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Abstract 

Constructing effective and generalizable synthesized motions is crucial for creating 

naturalistic, versatile, and effective virtual characters and robots. High dimensional time 

series are endemic in applications of machine learning such as robotics (sensor data), 

computational biology (gene expression data), vision (video sequences) and graphics 

(motion capture data). Practical nonlinear probabilistic approaches to this data are 

required. I would like to go through several existing models such as Gaussian Process 

Dynamic Systems and Deep Belief Networks. I would analyze their strengths and 

limitations. I would also try to incorporate physical constraints to improve the motion 

quality. And on the other hand, try to improve the structure of the models or the learning 

algorithms. 

 

Keywords: Gaussian process, restricted Boltzmann Machine, variational inference, 

human motion 

 

1. Introduction 

Nonlinear probabilistic modeling of high dimensional time series data is a key 

challenge for the machine learning community. A central difficulty in modeling high 

dimensional time-series data is in determining a model that can capture the nonlinearities 

of the data without over fitting. The simplest time series models, and the earliest studied, 

contain no hidden variables. Two members of this class of fully-observed models are the 

vector autoregressive emodel and the Nth order Markov model. Though elegant in their 

construction, these models are limited by their lack of memory. To capture long-range 

structure they must maintain explicit links to observations in the distant past, which 

results in a blow-up in the number of parameters. The strong regularities present in many 

time series suggest that a more efficient parameterization is possible. 

Linear autoregressive models require relatively few parameters and allow closed-form 

analysis, but can only model a limited range of systems. In contrast, existing nonlinear 

probabilistic models can model complex dynamics, but may require large training sets to 

learn accurate MAP models. 

A standard approach is to simultaneously apply a nonlinear dimensionality reduction to 

the data whilst governing the latent space with a nonlinear temporal prior. The key 

difficulty for such approaches is that analytic marginalization of the latent space is 

typically intractable. 

Gaussian processes (GPs) (see e.g. [1]) are stochastic processes over real-valued 

functions. GPs offer a Bayesian nonparametric framework for inference of highly 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.9 (2015) 

 

 

18   Copyright ⓒ 2015 SERSC 

nonlinear latent functions from observed data. They have become very popular in 

machine learning for solving problems such as nonlinear regression and classification. 

Other powerful models, such as the popular hidden Markov model (HMM), introduce a 

hidden (or latent) state variable that controls the dependence of the current observation on 

the history of observations. HMMs, however, cannot efficiently model data that is a result 

of multiple underlying influences since they rely on a single, discrete K-state multinomial 

to represent the entire history of observations. To model N bits of information about the 

past, they require 2N hidden states. 

 

2. Related Works 

Directed acyclic graphical models (or Bayes nets) are a dominant paradigm in models 

of static data. Their temporal counterparts, dynamic Bayes nets [2], generalize many 

existing models such as the HMM and its various extensions. In all but the simplest 

directed models, inference is made difficult due to a phenomenon known as explaining 

away where observing a child node renders its parents dependent [3]. To perform 

inference in these networks, typically one resorts to approximate techniques such as 

variational inference [4] or Monte Carlo methods which have a significant number of 

disadvantages [2,5]. An alternative to directed models is to abandon the causal 

relationship between variables, and instead focus on undirected models. One such model, 

the restricted Boltzmann machine (RBM) [6], has garnered recent interest due to its 

desirable property of permitting efficient exact inference. Unfortunately this comes at a 

cost: Exact Manuscript written August 15, 2014 maximum likelihood learning is no 

longer possible due to the existence of an intractable normalizing constant called the 

partition function. However, the RBM has an efficient, approximate learning algorithm, 

contrastive divergence (CD) [7] that has been shown to scale well to large problems. 

RBMs have been used in a variety of applications [8–12] and over the last few years their 

properties have become better understood [13–15]. The CD learning procedure has also 

been improved [16–18]. With a few exceptions [19,20] the literature on RBMs is confined 

to modeling static data. 

[21] Proposed an alternative class of time series models with distributed (i.e., 

componential) hidden state. Mixture models such as HMMs generate each observation 

from a single category. Distributed state models (e.g., products) generate each object from 

a set of features that each contains some aspect of that objects description. Linear 

dynamical systems (LDS) have a continuous, and therefore componential hidden state, but 

in order to make inference in these models tractable, the relationship between latent and 

visible variables is constrained to be linear. By carefully choosing the right form of 

nonlinear observation model it is possible to attain tractable, exact inference, yet retain a 

rich representational capacity that is linear in the number of components. They leverage 

the desirable properties of an undirected architecture, the RBM, and extend it to model 

time series. Their observation or emission distribution is an undirected, bipartite graph. 

