
International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015), pp.401-412

http://dx.doi.org/10.14257/ijmue.2015.10.8.39

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

Reconfigurable Parallel Multi-way Associative Cache with Miss-

fetch Merge for Anisotropic Texture Filtering

Youngsik Kim

Department of Game and Multimedia Engineering, Korea Polytechnic University

 kys@kpu.ac.kr

Abstract

Anisotropic texture filtering has been developed for a high quality three dimensional

(3D) computer graphics and multimedia applications. This paper proposes an effective

parallel multi-way set associative cache for anisotropic texture filtering, which can be

adaptively reconfigured based on the number of probe samples. The proposed

architecture also adopts a simple and efficient miss-fetch merge scheme to exploit the

sequential access benefit. This paper constructs the trace-driven cache simulator in order

to evaluate the proposed architecture. The benchmark suites for the simulation use

OpenGL library. Experimental results show that the proposed 256KB cache architecture

can reduce the memory access time of about 8.3% and 0.5% than the conventional 512KB

and 1MB caches, respectively. Also, the hardware overhead is negligible.

Keywords: anisotropic texture filtering, reconfigurable cache, miss-fetch merge

1. Introduction

Various studies for a high quality 3D computer graphics and multimedia applications

have been carried out in the field of the anisotropic texture filtering [1-5]. Anisotropic

filtering is a method of enhancing the quality of texture images on 3D models that are at

oblique camera viewing angles. In that case the texture image is projected to be non-

orthogonal. Anisotropic filtering does not filter the same in every direction. Like bilinear

and trilinear filtering, anisotropic filtering overcomes aliasing artifacts. It improves more

on these other techniques by reducing blur and preserving detail at oblique camera

viewing angles in Figure 1.

Anisotropic filtering can be the computing intensive job as well as the memory

bandwidth job. However, the hardware implementation of the anisotropic texture filtering

is often constrained by the limited memory bandwidth. Theoretical anisotropic filtering

probes the texture in real-time on each pixel which is not the same in any orientation of

anisotropy. In the hardware implementation of the anisotropic texture filtering, texture

samples which are taken of the texture around the center point. The projected shape of the

texture at that pixel depends on a sample pattern mapped. Each probe of anisotropic

filtering can be considered as one trilinear MIP map filtering sample. A single trilinear

MIP map filtering needs to take eight samples from two adjacent MIP levels. So sixteen

probes in anisotropic filtering might require 128 texture samples. In that case the amount

of computation and memory bandwidth might be sixteen times than those of a single

trilinear filtering. However, the number of probes in anisotropic filtering does not need to

be the maximum all the time. One common anisotropic filtering method on graphics

hardware chooses the filtered pixel values from only one line of MIP map samples, which

is referred to as "footprint assembly" [1].

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

402 Copyright ⓒ 2015 SERSC

Figure 1. A Trilinear Mipmapped Texture on the Left and the Same
Texture Enhanced with Anisotropic Texture Filtering on the Right [17]

One anisotropic filtering method, called Footprint Assembly, is described in

detail in [1]. In Figure 2, Footprint Assembly is explained. First, it approximates

pixel footprint by parallelogram formed by the two side vectors, r1 and r2. And

then, it roughly samples the area inside the parallelogram by assembling probes

along the major axis, which is the larger of r1 and r2. The number of probes is

calculated from the ratio of the major axis length to the minor axis which is the

shortest among the side vectors, r1 and r2, and the diagonals, d1 and d2. Although

Footprint Assembly can achieve somewhat high quality filtering images, but it

needs a large amount of computation and memory bandwidth. In [1], they

implement this directly into logic-embedded memories. Another method, called fast

footprint MIP-mapping [2], adopts the prefiltered MIP-map data structure of

currently available trilinear MIP-mapping implementations. The hardware

realization of a filtering algorithm is described, which adapts the filter kernel to the

shape of a pixel's texture space projection in [3]. A sub-texel precision anisotropic

filtering, called shift-identification (SI) method [4], is implemented in hardware. In

the SI method, the computation of the footprint coverage of each texel is proposed.

The edge-function-based anisotropic texture filtering [5] is proposed, which

approximates a footprint shape in the limited memory bandwidth. The prefetching

texture cache architecture [6] and reconfigurable cache architectures [7, 8] are

proposed in order to improve the cache memory performance. The selective z-test

architecture [11] is proposed to reduce the memory bandwidth about texturing.

