
International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015), pp.1-12

http://dx.doi.org/10.14257/ijmue.2015.10.8.01

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

Residual Defect Prediction using Multiple Technologies

WanJiang Han
1
, LiXin Jiang

2
, TianBo Lu

1
 and XiaoYan Zhang

1

1
School of Software Engineering, Beijing University of Posts and

Telecommunication, Beijing 100876, China
2
Department of Emergency Response, China Earthquake Networks Center,

Beijing 100036, China

Email: hanwanjiang@bupt.edu.cn

Abstract

Finding defects in a software system is not easy. Effective detection of software defects

is an important activity of software development process. In this paper, we propose an

approach to predict residual defects, which applies machine learning algorithms

(classifiers) and defect distribution model. This approach includes two steps. Firstly, use

machine learning Algorithms and Association Rules to get defect classification table,

then confirm the defect distribution trend referring to several distribution models.

Experiment results on a GUI project show that the approach can effectively improve the

accuracy of defect prediction and be used for test planning and implementation.

Keywords: residual defect prediction, defect distribution model, software defect

classification, defect trend, classifiers

1. Introduction

With the rapid development of information technology, the application of computer

software is more and more widely. High efficient and security software system is highly

dependent on the software reliability, and the software defects have become the

underlying causes which lead to the systems error, failure, collapse or even the disaster.

In order to raise the effectiveness and efficiency of testing, software defect prediction has

been used to identify defect-prone modules in an upcoming version of a software system

and help to allow the effort on those modules [1].

Software defect prediction is a very important research topic in software engineering.

It is based on the defect records in historical data to predict the defects in the future. It

helps software project planning and process management.

The growing demand for higher operational efficiency and safety in industrial

processes has resulted in a huge interest in defect detection techniques. Engineering

researchers and practitioners remain concerned with accurate defect prediction when

building systems. Defect prediction has both safety and economic benefits in technical

systems by preventing future failures and further improves process maintenance

schedules. Lack of adequate tools to evaluate and estimate the cost for a software system

failure is one of the main challenges in systems engineering.

For a software development project, it is highly desirable to reduce software defects. A

variety of information products emerged and the requirements of product quality are also

increasing. By analyzing and studying defects, building defect model can help to find

solutions for defects quickly and efficiently, which provides a good exploration to

improve the quality of product and will help to forecast the reliability of the software and

improve software reliability [2].

Software defects include detection defects and residual defects. Detection defects are

the defects which were detected before software release. Residual defects are the defects

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

2 Copyright ⓒ 2015 SERSC

which were detected after software release. The purpose of residual defects' prediction is

to keep the software defects number under the acceptable level in testing times [3-5].

During testing process, there will be a large accumulation of defect data, it is necessary

to merge the similar defect to the same type of defect for unify solution easily. And

defect model can predict residual defects. Defects can be effective managed and

predicted by defect classification and prediction model [6].

Software defect prediction models are known as software reliability growth models. A

large number of prediction models have been proposed and investigated over the last four

decades [7].

This paper discusses the residual defect prediction based on more techniques using a

large number of historical defect from testing. Firstly, this paper describes how to use

classifiers to classify software defects, then gives the distribution of residual defects.

Finally, the residual defects can be predicted. It provides a favorable recommendation for

product development and design.

2. Related Classifier Models

From a holistic point of view, software defect prediction studies can be

categorized as statistical and machine learning (ML) approaches. And the use of

machine learning approaches to fault prediction modeling is more popular. Most

defect prediction methods are based on product metrics [1].

Among these analysis studies, linear regression and logistic regression are the

ones most used in defect prediction. Linear regression is often used to predict the

number of defects a program unit contains, while logistic regression is usually used

to predict the likelihood that a program unit is defect-prone [7].

In recent years, the use of machine learning algorithms (classifiers) has proven to

be of great value in solving a variety of problems in software engineering including

software defect prediction [8-9].

The classifier is a hypothesis about the true classification function that is learned

from, or fitted to, training data. The classifier is then tested on test data. In

supervised learning, especially for multivariate data, a classification function y = f

(x) predicts one (or more) output attribute(s) or dependent variable(s) given the

values of the input attributes [10].

This section will discuss three classifiers: Association rules, Decision tree and k-

Nearest Neighbour [10-12].

2.1. Associations Rules

Association Rule, Proposed by Agrawal et al in 1993, is an important data

mining model studied extensively by the database and data mining community.

Assume all data are categorical. It is the task of discovering association rules that

occur frequently in a given transaction data set [13].

