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Abstract 

Recently, the density of Flash memory has dramatically increased by moving to smaller 

geometries and storing more bits per cell with enhanced memory technologies. However, 

with the density increasing rapidly, the error rate of Flash memory is also increasing 

rapidly. To improve the reliability issue of upcoming flash memory, usually, redundancy 

techniques were adopted in both of architecture and operations for flash memory based 

systems. For outside the flash memory page, several reliability schemes were proposed 

which employ Redundant Array of Inexpensive Disks (RAID). In this paper, we propose 

in-block level redundancy scheme for providing reliability of flash memory while 

minimizing maintaining overhead of the redundancy. In the proposed scheme, the 

redundancy is generated in a flash memory block level. During the programming stage of 

a flash block, the redundancy is kept in Dram memory. If a block is exhausted with last-1 

page to record incoming data, the in-keeping redundancy is flushed to last page of the 

block. By doing this, block level redundancy is maintained with minimal overhead. 
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1. Introduction 

Recently, with the help of low power consumption, low density, high capacity, and 

high IO bandwidth, NAND flash memory-based nonvolatile memory has become a main 

storage media for mobile embedded systems. Nowadays, NAND Flash memory-based 

storage devices such as Solid State Drive (SSD) [2], embedded Multimedia Cards 

(eMMC) [3], and USB memory sticks are widely used in variety of computing systems.  

In flash memory, there is a floating gate (FG) insulated all around by an oxide layer. 

The FG is interposed between the CG and the MOSFET channel. Because the FG is 

electrically isolated by its insulating layer, electrons placed on it are trapped until they are 

removed by another application of electric field [1]. The density of Flash memory has 

increased by moving to smaller geometries and storing more bits per cell. In each cell in 

flash memory, the FG represents stored values, i.e., one or zero, according to the trapped 

electrons level. Therefore, if one bit is represented by one cell, there are two levels in the 

one cell, and if four bits are represented by one cell, there are four levels in the one cell, 

and so on. Currently, three-level cell (TLC) is main stream for NAND flash storage. 

However, with the density increasing rapidly, the error rate of Flash memory is also 

increasing rapidly. The growth of number of states per cell raises interference between 

states since the quantized decision levels of the cell are getting close between adjacent 

states, which makes errors of detection. Moreover, the Program/Erase cycles (P/E cycles) 

have come down rapidly with the density increasing. The bit error rate is abruptly 

increased from some levels of P/E cycles, which in turn reveals the bit error rate is 

strongly correlated to the P/E cycles levels. In summary, the error rates occurred in the 

flash memory is getting worse as the density of flash memory is getting better. 
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To mitigate and improve the reliability issue of upcoming flash memory, usually, 

redundancy techniques were adopted in both of architecture and operations for flash 

memory based systems. Inside the flash memory page, Error Correction Code (ECC) is 

stored in the out-of-band region within a flash memory page, which we call page-level 

redundancy. Several ECC schemes were applied to flash memory chip as hardware 

components. Even ECC exists and it can cover one bit correction, or even several bit 

corrections according to its complexity, outside-page level Errors cannot be covered. For 

outside the flash memory page, several reliability schemes were proposed which employs 

Redundant Array of Inexpensive Disks (RAID) [7-10]. Outside the page level, the 

redundancies are generated with cluster of several pages. The pages can be grouped 

across the blocks or chips to spread out the redundancies. However this spread out of 

redundancy generation and distributed places of these cause additional complex and 

operational overhead in both memory and IO operations. 

In this paper, we propose in-block level redundancy scheme for providing reliability of 

flash memory based storage system. In the proposed scheme, the redundancy is generated 

in flash memory block level and the generated redundancy is stored at the end page of a 

flash block. Usually, the programing operation of flash memory has a logging manner, 

which means that the write of pages in a flash block is from first page to last page. During 

the programming stage of a flash block, the redundancy is kept in Dram memory. The in-

keeping redundancy is used to re-calculated up-to-date redundancy with incoming data. If 

a block is exhausted with last-1 page to record incoming data, the in-keeping redundancy 

of main memory is flushed to last page of the block. 

The remainder of this paper is organized as follows. In Section 2, background and 

related work is described. The proposed in-block level redundancy scheme is explained in 

Section 3, and its performance evaluation is described in Section 4. Section 5 concludes 

this paper. 

 

2. Background and Related Work 

In this Section, the backgrounds and related work are illustrated. Most of the 

background is referred by our previous work [11]. 

