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Abstract 

EDZL (Earliest Deadline Zero Laxity) scheduling is known to be at least as EDF 

(Earliest Deadline First) in task scheduling on symmetric multiprocessor real-time 

systems; however, there are few works on energy conversation on the EDZL. This paper 

proposes an on-line Dynamic Voltage Scaling (DVS) algorithm of the global EDZL to 

reduce energy consumption of real-time tasks. The proposed algorithm dynamically 

adjusts processor speed at each scheduling point with re-assigning deadlines of active 

jobs that reduces power consumption of processors while making all real-time tasks 

schedulable by EDZL. Extensive simulations show that the proposed algorithm reduces 

power consumption more than the previous algorithm for EDZL. 
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1. Introduction 

As the processing power of embedded processors grows, modern embedded systems 

can use the computation power of multiprocessors to run complex real-time applications. 

However, due to limited power supply, minimizing energy consumption while 

guaranteeing timing constraints is an important design issue of multiprocessor embedded 

systems. To reduce energy consumption, dynamic voltage scaling techniques have been 

introduced to exploit the hardware characteristics of processors by lowering supply 

voltage or speed. A small reduction in processor speed, which is linearly proportional to 

supply voltage, can result in a significant reduction in energy consumption since power 

consumption of a processor is in quadratic relation with supply voltage or speed [1]. But 

lowering supply voltage or speed might affect the schedulability of real-time tasks on the 

system. Therefore, the main objective of DVS algorithms is to control processor supply 

voltage or speed without missing any deadlines of real-time tasks. 

There have been many DVS algorithms proposed to reduce energy consumption for 

real-time tasks. Aydin et al. [2] proposed energy-aware algorithms for periodic tasks on 

multiprocessor platforms. Also, polynomial time approximation algorithms were 

proposed for frame-based tasks in [3,4]. Based on the observation that tasks might 

complete earlier than their worst-case execution time, a slack time reclamation algorithm 

was proposed in [5]. Though the global EDZL [6] outperforms EDF [7-10], few works on 

energy conservation for EDZL other than our previous works in [11,12] could be found. 

In previous works, we proposed an off-line algorithm and an on-line algorithm for EDZL; 

the off-line algorithm determines a static processor speed at design time and the on-line 

algorithm determines a dynamic speed at each scheduling point. This paper is an 

extension of our previous works: an enhanced on-line DVS algorithm of the global EDZL 
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scheduling which makes all real-time tasks schedulable while reducing power 

consumption of processors on symmetric multiprocessor real-time systems. 

The rest of this paper is organized as follows. Section 2 defines the system model. 

Section 3 briefly reviews the EDZL scheduling and Section 4 presents a deadline re-

assignment method for scaling voltage with the EDZL scheduling. In Section 5, we 

present a new on-line DVS algorithm based on the deadline re-assignment method. 

Section 6 presents the simulation results comparing energy consumption of the proposed 

method with the previous works and Section 7 concludes our work. 

 

2. System Model 

We consider a preemptive hard real-time system in which periodic tasks are 

scheduled by EDZL on 𝑚 processors running at an identical speed. A periodic task 

set 𝜏 = {𝜏1, 𝜏2, ⋯ , 𝜏𝑛} consists of 𝑛 independent periodic tasks. A periodic task 𝜏𝑖 is 

characterized by (𝑒𝑖, 𝑝𝑖), where 𝑒𝑖  represents the worst case execution time at the 

maximum processor speed and 𝑝𝑖 represents a period. The relative deadline of each 

task is equal to its period. The utilization of 𝜏𝑖 is defined as 

𝑈𝑖 = 𝑒𝑖/𝑝𝑖.          (1) 

The total utilization of a task set 𝜏 is defined as 

𝑈(𝜏) = ∑  𝑛
𝑖=1 𝑈𝑖 .        (2) 

The maximum utilization of 𝜏 is defined as 

𝑈max(𝜏) = max
𝜏𝑖∈𝜏

(𝑈𝑖).        (3) 