An association rule is a pattern that states when X occurs, Y occurs with certain

probability.

Its task is to find certain relationships among a set of data (item set) in the

database.

Association rules mining is interested in finding frequent rules that define

relations between unrelated frequent items in databases, and it has two main

measurements: support and confidence values. Confidence values are measurements

of rule’s strength, while support value corresponds to statistical significance.

An association rule states that an item or group of items implies the presence of

another item with some probability. Association rules reflect the relationship among

data or is a study whether the generation of a data can speculate the generation of

another data. Data association reflects the relationship in Database. The association

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

Copyright ⓒ 2015 SERSC 3

degree can be expressed through support and confidence. Thus, finding the

relationship among data in the transaction database is the mining purposes of

association rule.

Apriori algorithm has been shown as a classical association rule in mining

algorithms that have been cited so far, which is used to find frequent item sets in a

database and to generate Association Rules from the frequent item sets. Algorithm

is how to regenerate all the frequent itemsets. It uses an iterative approach layer by

layer, applying K-Itemset to search for (K+1)-Itemset [14].

2.2. Decision Tree

Decision tree (DT) induction is one of the simplest and yet most successful forms

of supervised learning algorithm. It has been extensively pursued and studied in

many areas such as statistics and ML [15] for the purposes of classification and

prediction.

DTs are non-parametric (no assumptions about the data are made) and a useful

means of representing the logic embodied in software routines. A decision tree

takes as input a case or example described by a set of attribute values, and outputs a

Boolean or multi-valued decision.

A classification tree, as opposed to a regression tree means that the response

variable is qualitative rather than quantitative. In the classification case, when the

response variable takes value in a set of previously defined classes the node is

assigned to the class which represents the highest proportion of observations.

Whereas, in the regression case, the value assigned to cases in a given terminal

node is the mean of the response variable values associated with the observations

belonging to a given node. Note that in both cases, this assignment is probabilistic,

in the sense that a measure of error is associated with it. Clustering trees just group

instances in leaves.

2.3. K-Nearest Neighbour

One of the most venerable algorithms in machine learning is the nearest

neighbour (NN). Nearest-neighbour methods are sometimes referred to as memory-

based reasoning or instance-based learning (IBL) or case-based learning (CBL)

techniques and have been used for classification tasks. They essentially work by

assigning to an unclassified sample point the classification of the nearest of a set of

previously classified points.

A further non-parametric procedure of this form is the k-nearest neighbour (k-

NN) approach. To classify an unknown pattern, the k-NN approach looks at a

collection of the k nearest points and uses a “ voting” mechanism to select

between them, instead of looking at the single nearest point and classifying

according to that with ties broken at random. If there are ties for the
thk nearest

observations, all candidates are included in the vote [16].

3. Related Defect Distribution Model

Software defect prediction technology includes lots of models. Here, we will discuss

several models used in this paper.

3.1. Rayleigh Distribution Model

Rayleigh model is a common reliability model. It can forecast the defect distribution

during software life cycle. This kind of model is based on the WeiBull statistical

distribution. WeiBull distributed reliability analysis is widely used in different field. The

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

4 Copyright ⓒ 2015 SERSC

probability density function of WeiBull distributed tag end is gradually converge to 0, but

never equal to 0. The experts of Trachtenberg and IBM have researched on the software

project faults and they found that the distribution accords with Rayleigh distribution

model. The probability distribution density function of Rayleigh model is as in (1).
2)/(2 e)c/t(K2f(t) ct (1),

the cumulative distribution function is as in (2)

)e1(KF(t)
2)/(ct (2),

where K is the total faults. T stnds for time, c is an constant and mt2c , where

mt is the time when f(t) reached maximum, and
K/)F(tm approximately equal to

0.4. Therefore, we can estimate the total number of defects at a certain time as well as the

specific Rayleigh distribution parameter. Thus we can simplify the counting process. It is

easy to control the quality of the enterprise performance goal by using Rayleigh model. It

is necessary to take measures to correct it when the process appeared abnormal [15-16].

3.2. Exponential Distributed Model

Exponential model accords with defect distribution for the testing phase, especially the

acceptance testing phase. The basic principle is that the defect occurs at this stage or the

failure mode is a good indication of the reliability of the product. Exponential model, also

known as reliability growth model, is divided into fault/failure count model and the

failure interval model. The defect probability distribution’s density function of the

exponential model is as in (3).

)(Kf(t) te (3)

And the defects cumulative distribution function is as in (4).