 

2.1. NAND Flash Memory Basics 

NAND flash memory is array of memory cells that consist of floating-gate 

transistors. There are three commands used in NAND flash memory; read, program 

(write), and erase. The read and program command are related with data transfer 

between host and Flash devices, whose data unit is Page. The erase command has no 

data transfer between host and Flash, and the erase is operated at the Block-based. 

In NAND flash memory, the size of one Page is 4KB and doubles as manufacturing 

process advances and a Block is composed of 64 or 128 Pages, typically. Due to the 

size mismatch between write and erase operation, write operation should consider 

efficient erase operation. Typically, read for one Page consumes about 125us, 

including Page read to internal chip register and bus transfer from chip register to 

host side. As a same manner, write for one Page consumes about 200us~400us.  

The physical limitation of NAND flash memory is covered by special firmware called 

Flash Translation Layer (FTL) [4-6]. The NAND flash-based devices such as Solid State 

Disk (SSD) [2] and Multimedia Card (MMC) [3] embed FTL inside their systems as a 

form of firmware, so FTL runs on controller within the devices. FTL manages address 

mapping between file system and NAND flash memory, and does GC (Garbage 

Collection) [5]. File systems can treat Flash device just like usual storage media with the 

logical block address supported by FTL, and FTL hides internal mapping information and 

management schemes from host file systems.  
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FTL manages address mapping table between logical address of host part and 

physical address of Flash memory. Indeed, except the mapping management, FTL 

does many other roles, including wear leveling, garbage collection, bad block 

management, and request queuing and caching, and so on. However, the mapping 

management is most important job among many FTL's roles, and others are mostly 

dependent on the mapping management scheme. The FTL keeps track of the address 

mapping information between the logical address and the physical address. In this 

manner, the FTL prevents in-place updates of data and hides the latency of the erase 

operation. When the number of free pages is insufficient for write operations, free 

pages should be made by garbage collection (GC), where GC is the process that 

makes available free region by selecting one Block, moving data of valid Pages to 

other region, and erasing the Block. Thus, the selected victim Block should have 

minimum valid Pages for more efficient garbage collection. 

 

2.2. Related Work 

Typical approach against the short endurance and increasing errors is the use of well-

known Error Correction Codes (ECC), or parity schemes like RAID technique used by 

legacy storage systems. Inside the flash memory page, Flash memory employs Error-

Correcting Codes (ECC) to provide error correction for one bit or several bits per page 

during page read operation. The ECC data is stored in out-of-band region of flash memory 

page. For the ECC coding scheme, low-density parity check (LDPC) codes are considered 

as the choice for current flash memory controller due to their superior error correction 

capabilities. 

While ECC can prevent data error inside a page, there is another approach for 

preventing data error outside a page with redundancy. RAID [7] enhances the 

reliability by using redundant data. In the RAID technique, the parity generation is 

relatively simple than ECC code algorithm, it generates more additional  read and 

write requests, as well as space for redundancy data. In addition,  since the parity 

data are generated across the flash memory chips, the coordination of each data 

write processing channel is required for efficient parity management, which 

degrades read and write latency. Among many RAID levels, RAID-4 and RAID-5 

use an extra redundant parity block to hold redundant information of clustered 

blocks. The parity is generated by bitwise exclusive-or operations between blocks 

that belong to same cluster, thus, parity update usually requires two block reads and 

two block writes in traditional storage system. However, in flash-based storage 

devices, due to the flash memory characteristics, i.e., out-of-place update, the 

approach of RAID techniques is different, which is mainly focus on reducing write 

requests for designing flash-based RAID scheme. 

There are many previous works for RAID schemes for flash memory based 

embedded devices, which are mainly for SSD systems. Im [8] presents partial parity 

caching technique to reduce the number of read operations required to calculate 

parity, while Kim et al addresses the dynamic forms of a variable size stripe based 

on the arrival order of write requests without any parity cache [9]. In [10], they 

utilize built-in NVRAM to cache the parity data update for minimal write to flash 

memory. 

 

3. In-Block Level Redundancy Scheme 

In case of errors, another redundancy that exist out-of-the page are required to 

recover proper data. The out-of-the page redundancies would be generated like 

RAID technique, where parity page with regard to a group of pages clustered exists. 

The parity is calculated as a bitwise exclusive-or operation among pages of cluster, 

so it is also a complex computation job. The issue is that how to make up cluster of 
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pages. In our design, the parity group is cluster of the pages within same flash 

memory block, as a result, parity page is the last page of the flash memory block, 

which we call it in-block redundancy. The in-block redundancy makes it possible to 

make parity be generated and recovered independently for each block, each chip, 

and each core as well. 