An execution instance of a periodic task 𝜏𝑖 at time 𝑡, denoted by 𝒥𝑖(𝑡), is called as 

a job which is characterized by (𝒞𝑖(𝑡), 𝒟𝑖(𝑡)), where 𝒞𝑖(𝑡) represents a remaining 

execution time and 𝒟𝑖(𝑡) represents an absolute deadline at time 𝑡. An active job set 

at time 𝑡 is denoted by 𝒥(𝑡) = {𝒥𝑖(𝑡)}. The laxity of 𝒥𝑖(𝑡) is defined as 

𝒟𝑖(𝑡) − 𝑡 −
𝒞𝑖(𝑡)

𝒮(𝑡)
,         (4) 

where 𝒮(𝑡)  represents the speed of processors at time 𝑡  normalized to the 

maximum speed of the processor. The density of 𝒥(𝑡) is defined as  

𝜆𝑖(𝑡) =
𝒞𝑖(𝑡)

𝒟𝑖(𝑡)−𝑡
.         (5) 

The density set for 𝒥(𝑡) is defined as  

𝜆(𝑡) = {𝜆𝑖(𝑡)}.         (6) 

Then the maximum density of 𝒥(𝑡) is defined as  

𝜆max(𝑡) = max
𝜆𝑖(𝑡)∈𝜆(𝑡)

(𝜆𝑖(𝑡)).       (7) 

Now we introduce the power model used in this paper. Power consumption of a 

processor is dominated by dynamic power dissipation 

𝑃𝐷 = 𝐶𝑒𝑓 ⋅ 𝑉𝐷
2 ⋅ 𝑓,         (8) 

where 𝐶𝑒𝑓 represents effective switched capacitance, 𝑉𝐷 represents supply voltage 

and 𝑓 represents clock frequency. 

The circuit delay 𝑡𝑑 is inversely related to the supply voltage 𝑉𝐷 as given by the 

formula 

𝑡𝑑 =
𝑘𝑉𝐷

(𝑉𝐷−𝑉𝑡)2,         (9) 

where 𝑘  is a constant and 𝑉𝑡  is a threshold voltage. Since clock frequency is 

inversely proportional to circuit delay and processor speed is approximately 

proportional to the supply voltage [13], the power consumption is roughly 

proportional to the cube of the supply voltage.  

In essence, Voltage scaling technique saves energy at the expense of increased 

latency. We assume that the processor speed can be adjusted to any value from 0% to 

100% of the maximum processor speed, and power loss of voltage switching and time 

overhead to change processor supply voltage/speed are assumed to be negligible as in 
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[4]. 

 

3. EDZL Overview 

In multiprocessor real-time systems, scheduling algorithms is classified into a 

partitioned approach or a global approach by the job-level migration. If no migration is 

permitted in a scheduling algorithm, it is referred as partitioned approach; otherwise, it is 

a global approach. Each approach has advantages over the other. Comparing to the global 

scheduling approach, the partitioned scheduling has the following advantages: (a) there is 

no penalty in terms of migration cost, (b) when a task overruns its worst-case execution 

time, it only affects tasks on the same processor, and (c) the overhead of manipulating a 

separate run-queue per processor is lower than that of manipulating a single global queue. 

On the other hand, the global scheduling has the following advantages over the 

partitioned scheduling: (a) there are typically fewer context switches and preemptions, (b) 

there is no need for re-balancing and task re-allocation even if the task set changes in run 

time, and (c) if the actual task execution is less than its worst-case execution time, then 

spare capacity which can be used later for other task is reserved. In this sense, global 

scheduling is more appropriate for open systems [14] where tasks can join and leave 

dynamically. 

EDF [15], LLF (Least Laxity First) [16], EDF-US [17] and fpEDF [18] are some 

examples of the scheduling algorithms following the global approach. The global EDF 

assigns the highest priority to jobs with the earliest deadline and is optimal on 

uniprocessor, but the utilization bound could be very low in the worst case on 

multiprocessor. The LLF might utilize processor higher than the global EDF but it can 

cause a large number of context switches. The EDF-US and the fpEDF are variants of 

EDF. They divide tasks into higher utilization and lower utilization tasks. The higher 

utilization tasks are given the highest priority and lower utilization tasks are given 

priorities according to EDF. Two algorithms differ in the boundary condition that dives 

tasks and in their schedulable utilization bound. 