However, the performance of hardware-based anisotropic texture filtering is still

often constrained by the long miss-fetch latency of the texture cache.

This paper proposes an effective parallel cache architecture for anisotropic texture

filtering, which can adaptively reconfigure multi-way set associativity based on the

number of filtering samples. The proposed architecture also adopts a simple and efficient

miss-fetch merge scheme to reuse a previous miss-fetch. This paper constructs the trace-

driven simulator which modifies the software OpenGL library, called Mesa 3D [12]. The

proposed 256KB cache architecture can reduce the memory access time of about 8.3%

and 0.5% than the conventional 512KB and 1MB caches, respectively.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

Copyright ⓒ 2015 SERSC 403

Approximate
pixel footprint by
parallelogram

Probe filter
sampling

u

v

r1

r2

d2

d1

212

211

,2

,1

rrd

rrd

dy

dv

dy

du
r

dx

dv

dx

du
r

























Figure 2. Footprint Assembly [1]

2. The Proposed Reconfigurable Parallel Cache Architecture

The proposed reconfigurable parallel multi-way associative cache architecture for

anisotropic texture filtering is presented in Figure 3. The baseline architecture for

anisotropic texture filtering has 16 texture units with its local cache. This architecture

implements Footprint Assembly anisotropic filtering algorithm. The maximum number of

filter probe samples is assumed to be 16, but there is no limit about the power of two

unlikely the original algorithm [1]. According to the number of probes, the number of

active texture units, which are the gray rectangles labeled as ‘T’ in Figure 3, can be

changed. Also, the 16 local caches, which are the gray rounded rectangles labeled as ‘$’,

can be reconfigured as multi-way associative caches. The number of multi-way

associative caches is equal to the number of probes, but the number of ways in each

associative cache varies as in Algorithm 1 (Figure 4). For example, if the number of

probes is 5, the proposed architecture consists of three 4-way associative caches and two

2-way associative caches. However, the conventional architectures have only five active

texture units with its direct-mapped local cache under the same situation. The idea of

reconfigurable multi-way set associative cache is already proposed in [7].

This paper proposes an effective way partitioning mechanism under the environment of

parallel caches with the basic structure of [7] suitable for the anisotropic texture filtering.

Also, the proposed architecture devises a simple and efficient scheme to merge miss-

fetches, where the window size of cache TAG comparison is two. If the values of two

TAGs are the same, the second miss-fetch can be omitted. If the values of two TAGs are

different in a single cache block address, the second miss-fetch time can be much more

reduced due to the sequential access.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

404 Copyright ⓒ 2015 SERSC

miss-fetch
merge

T

$

T

$

T

$

T

$

T

$

T

$

T

$

T

$

T

$

T

$

T

$

T

$

T

$

T

$

T

$

T

$

Main Memory

4-way 4-way 4-way 2-way 2-way

nProbes = 1 nProbes = 5

16-way

T $T Texture cache
Active

Texture Unit
Inactive

Texture Unit

Figure 3. The Proposed Architecture of a Reconfigurable Parallel
Multi-way Associative Cache

Algorithm 1: Proposed operational mechanism

N = the number of parallel texture units with its local cache;

while (rendering with anisotropic filtering)

{

S = the number of Footprint Assembly probes for the current anisotropic filtering;

for (k=0; k<=log2N; k++) // find smallest k for S>= N/2
k

{

 if (S>= N/2
k
)

 break;

 }

if (k==0)

 Configure all N local texture caches as the direct mapped cache;

else

{

p = (N/2
k-1

) – S;

q = S – p;

for (i=0; i<p; i++) // configure p 2k
-way associative caches

Sequentially configure 2
k
 local texture caches as the 2

k
-way associative cache;

for (i=0; i<q; i++) // configure q 2k-1
-way associative caches

Sequentially configure 2
k-1

 local texture caches as the 2
k-1

-way associative cache;

}

}

Figure 4. Proposed Operational Mechanism

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

Copyright ⓒ 2015 SERSC 405

The operational algorithm of way partitioning for the proposed cache architecture is

shown in Algorithm 1. First, it finds the smallest number, k, where S is greater than or

equal to N/2
k
, S is the number of probes, and N is the number of texture units. If k is 0,

then S is equal to N and the proposed architecture consists of N active texture units with

its directed mapped cache. Otherwise, the proposed cache architecture consists of p 2
k
-

way associative caches and q 2
k-1

-way associative caches, where S = p + q and p = (N/2
k-

1
) – S. For example, if the S = 5 and N = 16, then k = 2, p = 3, and q = 2 as shown in

Figure 3. The small lookup table which stores pre-calculated way partitioning results can

be used for the hardware implementation. So, both the hardware overhead and the

computation time for Algorithm 1 are negligible.