The In-block level redundancy scheme is described in Figure 1. In our scheme, a Flash 

memory block consists of one parity page and remaining pages are used for data. The last 

page is preserved for parity page. With this composition, the redundancy generation is as 

follows. When data is arrived from host system, its corresponding address is logical 

address, so, at first in Storage system, FTL translate logical address to physical address. 

Since FTL management is out of scope of this paper, we omit the specific description of 

the translation mechanism. Please refer to mapping management and recovery process for 

page-mapping FTL in [12]. After the FTL translation, the physical address of data is set. 

Then, in the in-block level redundancy scheme, the parity data is calculated for the 

incoming data. As shown in the Figure 1, the parity data is calculated  and maintained in 

main memory, where parity data is calculated by bitwise exclusive operation of in-

memory parity and incoming data. The calculated parity data is back to buffer in main 

memory, not flushed to NAND flash storage media. The incoming data is then written to 

NAND flash memory. If the physical address of the incoming data is above the last-1 

page of the block, the parity data is not flushed to NAND flash memory, but just 

maintained in the memory. 

 

 

Figure 1. Parity Update During Incoming Data are Written in the Middle of 
Flash Memory Block 
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Figure 2. Parity Flush after Last-a Page is Written to the Flash Memory 
Block 

Almost all FTL writes data to flash memory block as a log manner, which means data 

are written to flash memory block in a sequential order from first page to last, and there is 

no update for written area in a block until the block is recycled by GC. For this reason, it 

is possible to update parity with just incoming data without retrieval of previously written 

data, which is different from parity update of legacy HDD-based RAID system. Thus, the 

parity can be only updated by recalculating of incoming data and managed in Dram 

memory until all the pages in a block are consumed for incoming data. 

When the physical address of incoming data is decided to last-1 page of the block, the 

calculated parity data is flushed on last page of the block after updating parity data with 

incoming data and writing incoming data, as shown in the Figure 2. After flushing the 

parity data, the parity buffer in main memory is cleaned and it is ready for another parity 

buffer for another block. The physical address of current incoming data is last-1 page 

means all the data pages in that block are consumed for data. In in-block level redundancy 

scheme, the last page of the block is used to store parity data in the block. In the parity 

page, each bit represents bitwise exclusive-or data of pages above all the data pages in the 

block. Even if the page has invalid data, the parity calculation is possible since data is not 

deleted physically. 

Whether power off is sudden power off or not, if power off is occurred during the 

parity page maintained only in the main memory, not storing to NAND flash memory, the 

parity data should be recovered. The parity recovery process is held at the end of the 

recovery of FTL map. Although recovery of mapping table of FTL is also omitted in this 

paper, please refer to the previous work that presents recovery process of page-mapping 

FTL [12]. At the end of recovery for mapping table, FTL should find out the block at the 

moment of sudden power off by checking FTL’s own mapping management to recover 

the mapping management of last used block of previous running time. Likewise, in our 

parity scheme, we only need to recover the parity data of the last block, since only one 

parity data is maintained in the main memory for the last used block, while others were 

stored in the last page in their blocks. The recover process of the last used block at the 

moment of power off is described in Figure 3. For the block that was used right before 

power-off, each data page is retrieved and parity data is calculated by bitwise exclusive-or 

operations. This process is circulated until valid data page is retrieved from the block. 
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Figure 3. Recovery Process for Data that was not Flush to NAND Flash 
Memory Due to Power Loss 

 

Figure 4 Data Recovery Process for Bit Errors of Data Page 

Last, data recovery for broken data is described, which data recovery process is 

shown in the Figure 4. When host read some data, the read command is transferred 

from host to flash memory, which contains logical address. The logical address is 

translated to physical address by FTL, and FTL retrieves data from Flash memory 

with specific physical pages address. If there occur errors while reading data page of 

the physical address, which means some part of data in the data page were broken. 

However, we don’t know which part is broken, and how much broken. 

In in-block redundancy scheme, when the error is reported, data recovery process 

is done which is similar to the recovery process of parity data. For the block where 

data error occurs, each data page as well as parity page, except the error data page, 

is read and bitwise exclusive-or calculation is done. By doing this, broken page is 

recovered. After the recovery is done, this recovered data should be written to 

somewhere of Flash memory block. This is done as like usual incoming data write, 

and after the write of recovered data, the mapping table of FTL is also updated. 