This makes inference simple and efficient. 

 

3. Restricted Boltzmann Machine 

The restricted Boltzmann machine (RBM) [6,10] is a deep learning model with a layer 

of visible units fully connected to a layer of hidden units but no connections within a 

layer. It assigns a probability to any joint setting of the visible units, v and hidden units, h: 
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Where 

 

And Z is a normalization constant called the partition function. It is intractable to 

compute exactly as it involves a sum over the (exponential) number of possible joint 

configurations: 

 

Marginalizing over the RBM’s hidden units and maximizing the likelihood leads to a 

very simple maximum likelihood weight update rule: 

 

Where  is an expectation with respect to the data distribution and  is an 

expectation with respect to the model’s equilibrium distribution. Because of the 

conditional independence of RBMs, we can obtain an unbiased sample of  by 

clamping the visible units to a vector in the training data set, and sampling the hidden 

units in parallel according to 

 

For some applications like motion capture, the observed data is not binary, where we 

use mean-field logistic units to model the very non-binary data. The stochastic binary 

units of RBMs can be generalized to any distribution that falls in the exponential family. 

We use binary logistic hidden units and real-valued Gaussian visible units. The energy 

function is now 

 

Where ai is the bias of visible unit i, bj is the bias of hidden unit j and σi is the standard 

deviation of the Gaussian noise of visible unit i. The symmetric weight, Wij , connects 

visible unit i to hidden unit j. 

Any setting of the hidden units makes a linear contribution to the mean of each visible 

unit: 

 

Inference simply uses a scale form of: 

 

The RBM models static frames of data, but does not incorporate any temporal 

information. We can model temporal dependencies by treating the visible variables in the 

previous times slices. We add two types of direct connections: autoregressive connections 

from the past N configurations (time steps) of the visible units to the current visible 

configuration, and connections from the past M configurations of the visible units to the 

current hidden configuration. 

We concatenate the data at t-1,...,t-N into a vector, v<t. So if vt is of dimension D, then 

v<t is of dimension N . D. 
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The effect of the past on each hidden unit can be viewed as a dynamic bias: 

 

Which includes the static bias, bj, and the contribution from the past. This slightly 

modifies the factorial distribution over hidden units: bj is replaced with  to obtain 

 

The past has a similar effect on the visible units. The reconstruction distribution 

becomes 

 

Where ^ai;t is also a dynamically changing bias that is an affine function of the past: 

 

The updates for the directed weights are also based on simple pairwise products. The 

gradients are now summed over all time steps. 

 

4. Gaussian Process Dynamical Model 
 

4.1. Gaussian Process Latent Variable Model 

Let  be the observed data where N is the number of observations and D 

the dimensionality of each data vector. These data are associated with latent variables 

 where, for the purpose of doing dimensionality reduction, . The GP-LVM 

[22] defines a forward (or generative) mapping from the latent space to observation space 

that is governed by Gaussian processes. If the GPs are taken to be independent across the 

features then the likelihood function is written as 

                             (1) 

Where yd represents the dth column of Y and 

                 (2) 

Here, KNN is the N ˟ N covariance matrix defined by the covariance (or kernel) function 

k(x, x
’
). For the purpose of doing automatic model selection of the dimensionality of 

latent space, this kernel can be chosen to follow the ARD (see [1]) squared exponential 

form: 

              (3) 

Equation 1 can be viewed as the likelihood function of a multiple-output GP regression 

model where the vectors of different outputs are drawn independently from the same 

Gaussian process prior which is evaluated at the inputs X. Since X is a latent variable, we 

can assign it a prior density given by the standard normal density. More precisely, the 

prior for X is: 
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                        (4) 

Where each xn is the nth row of X. The joint probability model for the GP-LVM is 

                      (5) 

The hyperparameters of the model are the kernel parameters  and the 

inverse variance parameter β. For the sake of clarity, these parameters are omitted from 

the conditioning of the distribution
1
. Currently, the primary methodology for training the 

GP-LVM model is to find the MAP estimate of X [22] whilst jointly maximizing with 

respect to the hyperparameters. Here, we develop a variational Bayesian approach to 

marginalization of the latent variables, X, allowing us to optimize the resulting lower 

bound on the marginal likelihood with respect to the hyperparameters. The lower bound 

can also be used for model comparison and automatic selection of the latent 

dimensionality. 