In order to apply the original pseudo LRU algorithm to this reconfigurable parallel

cache, this paper proposes the pseudo LRU tree partitioning as shown in Figure 5.

Pseudo-LRU is a cache replacement algorithm which nearly simulates the Least Recently

Used (LRU) algorithm. The tree based pseudo LRU algorithm is an algorithm to select an

item that most nearly has been accessed least recently, given a set of items and a sequence

of access events to the items. The CPU cache of the Intel 486 and many processors in the

Power Architecture family uses this pseudo LRU algorithm. The pseudo LRU algorithm

in two-way set associative requires one bit to indicate which line of the two has been

referenced more recently. As such, three bits are used in four-way set associative cache.

Each bit represents one branch point in a binary search tree for the items in question. The

bit 1 represents that the left side has been referenced more recently than the right side, and

the bit 0 vice-versa. To update the tree with an access to the specific node, traverse the

tree to find the node and, during the traversal, set the node flags to denote the direction

that is opposite to the direction taken.

This paper applies this technique to the proposed architecture. According to the number

of probes, S, the original pseudo LRU tree is partitioned into several sub-trees, where the

number of sub-trees is S. Each pseudo LRU sub-tree is sequentially assigned to a

corresponding multi-way associative cache. In Figure 5, five sub-trees are shown where S

= 5 in dotted line. Also, a whole single tree is shown where S = 1 in full line.

3. Simulation Environment

The architectural models for the simulation are shown in Table 1. A, B, C, and D

modes are the 1-way or 16-way conventional caches with 512KB or 1MB. E and F modes

are the conventional reconfigurable caches with 512KB or 1MB in [7]. This paper

assumes that the result from E and F models is chosen from the best of all set-

associativity results. The P model has the proposed reconfigurable cache mechanism with

256KB, which adopts the miss-fetch merge scheme with 1 cycle comparison overhead.

B0

B1 B2

B3 B4 B5 B6

B7 B8 B9 B10 B11 B12 B13 B14

=0 =1

=0

=0 =0 =0
=0

=1 =1

=1
=1=1=1

=0

nProbes = 1

nProbes = 5

Figure 5. Pseudo LRU Tree Partitioning

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

406 Copyright ⓒ 2015 SERSC

The cache block size is 32B or 64B and the cache access time is 2 cycles. The main

memory latency is same in [10].

This paper constructs the trace-driven cache simulator in order to evaluate the

proposed architecture. The benchmark suites for the simulation use OpenGL library

as 3D graphics API in Table 2, Table 3, and Figure 6. OpenArena [13], Nexuiz [14],

and Xonotic [15] are well-known first person shooting 3D games. OpenBve [16] is

the train simulator with multiple maps and trains. In order to generate traces, the

simulator modifies the software OpenGL library, called Mesa 3D [12], where the

Footprint Assembly anisotropic filtering is called whenever a linear filtering call

occurs in benchmark suites. In Table 3, there are various distributions of the number

of probes for four benchmarks. Especially for the benchmark OpenArena, most of

the texture units are active because the proportion of the number of probes 16 is

much greater than others.

4. Performance Evaluation

Figure 7 shows the memory access time for various architectural models, where

performance results are classified into two cache block sizes, 32B and 64B. For

seven architectural models, the memory access time can be broken down into the

miss-fetch time and the fixed cache access time of two cycles.

