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Abstract 

Multimodal medical image fusion technique plays an important role in clinical 

applications, such as pathologic diagnosis and surgical options. However, many 

traditional fusion methods cannot well preserve details of source images in the fused 

image. To address this problem, a detail-enhanced image fusion scheme based on non-

subsampled contourlet transform (NSCT) and gain control (i.e., NCGC) is developed in 

this paper, which can effectively combine the spectral information and the spatial features 

of source images. The proposed method applies power law transformation to tune 

coefficients of each decomposed subband, and adjusts the strength of subband signals by 

smooth gain control. Eventually, the fused image with more anatomical details and 

functional information is constructed by the inverse NSCT. Three pairs of medical images 

with different modalities and three fusion metrics are applied to validate the feasibility of 

this algorithm. Experimental results demonstrate that the proposed method can achieve 

superior performance in both visual perception and objective assessment. 

 

Keywords: multimodal medical image fusion; detail-enhanced; non-subsampled 

contourlet transform; gain control 

 

1. Introduction 

Medical image fusion, as a powerful tool for clinical applications, has been 

widely developed and plays an important role in medical diagnosis. This technology 

can capture more spectral information and spatial features in source images, and 

provide a reliable basis for proper clinical diagnosis and reasonable surgical options. 

Substantially, it is unrealistic for doctors to obtain comprehensive information from 

only one single modality image, whereas doctors may attain complementary 

information from different modality of medical images. For example, the composite 

image of computed tomography (CT) and magnetic resonance imaging (MRI) can 

simultaneously provide dense structures like bones and pathological soft tissue 

information. Similarly, combining single-photon emission computed tomography 

(SPECT) and MRI image not only visualizes anatomical information, but also 

provides functional and metabolic information. 

With the rapid development of the increasing clinical applications and advanced 

instrumentations, medical image fusion is widely applied in the areas of medical 

diagnostics, treatment, assessment, 3D conformal radiotherapy, etc. In the past two 

decades, various effective medical image fusion techniques have been developed, 

such as independent component analysis (ICA) [1] or principal component analysis 

(PCA) [2, 3], brovey transform [4], intensity-hue-saturation (IHS) technique [5-7]. 
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The major disadvantages of these fusion methods above are that it introduces spatial 

distortions in the resultant image and does not provide any spectral information [8]. 

In addition, image fusion methods based on Pulse coupled neural network (PCNN) 

are also developed [9-11]. However, one common defect of these schemes is that the 

whole fusion process cannot finish by one PCNN and more than two PCNNs must 

be used for fusing multi-source images, resulting in time consuming and inefficient. 

Multi-scale decomposition (MSD) based medical image fusion methods have 

been widely discussed and reported in the literature. In these schemes, the source 

images are firstly decomposed into low-frequency subband and a set of high-

frequency subbands at various scales and directions, then the feasible fusion rules 

are determined and applied to fuse the high and low frequency subband coefficients. 

Finally, the fused image is obtained by inverse transform. The typical 

decomposition methods include laplacian pyramid (LAP) [12], discrete wavelet 

transform (DWT) [13], wavelet-based statistical sharpness measure (WSSM) [14], 

morphological difference pyramid (MOD) [15], curvelet transform (CT) [16] and 

shearlet transform [17, 18], etc. Although these fusion methods have achieved good 

performance in some respects, the fused results are easily accompanied with color 

distortion or details loss because of low similarity between different modal images. 

One of the core problems for MSD-based schemes is the selection of MSD tool. 

Different transform tools will directly affect the fused outcome. In order to 

overcome the limitations of the traditional transform tools, some novel multi -scale 

geometric analysis tools should be fully considered and introduced to medical image 

fusion. Compared to many existing multi-scale transform tools, the non-subsampled 

contourlet transform (NSCT) [19] is an over-complete transform, by which, image 

features at different scales and directions are better captured, which produces 

resultant image with more details. Based on its perfect image representations, such 

as fully shift-invariant, multi-scale, and multi-direction expansion, NSCT has been 

successfully utilized in medical image fusion [20-24]. 