 

4.2. Variational Inference 

We wish to compute the marginal likelihood of the data: 

                        (6) 

However, this quantity is intractable as X appears nonlinearly inside the inverse of the 

covariance matrix KNN+β
-1

IN. Instead, we seek to apply an approximate variational 

inference procedure where we introduce a variational distribution q(X) to approximate the 

true posterior distribution p(X|Y ) over the latent variables. We take the variational 

distribution to have a factorized Gaussian form over the latent variables, 

                      (7) 

Where the variational parameters are  and, for simplicity, Sn is taken to be a 

diagonal covariance matrix
1
.Using this variational distribution we can express a Jensens 

lower bound on the log p(Y ) that takes the form: 

          (8) 

Where the second term is the negative KL divergence between the variational posterior 

distribution q(X) and the prior distribution p(X) over the latent variables. This term is 

computed analytically since both distributions are Gaussians. Therefore, the difficult part 

when estimating the above bound is the first term: 

1
A precise notation is to write p(Y,X|β,θ) = p(Y|X,β,θ)p(X).  
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                    (9) 

By introducing 1. Thus, Thus, the computation of  breaks down to separate 

computations of each , corresponding to the dth output. Notice that the computation 

of  involves an analytically intractable integration. This arises because  

contains X in a highly nonlinear manner inside the inverse of the covariance matrix, 

KNN+β
-1

IN. Our main contribution is a mathematical tool that allows us to compute a 

closed-form lower bound for . As we will see, the key idea is to apply variational 

sparse GP regression in an augmented probability model. 

 

4.3. Gaussian Process Dynamics 

The Gaussian Process Dynamical Model (GPDM) comprises a mapping from a latent 

space to the data space, and a dynamical model in the latent space. These mappings are 

typically nonlinear. The GPDM is obtained by marginalizing out the parameters of the 

two mappings, and optimizing the latent coordinates of training data. 

Assume a multivariate times series dataset , where  is a data vector 

observed at time  . We are especially interested in cases where each yn is a high 

dimensional vector and, therefore, we assume that there exists a low dimensional 

manifold that governs the generation of the data. Specifically, a temporal latent function 

 (with ), governs an intermediate hidden layer when generating the data, and 

the dth feature from the data vector yn is then produced from xn = x(tn) according to 

                    (10) 

Where fd(x) is a latent mapping from the low dimensional space to dth dimension of the 

observation space and β is the inverse variance of the white Gaussian noise. We do not 

want to make strong assumptions about the functional form of the latent functions (x,f ). 

Instead we would like to infer them in a fully Bayesian non-parametric fashion using 

Gaussian processes [1]. Therefore, we assume that x is a multivariate Gaussian process 

indexed by time t and f is a different multivariate Gaussian process indexed by x, and we 

write 

                   (11) 

                  (12) 

The covariance function kx determines the properties of each temporal latent function 

xq(t), kf determines the properties of the latent mapping f that maps each low dimensional 

variable xn to the observed vector yn. 

Similar to Y , the matrix  will denote the mapping latent variables, i.e. fnd = 

fd(xn), associated with observations Y from 10. Analogously,  will store all low 

dimensional latent variables xnq = xq(tn). Given the latent variables we assume 

independence over the data features, and given time we assume independence over latent 

dimensions to give 

1
This can be extended to non-diagonal within our framework. 
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        (13) 

Where  and p(yd|fd) is a Gaussian likelihood function term defined from 10. 

Further, p(fd|X) is a marginal GP prior such that 

                      (14) 

Where KNN = kf (X;X) is the covariance matrix defined by the covariance function kf 

and similarly p(xqjt) is the marginal GP prior associated with the temporal function xq(t), 

                      (15) 

Where Kt = kx(t; t)  is the covariance matrix obtained by evaluating the covariance 

function kx on the observed times t. 

 

4.4. Predictions 

This algorithm models the temporal evolution of a dynamical system. It should be 

capable of generating completely new sequences or reconstructing missing observations 

from partially observed data. For generating a novel sequence given training data the 

model requires a time vector t_ as input and computes a density p(Y*|Y,t, t*).For 

reconstruction of partially observed data the time-stamp information is additionally 

accompanied by a partially observed sequence  from the whole , 

where p and m are set indices indicating the present (i.e. observed) and missing 

dimensions of Y_ respectively. 

