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Abstract 

In this paper, we compare well known interpolation methods such as nearest neighbor, 

bilinear, bicubic, triangle kernel, and Lagrangian interpolation method. Reconstruction 

errors from above interpolation methods are compared using test image. From the 

simulation results, it can be found that Lagrangian method outperforms all other 

upsampling methods. Visual performance comparison is provided by using two LC 

images.  
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1. Introduction 

Upsampling methods are widely exploited in image processing. For instance, image de 

interlacing upsamples vertically and enhances vertical resolution [1]. The demosaicking is 

used for color image interpolation which enhances horizontal and vertical resolution of 

each color components [2]. Thus the red, green and blue channels are populated and 

missing information is upsampled in each color channel.  

The image upsampling well matches to the case where multiple inputs are anonymous 

[3]. In this case, the number of missing pixels to be assessed is more than the size of the 

existing data, estimating missing information is hard to solve [4]. For instance, if we infer 

missing pixels in an image by a factor of n, a pixel in the input image corresponds to n
2
 

unknown pixels. The super-resolution method tries to restore a high-resolution image 

from a low-resolution input with sub-pixel displacements [5]. Many single channel 

upsampling approaches have been proposed literature [6-7]. Among them, nearest 

neighbor, bilinear, bicubic, triangle kernel, and Lagrangian interpolation are well known 

and utilized for upsampling. In this paper, we compare above methods and assess each 

method’s performance.  

In this paper, we test some upsampling filters: they are nearest neighbor, bilinear, 

bicubic, triangle kernel, and Lagrangian methods. These filters are known as work well 

and relatively fast in general, however some methods are known to be outperforming the 

others. Section 2 introduces details of all filters. Performance comparison is simulated in 

Section 3 and Section 4 finishes this paper with conclusion remarks.  

 

2. Various Image Upsampling Filters  

Figure 1 shows resulted images with downsampling and upsampling processes with 

bilinear filter. We used ‘Pont du Gard’ image as our test sequence and Figure. 1(a) shows 

the original image and Figures. 1(b,c) represent downsampled images with factors of 2 

and 4 from Figure. 1(a), respectively. Then, Figures. 1(b,c) are upsampled by ‘bilinear’ 

method, these results are shown in Figures. 1(d,e). As can be seen in Figures, details and 

edges of Figure. 1(d) is more well preserved than that of Figuew. 1(e). However, this edge 

preservation can be further improved by using other upsampling methods.  
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(a) 

 
 

(b) (c) 

  

(d) (e) 

Figure. 1. Downsampling and Upsampling Examples 

2.1. Conventional Filters  

The nearest neighbor is a method which determines intensity of missing pixel with the 

locally closest pixel value. Thus once the nearest neighbor method selects the value of the 

closest point, it ignores the other neighbor information.  

Another example is bilinear filter. The bilinear interpolation method is an extension of 

linear interpolation for interpolating functions of two variables, a and b. If we two points 

(a0 ,b0) and (a1 ,b1) are known, then output value bout is obtained as, 

    0 1 0 1 0 0
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Other example is bicubic method. The bicubic method is an extension of cubic 

interpolation for upsampling data points on a two dimensional regular grid. Generally 

speaking, bicubic method is widely selected over other methods such as bilinear 

interpolation or nearest neighbor due to its fair performance. However, as bicubic method 

considers more pixels to calculate, sometimes slow speed of bicubic method can be issued. 

The weight, w, of pixel position can be explained as,  
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Another example is cubic spline method which is represented by polynomial functions. 

In interpolation problems, cubic spline is well adopted to polynomial interpolation tool 

due to its characteristics that avoids instability.  

 

2.2. Lagrange Interpolation Method  

Let us assume we have a set of k points on a Cartesian plane.  

     0 0 1 1, , , ,..., , .k ka b a b a b   (3) 

The interpolation polynomial in the Lagrange form can be stated as, 
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of Lagrange basis polynomials  
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Finally L(ai) can be calculated as,  
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2.3. Implementation 

A process of Lagrange interpolation calculation is shown in Fig. 2, where six (a,b) 

point sets are provided as shown in Eq. (7): 

 

a=[-9 -4 -1 5 7 9]; 

b=[ 3 -2 1 4 8 7]; 
(7) 

The polynomial interpolation travels through all six control points. Each scaled basis 

polynomial travels through its corresponding control point. Figure 2 shows an example of 

Lagrange interpolation where the cubic interpolation polynomial is drawn in solid black, 

pixels (-9,3), (-4,-2), (-1,1), (5,4), (7,8), and (9,7) are drawn in red, green, blue, magenta, 

yellow, and cyan color.  