In this paper, a detail-enhanced multi-modal medical image fusion framework 

based on NSCT and gain control (NCGC) is developed, which preserves more 

spatial detail features and more functional information of source images.  The 

research contributions of the paper can be summarized as follows. 1) This paper 

proposes a new NSCT-domain based fusion framework for multimodal medical 

images. 2) A novel weight measurements are proposed to compute weight maps for 

the decomposed subband coefficients. 3) The developed detail-enhanced and 

brightness-adjusted image fusion method is guided by the power law transformation 

and smooth gain control map. 

The rest of this paper is organized as follows. The proposed fusion framework 

and the implementation are described in Section 2. Then experimental results and 

discussion are shown in Section 3. Finally, a conclusion is presented in Section 4. 

 

2. The Proposed Fusion Algorithm  

Figure 1 shows the block diagram of the proposed NCGC fusion algorithm. To 

smoothly combine spectral information (corresponding color image, i.e., 

SPECT/PET) and spatial features (i.e., MRI/CT) of source images, the proposed 

method converts the multispectral image to IHS color space. The independent 

intensity I component is then decomposed using NSCT and enhanced by a power 

law transformation. With applying the fusion rule based on the weight map, the 

decomposed subbands are merged. After that, the blended subbands are further 

adjusted by gain control. Finally, the resultant image is generated directly by 

inverse NSCT and inverse IHS transform. It is noted that the fusion procedure will 

be directly fused without IHS transform when input source images are both gray 
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images (e.g., CT and MRI). The fusion process is shown as the red bounding box in 

Figure 1. 

 

 

Figure 1. Block Diagram of the Proposed NCGC Fusion Algorithm 

 
2.1. IHS Transform 

The IHS transform may be used for fusion of multi-sensor images or medical 

images [5,25,26]，which can convert the multispectral image with red, green and 

blue channels to intensity, hue and saturation color space effectively.  The 

independent intensity component I representing brightness in a spectrum is less 

sensitive to noise. Therefore, the fusion of panchromatic image will be better 

implemented by combining independent intensity component I and high resolution 

image. Based on this model, the reconstructed image well contains the spatial 

features with high resolution image (such as MRI) and color information with low 

resolution multispectral image (such as PET). 

The proposed method employs the IHS triangular model [27] to convert the 

multispectral color image, the conversion system is implemented as the following 

equations: 
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2.2. Decomposition in NSCT Domain 
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The implementation of NSCT includes two stages, i.e., non-subsampled pyramid 

(NSP) and non-subsampled directional filter bank (NSDFB). The former provides 

multi-scale decomposition and the later provides direction information. The NSP 

decomposes the original image into a low frequency subband and a high frequency 

subband at each decomposition stage. Then the NSDFB decomposes the high 

frequency subband into multiple directional sub-images. Assume that jl denotes the 

number of decomposition level at the j-th scale in NSCT domain, the high frequency 

subband produces jl
2  directional sub-images with the same size as the original 

image. This process also explains why NSCT can capture more precise directional 

information. For illustration simplicity, with just two input images  yxI A ,  and 

 yxI B ,  as an example, the decomposition coefficients of the two source images are 

expressed as {  yxC A

j ,
0

,  yxC A

dj ,, } and {  yxC B

j ,
0

,  yxC B

dj ,, }. As such, the subband 

coefficients of the corresponding fused image  yxI F ,  are given by 

{  yxC F

j ,
0

,  yxC F

dj ,, }.  yxC j ,*

0
 denotes the coefficient at the coarsest scale and 

 yxC dj ,*

,  indicates the subband coefficients at the j-th scale and direction d (d=1, 2, 

3, …, jl
2 ). In our experiments, the directional decomposition level is [0-2], 

respectively. 

 
2.3. Detail Enhancement 

In this paper, multi-scale contrast stretching is used to enhance the details of subbands, 

resulting better contrast and edge sharpness in the reconstructed image. Power law 

transformation, as one of the most common and basic image enhancement functions, is 

applied to tune subband coefficients of each decomposition level. The coefficients of the 

decomposed subband at the j-th scale and direction d are given as 
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Where dm  is a positive and scale-related parameter, which can control the degree 

of image enhancement. 

 

2.4. Image Fusion 

Weight map represents the spatial information of an image objectively, which 

reveals each pixel’s contribution to fusion image at different space position. In this 

paper, we define the weight map ),( yxWi  using contrast as metrics. Similar to 

Mertens et al. [28], the absolute value after the Laplacian filtering is taken as the 

contrast indicator. In order to obtain a visually consistent result, weighted maps are 

smoothed with Gaussian kernel function   and normalized. As a result, the 

decomposed subband’s weight map is represented as 
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Where  g  denotes Gaussian kernel function ( =5) and N is the total number 

of source images.   is a small value (exp(-25)) to avoid singularity. 