 

4.4.1. Predictions Given Only the Test Time Points 

To approximate the predictive density, we will need to introduce the underlying latent 

function values  (the noisy-free version of Y*) and the latent variables 

. We write the predictive density as 

            (16) 

The term p(F*|X*, Y ) is approximated by the variational distribution 

               (17) 

Where q(f*,d|X*) is a Gaussian that can be computed analytically, since in our 

variational framework the optimal setting for q(ud) is also found to be a Gaussian. As for 

the term p(X*|Y ) in eq. 16, it is approximated by a Gaussian variational distribution q(X*), 
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             (18) 

Where p(x*,q|xq) is a Gaussian found from the conditional GP prior (see [1]) and q(X) is 

also Gaussian. We can, thus, work out analytically the mean and variance for 18, which 

turn out to be: 

                             (19) 

                (20) 

Where ;  and . Notice that these equations have 

exactly the same form as found in standard GP regression problems. Once we have 

analytic forms for the posteriors in 16, the predictive density is approximated as 

            (21) 

Which is a non-Gaussian integral that cannot be computed analytically. However, 

following the same argument as in [1,23], we can calculate analytically its mean and 

covariance: 

                                (22) 

                 (23) 

Where , ,  and . All expectations are 

taken w.r.t. q(X*) and can be calculated analytically, while KM* denotes the 

cross-covariance matrix between the training inducing inputs  and X*. The  

quantities are calculated analytically. Finally, since Y* is just a noisy version of F*, the 

mean and covariance of 21 is just computed as:  and .  

 

4.4.2. Predictions Given the Test Time Points and Partially Observed Outputs 

The expression for the predictive density  is similar to 16, 

                (24) 

And is analytically intractable. To obtain an approximation, we firstly need to apply 

variational inference and approximate  with a Gaussian distribution. This 

requires the optimization of a new variational lower bound that accounts for the 

contribution of the partially observed data . This lower bound approximates the true 

marginal likelihood  and has exactly analogous form with the lower bound 
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computed only on the training data Y . Moreover, the variational optimization requires the 

definition of the variational distribution q(X*,X) which needs to be optimized and is fully 

correlated across X and X*. After the optimization, the approximation to the true posterior 

 is given from the marginal q(X*). A much faster but less accurate method 

would be to decouple the test from the training latent variables by imposing the 

factorization q(X*,X) = q(X) q(X*). This is not used, however, in our current 

implementation. 

 

5. Experiment 

We consider two different types of high dimensional time series, a human motion 

capture data set consisting of different walks and high resolution video sequences. The 

experiments are intended to explore the various properties of the model and to evaluate its 

performance in different tasks (prediction, reconstruction, generation of data). 

 

5.1. Human Motion Caption Data 

We followed [24-25] in considering motion capture data of walks and runs taken from 

subject 35 in the CMU motion capture database. We treated each motion as an 

independent sequence. The data set was constructed and preprocessed as described in 

[25]. This results in 2,613 separate 59-dimensional frames split into 31 training sequences 

with an average length of 84 frames each. The model is jointly trained, as explained in 

section 2.3, on both walks and runs, i.e. the algorithm learns a common latent space for 

these motions. At test time we investigate the ability of the model to reconstruct test data 

from a previously unseen sequence given partial information for the test targets. This is 

tested once by providing only the dimensions which correspond to the body of the subject 

and once by providing those that correspond to the legs. We compare with results in [25], 

which used MAP approximations for the dynamical models, and against nearest neighbor. 

We can also indirectly compare with the binary latent variable model (BLV) of [24] 

which used a slightly different data preprocessing. We assess the performance using the 

cumulative error per joint in the scaled space defined in [14] and by the root mean square 

error in the angle space suggested by [25]. Our model was initialized with nine latent 

dimensions. We  

Errors obtained for the motion capture dataset considering nearest neighbour in the 

angle space (nn) and in the scaled space(nn sc.), gplvm, blv and vgpds. Cl / cb are the leg 

and body datasets as preprocessed in [24], l and b the corresponding datasets from [25]. 

Sc corresponds to the error in the scaled space, as in taylor et al. While ra is the error in 

the angle space. The best error per column is in bold. 
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Table 1. 

 

The mean squared error per pixel for vgpds and nn for the three datasets (measured 

only in the missing inputs). The number of latent dimensions selected by our model is in 

parenthesis. 

Table 2. 

 

Performed two runs, once using the Mat´ern covariance function for the dynamical 

prior and once using the RBF. From table 1 we see that the variational Gaussian process 

dynamical system considerably outperforms the other approaches. The appropriate latent 

space dimensionality for the data was automatically inferred by our models. The model 

which employed an RBF covariance to govern the dynamics retained four dimensions, 

whereas the model that used the Mat´ern kept only three. The other latent dimensions 

were completely switched off by the ARD parameters. The best performance for the legs 

and the body reconstruction was achieved by the VGPDS model that used the Mat´ern 

and the RBF covariance function respectively. 