Table 1. Architectural Models for the Simulation

architectural model A B C D E [7] F[7] P

reconfigurable scheme

1-

way

fixed

16-

way

fixed

1-

way

fixed

16-

way

fixed

conventional

reconfigurable
proposed

cache size 512KB 1MB 512KB 1MB 256KB

texture unit 16 texture units with local texture cache

cache 16 local caches with 2 cycles access latency

cache block size 32, 64 bytes

miss-fetch merge

overhead
no 1 cycle

main memory latency first latency – next chunk latency (54 – 2 cycles)

Table 2. Benchmark Suites

Benchmark Description

OpenArena[13] A first person shooter based on Quake III Arena death-match style

Nexuiz [14] An arena first person shooter with great graphics and intense gameplay

Xonotic [15]
A fast-paced first person shooter. It combines addictive, arena-style

gameplay with rapid movement and a wide array of weapons

OpenBve [16]
An highly customizable train simulator for support with multiple maps

and trains

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

Copyright ⓒ 2015 SERSC 407

The proposed architecture, model P, shows the lowest memory access time among

seven models for all benchmarks as shown in Figure 7. Even if the texture units are

highly active, the proposed architecture can exploit the local caches of the small

portion of inactive texture units. The proposed 256KB cache architecture can reduce

the memory access time of about 8.3% and 0.5% than all other caches with 512KB

and 1MB, respectively. Also, the proposed model P can reduce the memory access

time of about 6.1% than the model E with 512KB cache in [7]. But the model P is

slightly inferior to the model F with 1MB cache in [7] by -1.5% for the memory

access time. In all benchmarks except the benchmark Xonotic [15], the proposed

model P provides the best performance.

Figure 8 presents the cache hit ratio for seven architectural models about four

benchmarks in two cache block sizes. The proposed 256KB cache architecture can

provide the similar cache hit ratios of about 0.2% and -0.3% to those of the

conventional 512KB and 1MB caches, respectively. Even when having the simi lar

cache hit ratios, the reduction of the memory access time in the proposed

architecture is due to the miss-fetch merge scheme.

Table 3. Distribution of the Number of Probes for Benchmark Suites

Benchmark
Distribution of the number of probes (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

OpenArena[13] 4.7 5.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 89.3

Nexuiz[14] 83.7 4.3 0.6 0.6 0.7 0.4 0.2 0.3 0.1 0.1 0.1 0.4 0.0 0.1 0.4 8.1

Xonotic[15] 54.9 5.1 3.0 1.7 1.2 1.2 1.1 0.8 0.8 0.7 0.5 0.5 0.5 0.4 0.5 27.2

OpenBve[16] 70.6 14.0 1.0 13.5 0.4 0.3 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(a) OpenArena[13] (b) Nexuiz[14]

(c) Xonotic[15] (d) OpenBve[16]

Figure 6. Screen Shot Images of Benchmark Suites

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

408 Copyright ⓒ 2015 SERSC

In order to evaluate the effect of miss-fetch merge scheme for other architectures,

in Table 4, the architectural models are configured. A, B, C, and D modes are the

conventional caches with 512KB or 1MB. E and P models have the proposed

reconfigurable cache mechanism with 512KB. Also, B, D, and P models have the

miss-fetch merge scheme. Models with the miss-fetch merge scheme also have 1

cycle comparison overhead.

Table 4. Architectural Models for Evaluating the Effect of Miss-fetch Merge
Scheme

architectural model A B C D E P

reconfigurable

scheme
No, 1-way fixed yes

cache size(total-

local)
512KB-32KB 1MB-64KB 256KB-16KB

miss-fetch merge no yes no yes no yes

Figure 7. The memory Access Time (cycles) of Architectural
Models in Table 1

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

Copyright ⓒ 2015 SERSC 409

texture unit 16 texture units with local texture cache

cache 16 local caches with 2 cycles access latency

cache block size 32, 64 bytes

miss-fetch merge

check
1 cycle overhead

main memory

latency
first latency – next chunk latency (54 – 2 cycles)

Figure 9. The Memory Access Time (cycles) of Architectural Models in Table

4

Figure 10. The Cache Hit Ratios of Architectural Models in Table 4

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

410 Copyright ⓒ 2015 SERSC

Figure 9 shows the memory access time for various architectural models defined

in Table 4 in order to evaluate the effect of miss-fetch merge scheme for other

architectures. Similar to Figure 7 and figure 8, for six architectural models, the

memory access time can be broken down into the miss-fetch time and the fixed

cache access time of two cycles. The proposed architecture, model P, shows the

lowest memory access time among six models for all benchmarks as shown in

Figure 9. The proposed 256KB cache architecture can reduce the memory access

time of about 6.2% and -0.5% than the conventional 512KB and 1MB caches,

respectively. The proposed 256KB cache architecture can provide the slightly better

or similar performance than the conventional 512KB and 1MB caches, respectively.