 

 

Figure 2. Lagrange Interpolation Example #1 
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Figure 3. Lagrange Interpolation Example #2 

Figure 3 shows an another example of Lagrange interpolation. We used eight points 

(1,-1), (2,-1), (3,-1), (4,-1), (5,-1), (6,-1), (7,-1), and (8,-1). Lagrange interpolation results 

are drawn in Fig. 3, where basis-spline is drawn in solid-black and Lagrange interpolation 

is drawn in blue. Square symbols in red display the existing values.  

 

3. Simulation Results  

This section compares objective and subjective performance on LC dataset. Figure 4 

shows 25 selected images of 150 LC dataset. Among them, images #14 and #18 were 

used for visual comparison. The size of LC dataset is 720×540 pixels. For objective 

performance comparison, we used ‘Cameraman.tif’ image provided in Matlab.  

 

 

Figure 4. 25 Selected LC Dataset 

3.1. Objective Performance Comparison  

To compare objective performance, we adopted ‘Cameraman’ image. To carefully 

assess each method’s performance, we selected three image areas: (a) 126
th
 row and 1-11

th
, 

(b) 126
th
 row and 101-111

th
, and (c) 126

th
 row and 201-211

th
.  
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Figure 5 shows objective performance comparison on ‘Cameraman’ image at 126
th
 row 

and 1 to 11
th
 columns for four methods with original image. The used methods were 

nearest neighbor method, bilinear, bicubic, and Lagrange method. Figure 5(a) shows each 

method’s reconstructed intensities and Figure. 5(b) shows intensity differences between 

original and each used method. Note that intensity ‘0’ and ‘1’ in double represent ‘0’ and 

‘255’ in uint8, respectively. From Figure. 5, one can find Lagrange method gives the best 

performance (the most similar intensities with the original intensities). The bilinear and 

bicubic methods displayed similar performance and nearest neighbor method was the 

poorest.  

 

  

(a) (b) 

Figure 5. Objective Performance Comparison on ‘Cameraman’ Image at 
126th Row and 1-11th Columns for Various Methods: (a) Intensities, (b) 

Intensity Differences between Original and Each Method 

Figure 6 shows results on ‘Cameraman’ image at 126
th
 row and 101 to 111

th
 columns 

for four methods. As one can see, Lagrange method provided the most similar results with 

the original pixels. Interestingly, bilinear filter outperformed bicubic filter for these pixels. 

The nearest neighbor method showed the worst results for these pixels.  

 

  

(a) (b) 

Figure 6. Objective Performance Comparison on Cameraman Image at 126th 
Row and 101-111th Columns for Carious Methods: (a) Intensities, (b) 

Intensity Differences between Original and Each Method 

Finally, Figure 7 shows results on ‘Cameraman’ image at 126
th
 row and 201 to 211

th
 

columns for four methods. Still, the Lagrange method produced the best results, followed 

by bilinear, bicubic, and nearest neighbor methods.  
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(a) (b) 

Figure 7. Objective Performance Comparison on Cameraman Image at 126th 
Row and 201-211th Columns for Various Methods: (a) Intensities, (b) 

Intensity Differences between Original and each Method 

Table 1. Reconstructed Intensities of 126th Row, 3rd to 9th Columns 

Methods 3 4 5 6 7 8 9 

Original 0.6353 0.6314 0.6431 0.6510 0.6471 0.6353 0.6353 

Nearest 0.6235 0.6235 0.6353 0.6353 0.6353 0.6353 0.6431 

Bilinear 0.6265 0.6265 0.6324 0.6324 0.6373 0.6373 0.6412 

Bicubic 0.6257 0.6257 0.6324 0.6324 0.6376 0.6376 0.6415 

Lagrange 0.6353 0.6397 0.6431 0.6439 0.6471 0.6321 0.6353 

Table 2. Intensity Difference between Original and the Various Methods of 
Table 1 

Methods 3 4 5 6 7 8 9 abs. 

diff. 

Nearest 0.0118 0.0079 0.0078 0.0157 0.0118 0.0000 -0.0078 0.0090 

Bilinear 0.0088 0.0049 0.0107 0.0186 0.0098 -0.0020 -0.0059 0.0087 

Bicubic 0.0096 0.0057 0.0107 0.0186 0.0095 -0.0023 -0.0062 0.0089 

Lagrange 0.0000 -0.0083 0.0000 0.0071 0.0000 0.0032 0.0000 0.0027 

Table 3. Reconstructed Intensities of 126th Row, 103rd to 109th Columns 

Methods 3 4 5 6 7 8 9 

Original 0.0471 0.0510 0.0510 0.0588 0.0588 0.0588 0.0588 

Nearest 0.0549 0.0549 0.0471 0.0471 0.0471 0.0471 0.0510 

Bilinear 0.0529 0.0529 0.0490 0.0490 0.0480 0.0480 0.0500 

Bicubic 0.0532 0.0532 0.0484 0.0484 0.0471 0.0471 0.0494 

Lagrange 0.0471 0.0480 0.0510 0.0605 0.0588 0.0571 0.0588 

Table 4. Intensity Difference between Original and the Various Methods of 
Table 3 

Methods 3 4 5 6 7 8 9 abs. 

diff. 