After obtaining the decomposed subband’s weight maps, the fused subband 

coefficients are calculated by the following forms: 
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Where  yxC i

k ,  denotes the k-th decomposed subband coefficients of the input 

image  yxI i , . 

 

2.5. Gain Control 

The use of smooth gain control map helps to reduce artifacts and significantly 

improves the brightness of the subband. This technique has been successfully 

applied to the scheme of subband enhancement [29], which effectively increase the 

brightness of subbands and adjust the strength of subband signals, resulting a detail -

enhanced composite image. Here is a general description of constructing gain 

control map. Firstly, an activity map ),( yxAi  can be expressed as (7). Then, similar 

to [29], gain control map can be derived from the aggregated activity map. 
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Where,   and   is a weighing factor between 0 and 1 (set 0.8),   (set 0.002) is 

a small parameter that prevents the noise from being blown up and avoids 

singularities in the gain control map,   is a constant related to spatial frequency 

(set 0.2), and  g  is a Gaussian kernel function. The scale-related parameter im  

controls the modification extent of different frequency, and δ is a gain control 

stability level that is associated with the activity statistics (with M and N being the 

width and height of the subband image) activities closer to  . 

Figure 2 gives the result of applying gain control maps to fuse two medical 

images. Intuitively, the gain control maps have significant contributions to 

preserving spatial details of the source images and adjusting the brightness of final 

image. (c) shows method without gain control does achieve good result, after 

adjustment with gain control maps, however, a resultant image with more details is 

obtained in (d). Figure 2(e) is a random scanline of the fused results before and after 

gain control. The shape of the curve illustrates that the signal is turned up for places 

where activities are low, which means that the local details and brightness are 

enhanced by applying gain control maps. 

 

 

(a)                      (b)                       (c)                    (d) 
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(e) 

Figure 2. Comparison of the Fused Results without Gain Control (c) and 
with Gain Control (d). Source Images CT (a) and MRI (b). (e) Is the Statistical 

Characters of a Random Scanline in (c) and (d) 

 

3. Experimental Results and Discussion 

Three different groups of human brain images are employed to validate the 

proposed algorithm, including CT/MRI, PET/MRI and SPECT/MRI images. All the 

images have the size of 256 ×256 pixels, which are already in perfect registration. 

They can be freely downloaded from the data site 

(http://www.med.harvard.edu/AANLIB/home.html). The proposed algorithm is 

compared with the comparative existing fusion methods: the guided filtering based 

fusion (GFF) [30], WSSM [14], DWT with DBSS (2,2) [13], LAP [12], MOD [15], 

PCA [3], IHS [7] and pixel averaging fusion method. Like previous studies [30-31], 

parameters of DWT, LAP, MOD are: decomposition level is set to 3, coefficients 

fusion rules: selecting max in the high pass and average in the low pass.  

Figure 3 shows the results obtained by different fusion methods. As shown in the 

close-up views of the regions labeled in Figure 4, it can be seen that WSSM and 

MOD cause serious artifacts in the final image. Relatively, the results from GFF, 

PCA, Average have some improvement, but they are not enough sharpness. For 

these methods of DWT, LAP, MOD, although they produced a better effect on bone 

structures, the texture information is still unclear in soft tissue structures. By 

contrast, our method NCGC produces a detail-enhanced and brightness-increased 

resultant image (see (a9)), which simultaneously clearly shows the soft-tissue and 

bone structures. 