Also, models B, D, and P with the miss-fetch merge scheme can achieve a

performance improvement of about 9.4% than models A, C, and E without the miss-

fetch merge scheme.

Figure 10 presents the cache hit ratio for six architectural models of Table 4

about four benchmarks in two cache block sizes. There is no change about the cache

hit ratio between models with or without the miss-fetch merge scheme. The

proposed 256KB cache architecture can provide the similar cache hit ratios of about

0.1% and -0.4% to those of the conventional 512KB and 1MB caches, respectively.

5. Conclusion
This paper proposes a reconfigurable parallel multi-way set associative cache

architecture for anisotropic texture filtering, which adopts a simple and efficient

miss-fetch merge scheme. This paper constructs the trace-driven cache simulator in

order to evaluate the proposed architecture. The benchmark suites for the simulation

use OpenGL library. Experimental results show that the performance of the

proposed 256KB architecture is superior to the conventional 512KB and 1MB cache

architectures, respectively, about the memory performance. Also, the hardware

overhead is negligible.

References
[1] A. Schilling, G, Knittel, and W. Strasser, "Texram: A smart memory for texturing”, IEEE Computer

Graphics and Applications, vol. 16, no. 3, (1996), pp. 32-41.

[2] T. Hüttner and W. Straßer. "Fast footprint mipmapping”, Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, (1999).

[3] J.P. Ewins, M.D. Waller, M. White, and P.F. Lister, "Implementing an anisotropic texture filter."

Computers & Graphics, vol. 24, no. 2, (2000), pp. 253-267.

[4] M. Bóo and M. Amor. "High-performance architecture for anisotropic filtering”, Journal of Systems

Architecture, vol. 51, no. 5, (2005), pp. 297-314.

[5] H. C. Shin, J.A. Lee and L.S. Kim, "A cost-effective VLSI architecture for anisotropic texture filtering

in limited memory bandwidth”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 14, no. 3, (2006), pp. 254-267.

[6] H. Igehy, M. Eldridge, and K. Proudfoot, "Prefetching in a texture cache architecture”, Proceedings of

the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware, (1998).

[7] William E. Coyle, David W. Nuechterlein, Kim E. O'Donnell, Thomas A. Sartorius, Kenneth D. Schultz,

and Emmy M. Wolters, "Reconfigurable multi-way associative cache memory”, U.S. Patent No. vol.

5,367,653, (1994) November 22.

[8] J. T. Battle, "Reconfigurable texture cache." U.S. Patent No. 6,002,410, (1999) December 14.

[9] M. B. Smith and M. J. Tresidder, "Pseudo-LRU cache memory replacement method and apparatus

utilizing nodes”, U.S. Patent No. 5,594,886. 14 January (1997).

[10] S.Thoziyoor, “CACTI 5.3,” HP Laboratories, Palo Alto, CA, (2008).

[11] J. Park, “A pixel pipeline architecture with selective z-test scheme for 3D graphics processors."

Microprocessors and Microsystems, vol. 37, no.3, (2013), pp. 373-380.

[12] Mesa 3D, http://www.mesa3d.org

[13] OpenArena, http://www.openarena.ws/smfnews.php

[14] Nexuiz, http://www.alientrap.org/games/nexuiz

[15] Xonotic, http://www.xonotic.org

[16] OpenBve, https://sites.google.com/site/openbvesim/home

[17] Anisotropic filtering in Wikipedia, http://en.wikipedia.org/wiki/Anisotropic_filtering

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

Copyright ⓒ 2015 SERSC 411

Author

Youngsik Kim, he received the B.S., M.S., and Ph.D. degree in

Dept. Computer Science from the Yonsei University, Korea, in 1993,

1995, and 1999 respectively. He had worked for System LSI,

Samsung Electronics Co. Ltd from Aug. 1999 to Feb. 2005 as a

senior engineer. Since March 2005 he has been working for Dept. of

Game & Multimedia Engineering in Korea Polytechnic University.

His research interests are in 3D Graphics and Multimedia

Architectures, Game Programming, and SOC designs.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

412 Copyright ⓒ 2015 SERSC