)1()(teKtF (4)

Where t is time, K is the total number of defects, is the defect detection rate or

failure occur rates. Exponential model is the most simple and most important model in

software reliability research, and also is a basis of many other reliability growth model.

Its basic assumptions are:

 Each defect leading to failure found in test phase is equal;

 The defect repair time is negligible;

 Each defect can be perfectly repaired and the repair will do not introduce new

defects, and so on.

Defects exponential probability density function and cumulative distribution function

are shown in Figure 1 and Figure 2 [17].

Figure 1. The Defect Exponential Distribution Probability Density
Function

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

Copyright ⓒ 2015 SERSC 5

Figure 2. The Defects Exponential Cumulative Distribution Function

3.3. S-curve Distributed Model

Yamada and other people proposed a test period not only includes detecting the

defects but also includes isolating defects. When there comes a defect, we need to find

the reason why defects are disabled. Therefore, there exists a time delay for finding a

defect until we report it. The accumulated time delayed defects accord with S curve

distribution and this is called delayed S-curve model which is also a reliable increment

model. S-curve model meet the requirement of nonhomogeneous Poisson process. Its

CDF is as in (5).

))1(1()(tetKtF
(5)

where t represents time; k represents total fault number; λ represents the possibility of

detecting a fault. The PDF is as in (6).
tteKtf 2)((6)

In 1984, Oghba [20] proposed another S-curve distributed model called transformed S

model. This model considers the detected faults are interdependent and the more defects

are detected the more faults will be detected later. The accumulated fault distributed

function (CDF) is as in (7).

)e1/()e1(KF(t) tt
 (7)

where t represents time; k represents total fault number; λ represents the possibility of

detecting a defect. Its PDF is as in (8) [17].
2)1/()1(KeKf(t) tt e

 (8)

3.4. The Lognormal Distribution Model

Lognormal model which can predict the defect distribution in the entire life cycle of

software is a most commonly used reliability model. Lognormal model is based on the

Weibull statistical distribution, and Weibull distribution is widely used statistical

distribution family in different areas of a reliability analysis, which has a large number of

statistical data to support [17-19].

Set software defects in the program block, B1, B2, Bm are m blocks of the program;

b1, b2, bn are n branches of the program. The probability of each branch being executed

obeys normal distribution, the probability of each block being executed can be expressed

as in (9).

)P(bP(B) ij
1

n

j (9)

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

6 Copyright ⓒ 2015 SERSC

Since
)P(bij obeyed normal distribution, according to the central limit theorem,

)P(B i obeys the lognormal distribution. The lognormal distribution of defects exposure

rate λ can be expressed as in (10).

2

2

2

)(ln

2

N
)(P

 e
 (10)

Where N is the initial number of defects; as a variable; is the average of the

logarithm of ;
2 is the variance of the logarithm of . Defects lognormal probability

density

Function and cumulative distribution functions are shown in Figure 3 and Figure 4.

Figure 3. Defects Probability Density Function

Figure 4. The Number of Defects Cumulative Distribution Function

3.5. Bayesian Belief Networks

Bayesian Belief Networks (BBNs) is a graphical network. The graph is made up of

nodes and arcs where the nodes represent uncertain variables and the arcs represent the

causal relationships between variables.

There are many advantages of using BBNs. The benefits of using BBN include:

 specification of complex relationships using conditional probability statements;

 use of "what - if? Analysis and forecasting of effects of process changes;

 explicit modeling of "ignorance" and uncertainty in estimates, forecasting with

missing data.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

Copyright ⓒ 2015 SERSC 7

There are three stages to set up software residual defects prediction model using BBNs

: (1) Setting variables set and field, (2) Constructing Network topology, (3) ascertainment

local probability distribution. Conditional probability expresses the relation of nodes and

their parents' nodes. Its transcendental probability is conditional probability which has no

parents node. These three steps are implemented interactively, not serially [17].

4. Defect Classification using Classifiers

Through a large number of test data, defect distribution can be summed up. We

applied association rules of data mining, and studied the relative defects, which can

analyze efficiently and prevent product defects, then improve product quality.

An association rules-based method has the strength of not requiring prior knowledge

on the system. The association rules approach compares with existing data mining

methods but has the slight advantage of detecting some anomalies which (otherwise)

could have been overlooked by conventional approaches.

In order to show the steps of residual defect prediction, this paper uses a typical GUI

defect data to analyze the classification and defects distribution. The data is shown in

Table 1.