 

5.2. Modeling Raw High Dimensional Video Sequences 

For our second set of experiments we considered video sequences. Such sequences are 

typically preprocessed before modeling to extract informative features and reduce the 

dimensionality of the problem. Here we work directly with the raw pixel values to 

demonstrate the ability of the VGPDS to model data with a vast number of features. This 

also allows us to directly sample video from the learned model. 

Firstly, we used the model to reconstruct partially observed frames from test video 

sequences. For the first video discussed here we gave as partial information 

approximately 50% of the pixels while for the other two we gave approximately 40% of 

the pixels on each frame. The mean squared error per pixel was measured to compare 

with the k-nearest neighbor (NN) method, for  (we only present the error 

achieved for the best choice of k in each case). The datasets considered are the following: 

firstly, the ’Missa’ dataset, a standard benchmark used in image processing. This is a 

103,680-dimensional video, showing a woman talking for 150 frames. The data is 

challenging as there are translations in the pixel space. We also considered an HD video 
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of dimensionality 9˟10
5
 that shows an artificially created scene of ocean waves as well as 

a 230,400-dimensional video showing a dog running for 60 frames. The latter is 

approximately periodic in nature, containing several paces from the dog. For the first two 

videos we used the Matérn and RBF covariance functions respectively to model the 

dynamics and interpolated to reconstruct blocks of frames chosen from the whole 

sequence. For the ’dog’ dataset we constructed a compound kernel kx = kx(rbf) +kx(periodic), 

where the RBF term is employed to capture any divergence from the approximately 

periodic pattern. We then used our model to reconstruct the last 7 frames extrapolating 

beyond the original video. As can be seen in table 2, our method outperformed NN in all 

cases. 

 

6. Performance Evaluation 

The key properties of the CRBM are that it permits rich distributed representations to 

be learned from time series, and that exact inference is simple and efficient. I would like 

to follow the contrastive divergence (CD) learning rules for CRBMs and showed how 

CRBMs can be stacked to form conditional deep belief nets. We demonstrated that a 

single model can generate many different styles of motion. 

Perhaps the two greatest limitations of CRBMs (and RBMs in general) are first, 

evaluating the quality of trained models, and second, the learning algorithm with which 

they are trained. Though we have explored different methods of model evaluation, such as 

N-step forward prediction and the subjective assessment of synthesized data, the most 

natural way to evaluate a generative model is to compute the log-likelihood it assigns to a 

held-out test set. For all but the smallest models, this is impossible to do exactly due to the 

intractability of computing the partition function. [14] have successfully applied annealed 

importance sampling (AIS) to RBMs. However, conditioning changes the partition 

function which implies that we would need to perform AIS for every possible 

configuration of N-frame histories (where N is the order of the CRBM) if we wish to 

evaluate the likelihood assigned by the model to an arbitrary sequence. Fortunately, to 

evaluate models we are often interested in computing likelihoods for a fixed test set rather 

than arbitrary sequences. This means that we need only to concern ourselves with 

conditioning on all possible N-frame histories in the test set. If we are evaluating M 

sequences whose maximum length is T, we would need to make on the order of M(T - N) 

complete AIS estimates. 

A major criticism of contrastive divergence learning is that by “pulling up” on the 

energy of individual reconstructed data points, the algorithm fails to visit regions far away 

from the training data. Consequently, the bulk of the energy surface is left arbitrarily low. 

One solution is to abandon CD altogether, and pursue other learning methodologies, such 

as the sparse energy-based methods” or score matching [26]. The alternative is to improve 

CD e.g., [17]. 
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7. Conclusions 

We have introduced a fully Bayesian approach for modeling dynamical systems 

through probabilistic nonlinear dimensionality reduction. Marginalizing the latent 

space and reconstructing data using Gaussian processes results in a very generic 

model for capturing complex, non-linear correlations even in very high dimensional 

data, without having to perform any data preprocessing or exhaustive search for 

defining the models structure and parameters. A promising future direction to follow 

would be to enhance this formulation with domain-specific knowledge encoded, for 

example, in more sophisticated covariance functions or in the way that data are 

being preprocessed. Thus, we can obtain application-oriented methods to be used for 

tasks in areas such as robotics, computer vision and finance. 
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