selected for incoming

write operations. During pages are consumed for incoming writes within the block, in-

block parity buffer is maintained in the memory within the FTL, while, the parity is

calculated and updated with bitwise exclusive-or operations between incoming write data

and parity data in the buffer. When all the data pages of the block is exhausted for data

writes, the parity buffer is flushed to last page of the block via NAND device driver.

The strength of in-block redundancy is that it downs bit error rates with the redundancy

data while having relatively less complexity for calculating and maintaining redundancy

data. Since the reduced error rates for in-block redundancy is similar to those of others

that have RAID redundancy scheme, the efficiency of bit error rate is estimated similar to

other RAID technique. Every single uncorrected bit errors can be recovered by parity data

if other bits with same column are read properly.

We have estimated the redundancy overhead by comparing with legacy system, which

means that there is no redundancy scheme. There are three issues that can be discussed in

in-block redundancy scheme; storage overhead, parity update overhead, and parity

recovery overhead. The storage overhead for redundancy is essential part for all the

redundancy schemes, not limited to in-block redundancy. In the in-block redundancy

scheme, one page per block is used for parity data. The parity update overhead of in-block

redundancy scheme is negligible since almost update of parity is done within main

memory, not companied by flash IO operation until last data page, i.e., (last-1) page of the

block is consumed. The only overhead for parity update is in-memory bitwise exclusive-

or overhead. To minimize the exclusive-or overhead, we can consider memory-offloading

for exclusive-or, or parallel processing between parity calculation and data page writes to

Flash memory. The parallel processing is possible in in-block redundancy scheme with

the help of parity recovery process. The parity recovery should be done by every power-

on step in our scheme, whether other power los recovery is done or not, since the parity

data for a block that was flush to parity page in the block before power loss is not

preserved by any location. Thus, for every power-on step, whether it is proper power-on

step or not, i.e., it is power-loss-recovery step, parity recovery process always takes up

time. We have simulated average recovery time with the MTD and NANDSim simulation

environment, and the estimated recovery coverage is limited by less than half of the block

size which is limited by small scanning area in comparison with capacity of NAND flash

memory. Although the recovery is accompanied by reading and bitwise exclusive-or

operations, the time is extremely limited by the small recovery area.

5. Conclusion

Recently, the density of Flash memory has dramatically increased by moving to

smaller geometries and storing more bits per cell with enhanced memory technologies. If

one bit is represented by one cell, there are two levels in the one cell, and if four bits are

represented by one cell, there are four levels in the one cell, and so on. Currently, three-

level cell (TLC) is main stream for NAND flash storage. However, despite the evolution

of capacity of NAND flash memory, there is also increasing crucial problem for it to be

used as storage device. With the density increasing rapidly, the error rate of Flash

memory is also increasing rapidly. The growth of number of states per cell raises

interference between states since the quantized decision levels of the cell are getting close

between adjacent states, which makes errors of detection.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.9 (2015)

316 Copyright ⓒ 2015 SERSC

To improve the reliability issue of upcoming flash memory, usually, redundancy

techniques were adopted in both of architecture and operations for flash memory based

systems. For outside the flash memory page, several reliability schemes were proposed

which employs Redundant Array of Inexpensive Disks (RAID). Outside the page level,

the redundancies are generated with cluster of several pages. The pages can be grouped

across the blocks or chips to spread out the redundancies. However this spread out of

redundancy generation and distributed places of these cause additional complex and

operational overhead in both memory and IO operations.

In this paper, we propose in-block level redundancy scheme for providing reliability of

flash memory while minimizing maintaining overhead of the redundancy. In the proposed

scheme, the redundancy is generated in flash memory block level. During the

programming stage of a flash block, the redundancy is kept in Dram memory. If a block is

exhausted with last-1 page to record incoming data, the in-keeping redundancy is flushed

to last page of the block. By doing this, block level redundancy is maintained with

minimal overhead.

Acknowledgements

This work was supported by Hankuk University of Foreign Studies Research Fund.

The preliminary version of this work was appeared in CES-CUBE 2015.

Reference
[1] “Flash Memory”, http://en.wikipedia.org/wiki/Flash_memory.

[2] Webopedia, “What is solid state disk? - A Word Definition from the Webopedia Computer Dictionary”,

ITBusinessEdge, (2012).

[3] EDEC, “Embedded Multimedia Card Electrical Standard”, September (2013).

[4] A. Ban, “Flash file system optimized for page-mode flash technologies. U.S. Patent 5,937,425”, Filed,

October 16, (1997).

[5] Intel Corporation, “Understanding the flash translation layer (FTL) specification”,

http://developer.intel.com/

[6] J. Kim, J. M. Kim, S. H. Noh, S. L. Min and Y. Cho, “A space efficient flash translation layer for

CompactFlash systems”, IEEE Transactions on Consumer Electronics, vol. 48, no. 2, May (2002), pp.

366-375.

[7] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz and D. A. Patterson, “RAID: High-Performance,

Reliable Secondary Storage”, ACM Computing Surveys, vol. 26, no. 2, (1994), pp. 145-185.

[8] S. Im and D. Shin. “Flash-Aware RAID Techniques for Dependable and High-Performance Flash

Memory SSD”, IEEE Transactions on Computers, vol. 60, no. 1, January (2011), pp. 80 92.

[9] J. Kim, J. Lee, J. Choi, D. Lee and S. Noh, “Enhancing SSD Reliability through Efficient RAID

Support”, in Proceedings of 3th Asia-Pacific Workshop on Systems, July, (2012).

[10] Y. Qin, D, Feng, J. Liu, W. Tong, Y. Hu and Z. Zhu, “A Parity Scheme to Enhance Reliability for

SSDs”, in Proceedings of 7th International Conference on Networking, Architecture, and Storage,

(2012).

[11] Y. S. Lee, L. Barolli and S. H. Lim, “Mapping granularity and performance tradeoffs for solid state

drive”, The Journal of Supercomputing, vol. 65, no. 2, (2013), pp. 507-523.

[12] S. H. Lim, “Implementation of metadata logging and power loss recovery for page-mapping FTL”,

IEICE Electronics Express, vol. 10, no. 11, May (2013), pp.1-6.

[13] S. H. Lim, “Virtually Separable Block Management in Flash Storage System”, International Journal of

Multimedia and Ubiquitous Engineering”, vol.9, no.9, September (2014), pp. 299-310.

[14] Memory Technology Devices, “Memory Technology Device Overview”, Retrieved 1, http://www.linux-

mtd.infradead.org/, September (2012).

[15] S. H. Lim, “A Light-Weight Redundancy Technique for Limited Embedded Flash Storage Device”, 5th

International Conference on Circuits, Control, Communication, Electricity, Electronics, Energy, System,

Signal and Simulation, June (2015).

http://en.wikipedia.org/wiki/Flash_memory
http://developer.intel.com/
http://www.linux-mtd.infradead.org/
http://www.linux-mtd.infradead.org/

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.9 (2015)

Copyright ⓒ 2015 SERSC 317

Authors

Seung-Ho Lim, received BS, MS, and PhD degrees in the

Division of Electrical Engineering from the Korea Advanced Institute

of Science and Technology (KAIST) in 2001, 2003, and 2008,

respectively. He worked in the memory division of Samsung

Electronics Co. Ltd from 2008 to 2010, where he was involved in

developing a high performance SSD (Solid State Disk) for server

storage systems. He is currently a professor in the Division of

Computer and Electronic Systems Engineering at Hankuk University

of Foreign Studies. His research interests include operating systems,

embedded systems, and flash storage systems.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.9 (2015)

318 Copyright ⓒ 2015 SERSC