Table 1. GUI Defect Classification

Term Defect classification

1 Interface display problem

2 Interface indication problem

3 Wrong character problem

4 Punctuation format problem

5 Inconformity semantic expression

6 Unreadable codes

7 Messy versions

8 Inconformity pictures

9 Inappropriate learning problem

10 Sequencing problem

11 Boundary problem

From Table 1, we use the association rules-based technology to get a defect

association relationship, shown as Table 2.

Relative analysis informs that a happening of one defect may incur another or many

other defects occur. For example, the problem of ‘interface displaying’ is associated with

‘interface indication problems’,’ consistency problems’ and ‘boundary problems’.

After the threshold values of minimum support and minimum confidence support are

given, frequent item sets and association rule will be generated by applying Apriori

arithmetic. We focus on the strong association rule which is the rule satisfying the

minimum support and minimum confidence [20-22].

Table 2. GUI Defect Association

Defect types Defect associations

Interface display problem
Interface indication problem, consistency

problem, boundary problem

Interface indication

problem

Interface display problem, consistency

problem, boundary problem, messy codes

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

8 Copyright ⓒ 2015 SERSC

Defect types Defect associations

Messy Versions Interface display problem

Graphical inconsistency
Interface indication problem, consistency

problem

Learnability problem
Interface indication problem, consistency

problem, boundary problem

Boundary problem
Interface display problem, Interface indication

problem, Consistency problem

Consistency problem

Interface display problem, Interface indication

problem, Boundary problem, Graphical

inconsistency

By this relationship, we can predict more defects.

5. Defect Prediction using Distribution Model

After getting the defect relationship, we can study the defects distribution, then we can

predict the residual defects. In order to obtain accurate distribution of software defects,

this paper uses many typical project defect data to analyze the distribution of defects.

Table 3 shows the average data of several projects.

Table 3. Defect Data

Date Defects

1 6

2 7

3 9

4 11

5 13

6 15

7 16

8 19

9 22

10 25

11 28

12 31

13 35

14 40

15 46

16 51

We draw the defect trend picture using data from Table 3, as shown in Figure 5.

We can infer from the trend of the data fitting curve that the distribution of software

defects is more consistent with the lognormal distribution. So we can select

lognormal distribution model to predict residual defects.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

Copyright ⓒ 2015 SERSC 9

Figure 5. Defect Trend Fitting

In our study, the least square method is used to make the regression analysis

about the parameters of the model.

In the last, we have achieved the expression of the model, the analysis results are

presented in (8).

)e1(123F(t) 0325.0 t (8)

Then, using this model to predict the project defects during the test phase. Figure

6 shows the difference between estimated data and actual data. Obviously, the two

curves are basically identical.

Figure 6. The Comparison between the Predicted and Actual Data

We can evaluate the accuracy of estimation by MRE (Magnitude of Relative

Error). Namely,

i

ii
i Actual

EstimatedActual
MRE

The MMRE (Mean of the Magnitude of Relative Error) is also a useful

evaluation tool, Its Equation is as in (9).

n

i
iMRE

n
MMRE

1

1

 (9)

For Figure. 6, the MMRE is 8.6%. The calculated MMRE of similar projects is

close to 8.9%.

6. Conclusions

This paper analyzed the related technologies about classifiers and distribution

model. From the representative collected software defects data of GUI projects, the

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

10 Copyright ⓒ 2015 SERSC

paper used several classifier algorithms to get defect classification table, then

applied mathematical methods to show that the distribution of this kind of software

project defects is consistent with the lognormal distribution better. If we can find

out which distribution the software defects obeyed in accordance with the defects

classification, we can use the fault injection method to simulate software fault, and

study the accelerated test method under certain defects distribution, which can

effectively improve the software test coverage, reduce test time, reduce cost of test.

Further study will continuously work on specializing projects and keep on

researching other prediction model as well.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China

(Grant No. 61170273).

References

[1] Xiao D. M., Rui H. C. and Li Z., “Software Defect Prediction Based on Competitive Organization

CoEvolutionary Algorithm,” Journal of Convergence Information Technology (JCIT), vol. 7 no. 5,

March, (2012).

[2] Gaffney J. E., “Estimating the number of faults in code,” IEEE Transactions on Software engineering,

vol. 10 no. 6, (1984), pp. 459- 464.

[3] Fenton N. and Neil M., “A Critique of Software Defect Prediction Models,” IEEE Transaction on

Software Engineering, vol. 25 no. 5, (1999), pp. 675- 689.

[4] May J., “Fault prediction for software,” Oxford: Oxford University Press, (1995).