 

 

(a1) Source Input CT/MRI Images       (a2) GFF         (a3) WSSM          (a4) DWT 

 

(a5) LAP            (a6) MOD          (a7) PCA          (a8) Average       (a9) NCGC 

Figure 3. Performance Comparison of different Fusion Methods in CT/MRI 
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Figure 4. Close-Up Views of the Regions Labeled by the Two Red 
Rectangles, According to the Order of (a2)~(a9) in Figure 3. The First and 

Second Row Corresponds to the Upper Left and Lower Right Corner 
Respectively 

Figure 5 and Figure 6 demonstrate the fusion performance between MRI/SPECT 

image and MRI/PET image, respectively. The two pairs of images are from a man 

with AIDS dementia and normal coronal of a healthy person, respectively. From 

Figure 5(b2)-(b9), the result produced by PCA is vague relative to other algorithms 

and the IHS based method causes serious color distortion. For the two methods, the 

color information of source SPECT image isn’t well transferred to final image 

(highlighted by green arrows). Although the results that produced by GFF and 

WSSM are better than the former two methods (PCA, IHS), the local texture 

information is still unclear. By contrast, the proposed NCGC shows more texture 

contents and better visual effect in final image, which can be seen from the 

corresponding regions highlighted by green ellipses. As another example, utilizing 

MRI and PET images, the fusion results from some typical algorithms are also 

displayed in Figure 6(c2)-(c9). It can be observed that the spatial features and 

spectrum information in the original images can be well combined together by the 

proposed method (c9), in which, the fibrous strands of light matter in the cerebellar 

lobes are much easier to discern (see the regions labeled by purple ellipses). 

 

 

(b1) Source MRI/SPECT Images    (b2) GFF          (b3) WSSM         (b4) DWT 

 

(b5) LAP          (b6) MOD           (b7) PCA            (b8) IHS            (b9) NCGC 

Figure 5. The Fusion Results of MRI and SPECT Images Using Different 
Fusion Algorithms. (b1) Is Two Source MRI and SPECT Images Respectively 
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(c1) Source PET/MRI Images           (c2) GFF         (c3) WSSM         (c4) DWT 

 

(c5) LAP          (c6) MOD           (c7) PCA             (c8) IHS          (c9) NCGC 

Figure 6. The Fusion Results of the Normal Coronal PET and MRI Images 
Using Different Fusion Algorithms. (c1) Is Two Source MRI and PET Images 

Respectively 

In order to evaluate the objective fusion performances of different methods, three 

image fusion quality metrics, i.e., average gradient (AG) [32], entropy (EN) and 

edge intensity (EI) [33] are adopted. Values for these quality indexes are listed in 

Table 1. The larger AG indicates the better clarity and contrast, the larger EN 

indicates the richer information and the larger EI indicates the better definition. 

Table 1 shows the quantitative assessments of the fused images obtained by three 

different groups of tests, in which, the proposed method gets the largest values to all 

the metrics. These experimental results demonstrate that the proposed method (i.e. 

NCGC) can well preserve the complementary information of different source images 

and produce a detail-enhanced image. 

Table 1. The Quantitative Assessments of Eight different Fusion 
Methods 

Source 
Images 

Index GFF WSSM DWT LAP MOD PCA 
Average/ 

IHS 

Proposed 
NCGC 

Multimodal 

CT/MRI 

AG 6.125 7.727 5.893 6.278 7.085 4.860 3.503 10.700 

EN 6.797 6.215 6.264 6.191 6.263 5.983 5.851 6.837 

EI 66.494 83.346 63.487 67.948 75.940 52.779 38.077 112.83 

Multimodal 

SPECT/MRI 

AG 5.404 4.680 5.425 5.390 5.479 3.944 5.440 7.990 

EN 6.080 5.090 6.463 6.091 5.690 5.667 5.097 6.672 

EI 55.495 48.425 55.276 55.018 55.550 41.141 55.835 77.756 

Multimodal 

PET/MRI 

AG 5.887 6.020 6.134 6.143 6.132 5.180 5.834 7.786 

EN 5.271 4.682 5.498 5.043 4.964 4.770 4.368 5.634 

EI 61.385 62.827 63.729 63.904 63.482 55.029 63.904 78.390 

 

4. Conclusion and Future Work 

In this paper, a novel multimodal medical image fusion method NCGC was 

developed, which enhances details and adjusts brightness of subbands by power law 

transformation and smooth gain control maps, respectively. The advantages of the 
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proposed method are that it can effectively combine the spectral information with 

the spatial features from the source images, resulting in a visually pleasing and 

informative composite image. The fused result  outperforms the traditional methods 

in the performance of texture information and brightness, which may help to 

promote clinical diagnosis. Next step, we will apply a mathematical model to 

analyze and measure dependencies between different subband coefficients for 

further improving the fusion performance. 
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