Nearest -0.0078 -0.0039 0.0039 0.0117 0.0117 0.0117 0.0078 0.0084 

Bilinear -0.0058 -0.0019 0.0020 0.0098 0.0108 0.0108 0.0088 0.0071 

Bicubic -0.0061 -0.0022 0.0026 0.0104 0.0117 0.0117 0.0094 0.0077 

Lagrange 0.0000 0.0030 0.0000 -0.0017 0.0000 0.0017 0.0000 0.0009 
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Figures 5-7 can be tabulated in Tables 1-3. Odd numbers of tables are intensity values 

while even numbers of Tables are intensity differences between original and various 

methods. The last columns of even numbered Tables are absolution difference results. It 

means, larger ‘abs. diff.’ indicates bigger variance and smaller ‘abs. diff.’ represents small 

variance. 

Table 5. Reconstructed Intensities of 126th Row, 203rd to 209th Columns 

Methods 3 4 5 6 7 8 9 

Original 0.7333 0.7020 0.6275 0.6314 0.6314 0.6431 0.6275 

Nearest 0.7216 0.7216 0.7333 0.7333 0.7333 0.7333 0.6275 

Bilinear 0.7245 0.7245 0.7304 0.7304 0.7069 0.7069 0.6539 

Bicubic 0.7264 0.7264 0.7384 0.7384 0.7126 0.7126 0.6490 

Lagrange 0.7333 0.6809 0.6275 0.6377 0.6314 0.6250 0.6275 

Table 6. Intensity Difference between Original and the Various Methods of 
Table 5 

Methods 3 4 5 6 7 8 9 abs. 

diff. 

Nearest 0.0117 -0.0196 -0.1058 -0.1019 -0.1019 -0.0902 0.0000 0.0616 

Bilinear 0.0088 -0.0225 -0.1029 -0.0990 -0.0755 -0.0638 -0.0264 0.0570 

Bicubic 0.0069 -0.0244 -0.1109 -0.1070 -0.0812 -0.0695 -0.0215 0.0602 

Lagrange 0.0000 0.0211 0.0000 -0.0063 0.0000 0.0181 0.0000 0.0065 

 

3.2. Visual Performance Comparison  

Subjective performance comparison is tested using two LC images of LC dataset: #14 

and #18 images. Figure 8 shows both original images.  

 

  

(a) (b) 

Figure 8. Test LC Dataset: (a) #14 LC Image, (b) #18 LC Image. 

The original images are downsampled by factor of 2, and upsampled using various 

methods. Figures 9(a) and 10(a) show zoomed results of various methods. Original 

images are shown in Figures. 9(a) and 10(a), and results of nearest neighbor, bilinear, 

bicubic, triangle filter, and Lagrange interpolation are displayed in Figures. 9(b-f) and 

10(b-f).   

Restored images produced various artifacts. For instance, Figures. 9(b) and 10(b) 

showed staircase artifact and ‘yellow and orange’ color-artifacts were shown at high 

frequency area. Figures 9(c,e) and 10(c,e)  showed blurred results. Although Figures. 9(d) 

and 10(d) produced blurred images, but edges are more preserved than Figures. 9(c,e) and 

10(c,e). In contrast, Figures. 9(f) and 10(f) provided the best visual results where details 

were well preserved.  
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Figures 11 and 12 show the difference images between original and produced 

reconstructed ones. These figures clearly indicate that Lagrange method produced the 

least artifacts and provide the best results out of all compared methods.  

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 9. Restored Images: (a) Original #14 LC Image, (b) Nearest Neighbor 
Method, (c) Bilinear Method, (d) Bicubic Method, (e) Triangle Filter, and (f) 

Lagrange Method 

   

(a) (b) (c) 
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(d) (e) (f) 

Figure 10. Restored Images: (a) Original #18 LC Image, (b) Nearest Neighbor 
Method, (c) Bilinear Method, (d) Bicubic Method, (e) Triangle Filter, and (f) 

Lagrange Method 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 11. Difference between Original and Restored Images: (a) Original 
#14 LC Image, (b) Nearest Neighbor Method, (c) Bilinear Method, (d) Bicubic 

Method, (e) Triangle Filter, and (f) Lagrange Method 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 12. Difference between Original and Restored Images: (a) Original 
#18 LC Image, (b) Nearest Neighbor Method, (c) Bilinear Method, (d) Bicubic 

Method, (e) Triangle Filter, and (f) Lagrange Method 

4. Conclusion 

In this paper, we compared conventional interpolation filters such as nearest neighbor, 

bilinear, bicubic, triangle kernel, and Lagrangian interpolation method. Experimental 

results show that the Lagrangian method provided the best performance among all 

compared methods.  
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