[5] C. Wohlin and P. Runeson, “Defect Content Estimations from Review Data, In Proceedings of the

Twentieth International Conference on Software Engineering,” IEEE Computer Society Press, (1998),

pp.400–409.

[6] Fenton N., Krause P. and Neilm M., “A probabilistic Model for Software Defect Prediction.”

[7] Kazu O., “Software Defect Prediction Based on Stability Test Data,” IEEE, (2011).

[8] L. Breiman, “Bagging predictors,” Machine Learning, vol. 26 no. 2, (1996), pp. 123-140.

[9] L. Breiman, J. Friedman, R. Olshen and C. Stone, (1984). “Classification and Regression Trees,”

Wadsworth, (1984).

[10] E. Bauer and R. Kohavi, “An empirical comparison of voting classification algorithms: Bagging,

boosting and variants,” Machine Learning, vol. 36 no. 1/2, (1999), pp. 105-139.

[11] T. Dietterich, “An experimental comparison of three methods for constructing ensembles of decision

trees: Bagging, boosting, and randomization,” Machine Learning, vol. 40 no. 2, (2000), pp. 139-158.

[12] Bhekisipho T., “Software Faults Prediction Using Multiple Classifiers,” www.cnki.net.

[13] C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining and

Knowledge Discovery. Kluwer Academic Publishers, (1998).

[14] Wanjiang H.,Tianbo L. and Sun Y., “Research on the Problem Model of GUI based on Knowledge

Discovery in Database,” Proceedings of the 2013 International Conference on Software Engineering

and Computer Science, (2013), pp. 5-9.

[15] J.R. Quinlan. C.4.5: Programs for machine learning. Los Altos, California: Morgan Kauffman

Publishers, INC., 1993.

[16] P. Domingos, “On the optimality of the simple Bayesian classifier under zero-one loss,” Machine

Learning, vol. 29, (1997), pp. 103-130.

[17] Ouyang X., Shuai C. Y., “The research of lognormal probability distribution of software defects,”

International Conference on Circuit and Signal Processing, (2010).

[18] Mullen R., “The lognormal distribution of software failure rates application to software reliability

growth modeling,” Proc of the 9th international symposium on software reliability engineering

Washington DC: IEEE computer society, (1998), pp. 134.

[19] Mullen R., “The lognormal distribution of software failure rates: origin and evidence,” Proc of the 9th

international symposium on software reliability engineering Washington DC: IEEE computer society,

(1998), pp. 124.

[20] Wanjiang H., “Research of the Defect Model Based on Similarity and Association Rule,” unpublished.

[21] Wanjiang H., “Research on Software Fault Distribution for Web Application,” unpublished.

[22] Li C. and Fan M., (2004) “Generating association rules based on threaded frequent pattern tree. Comput

Eng Appl, (in Chinese), vol. 4, (2004), pp. 188-192.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

Copyright ⓒ 2015 SERSC 11

Authors

Wan-Jiang Han, was born in Hei Long Jiang province, China, 1967.

She received her Bachelor Degree in Computer Science from Hei Long

Jiang University in 1989 and her Master Degree in Automation from

Harbin Institute of Technology in 1992.

She is an assistant professor in School Of Software Engineering,

Beijing University of Posts and Telecommunication, China. Her

technical interests include software project management and software

process improvement.

Li-Xin Jiang was born in Hei Long Jiang province, China, 1966. He

received his Bachelor Degree and Master Degree in physical geography

from Beijing University in 1989 and 1992.

He is a professor in the department of Emergency Response of China

Earthquake Networks Center. His technical interests include software

cost estimation and Emergency Response software development.

Tian-Bo Lu was born in Guizhou Province, China, 1977. He received

his Master Degree in computer science from Wuhan University in 2003

and his PH.D Degree in computer science from the Institute of

Computing Technology of the Chinese Academy of Sciences in 2006.

He is an Associate professor in School of Software Engineering,

Beijing University of Posts and Telecommunications, China. His

technical interests include information and network security, trusted

software and P2P computing.

Xiao-Yan Zhang was born in Shandong Province, China, 1973. She

received her Master Degree in Computer Application in 1997 and her

PH.D Degree in Communication and information system from Beijing

University of Posts and Telecommunication, China, in 2011.She is an

Associate professor in School of Software Engineering, Beijing

University of Posts and Telecommunications, Beijing, China. Her

technical interests include software cost estimation and software process

improvement.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.8 (2015)

12 Copyright ⓒ 2015 SERSC