 

4. Implementation and Analysis 

The proposed in-block redundancy scheme was developed with Linux-based Flash 

simulator, with Linux Memory Technology Device (MTD) device driver layer [14]. In the 

MTD device driver, there exist FTL layer as block device driver layer, NAND device 
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driver for command interfaces of FTL block layer and read chip device, and NANDsim 

simulator for NAND flash simulation. The developed in-block redundancy layer is 

implemented in FTL layer. Among several FTL management algorithm published, page-

mapping FTL was adapted in our implementation, although others are applied similarly. 

The log-based page mapping and mapping table management of implemented FTL is 

described in detail in [12]. In the page-mapping FTL, a block is selected for incoming 

write operations. During pages are consumed for incoming writes within the block, in-

block parity buffer is maintained in the memory within the FTL, while, the parity is 

calculated and updated with bitwise exclusive-or operations between incoming write data 

and parity data in the buffer. When all the data pages of the block is exhausted for data 

writes, the parity buffer is flushed to last page of the block via NAND device driver.  

The strength of in-block redundancy is that it downs bit error rates with the redundancy 

data while having relatively less complexity for calculating and maintaining redundancy 

data. Since the reduced error rates for in-block redundancy is similar to those of others 

that have RAID redundancy scheme, the efficiency of bit error rate is estimated similar to 

other RAID technique. Every single uncorrected bit errors can be recovered by parity data 

if other bits with same column are read properly. 

We have estimated the redundancy overhead by comparing with legacy system, which 

means that there is no redundancy scheme. There are three issues that can be discussed in 

in-block redundancy scheme; storage overhead, parity update overhead, and parity 

recovery overhead. The storage overhead for redundancy is essential part for all the 

redundancy schemes, not limited to in-block redundancy. In the in-block redundancy 

scheme, one page per block is used for parity data. The parity update overhead of in-block 

redundancy scheme is negligible since almost update of parity is done within main 

memory, not companied by flash IO operation until last data page, i.e., (last-1) page of the 

block is consumed. The only overhead for parity update is in-memory bitwise exclusive-

or overhead. To minimize the exclusive-or overhead, we can consider memory-offloading 

for exclusive-or, or parallel processing between parity calculation and data page writes to 

Flash memory. The parallel processing is possible in in-block redundancy scheme with 

the help of parity recovery process. The parity recovery should be done by every power-

on step in our scheme, whether other power los recovery is done or not, since the parity 

data for a block that was flush to parity page in the block before power loss is not 

preserved by any location. Thus, for every power-on step, whether it is proper power-on 

step or not, i.e., it is power-loss-recovery step, parity recovery process always takes up 

time. We have simulated average recovery time with the MTD and NANDSim simulation 

environment, and the estimated recovery coverage is limited by less than half of the block 

size which is limited by small scanning area in comparison with capacity of NAND flash 

memory. Although the recovery is accompanied by reading and bitwise exclusive-or 

operations, the time is extremely limited by the small recovery area. 

 

5. Conclusion 

Recently, the density of Flash memory has dramatically increased by moving to 

smaller geometries and storing more bits per cell with enhanced memory technologies. If 

one bit is represented by one cell, there are two levels in the one cell, and if four bits are 

represented by one cell, there are four levels in the one cell, and so on. Currently, three-

level cell (TLC) is main stream for NAND flash storage. However, despite the evolution 

of capacity of NAND flash memory, there is also increasing crucial problem for it to be 

used as storage device. With the density increasing rapidly, the error rate of Flash 

memory is also increasing rapidly. The growth of number of states per cell raises 

interference between states since the quantized decision levels of the cell are getting close 

between adjacent states, which makes errors of detection. 
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To improve the reliability issue of upcoming flash memory, usually, redundancy 

techniques were adopted in both of architecture and operations for flash memory based 

systems. For outside the flash memory page, several reliability schemes were proposed 

which employs Redundant Array of Inexpensive Disks (RAID). Outside the page level, 

the redundancies are generated with cluster of several pages. The pages can be grouped 

across the blocks or chips to spread out the redundancies. However this spread out of 

redundancy generation and distributed places of these cause additional complex and 

operational overhead in both memory and IO operations. 

In this paper, we propose in-block level redundancy scheme for providing reliability of 

flash memory while minimizing maintaining overhead of the redundancy. In the proposed 

scheme, the redundancy is generated in flash memory block level. During the 

programming stage of a flash block, the redundancy is kept in Dram memory. If a block is 

exhausted with last-1 page to record incoming data, the in-keeping redundancy is flushed 

to last page of the block. By doing this, block level redundancy is maintained with 

minimal overhead. 
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