Combining the advantage of EDF and LLF, EDZL is introduced to provide a high 

schedulable utilization bound with a small number of preemptions. EDZL considers both 

deadline and laxity of jobs in priority assignment. Jobs with zero laxity are assigned the 

highest priority and other jobs are assigned priorities by EDF, and ties between jobs with 

same priority are broken arbitrarily. Since the global EDF and the global EDZL 

scheduling are both work conserving [7], the processors are never idle if there is a ready 

job. A scheduling algorithm A1 is said to strictly dominate another scheduling 

algorithm A2 if any task set schedulable by A2 is also schedulable by A1 and there is 

a task set which is schedulable by A1 but not schedulable by A2. The global EDZL 

strictly dominates the global EDF and it is suboptimal for two processors [9]. It was 

shown that the EDZL is completion time predictable in [20] in the sense defined by Ha 

and Liu [19]. 

For EDZL scheduling, we proposed low-power algorithms for static speed 

determination and dynamic speed determination in [11,12]. To determine a static speed, 

we was used the schedulability condition of EDZL and the schedulability condition of 

EDF. Since EDZL strictly dominates EDF, a speed obtained from EDF schedulability 

condition can be used as a static speed of EDZL. Therefore, the static speed is determined 

as a small value between a speed obtained from EDF schedulability condition and a speed 

obtained from EDZL schedulability condition. To determine a dynamic speed at each 

scheduling point, we was used a property of EDZL which is if the density of an active job 

set within an time interval from current time to the minimum upcoming release time, and 

the maximum density within the interval is less than or equal to one, then the active job 

set is schedulable by EDZL even though the deadlines of all active jobs are set to the 

minimum upcoming release time. Therefore, a speed can be obtained whenever an active 
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job set satisfies the above conditions. Ultimately, the dynamic speed is determines as a 

small value between the static speed and the speed obtained from the property of EDZL. 

 

4. Deadline Re-Assignment Method 
Let us introduce the following notations for further discussion. At time t, the next 

release time of a task 𝜏𝑖  is given by  

ℛ𝑖(𝑡) = 𝒟𝑖(𝑡) + 𝑝𝑖 .        (10) 

The first k upcoming release times of all tasks sorted by increasing order at time t 

are denoted by ℛ1(𝑡), ℛ2(𝑡), ⋯ , ℛ𝑘(𝑡). We can choose any 𝑘 such that  

ℛ𝑘(𝑡) ≤ max{𝒟𝑖(𝑡)}.       (11) 

The minimum upcoming release time is defined as 

ℛmin(𝑡) = min
𝜏𝑖∈𝜏

(ℛ𝑖(𝑡)) = ℛ1(𝑡).      (12) 

In previous work of [11], the method of dynamic speed calculation for EDZL was 

applicable only when all the active jobs can be completed before ℛmin(𝑡). Thus the 

previous method could be applied for very limited cases only. If active jobs are not to 

be completed before ℛmin(𝑡) , tasks run at the static speed, so additional energy 

saving could not be achieved even though actual execution time of a job is shorter 

than the worst case execution time. However, we found that by considering the 

farther release times of tasks, the speed of the processors can be more reduced, which 

may result in less power consumption. This is done by re-assigning deadlines that 

makes tasks schedulable by EDZL. 

Algorithm 1 shows the pseudo-code for absolute deadline assignment. The 

algorithm tries to find a deadline assignment with which the jobs can complete before 

R
i
(t) where 𝑖 ≤ 𝑘. The absolute deadlines are set to the upcoming release times by 

Algorithm 1 in 𝑂(𝑘𝑛) time when there are n tasks. An assigned deadline is shorter 

than or equal to the existing one. The schedulability of the jobs with re-assigned 

deadline will be discussed later. 

Example: Let us consider a periodic task set 𝜏  is 𝜏1 = (2,5), 𝜏2 = (4,12), 𝜏3 =
(1,4), 𝜏4 = (2,8). Assume that the tasks in   are released at time zero for the first 

time simultaneously. When the job set is scheduled by EDZL on two processors  𝑃1 

and 𝑃2, the job set is scheduled in the same way as the EDF schedule since no job 

reaches zero laxity as shown in Figure 1(a).  

Consider the situation at time 1 when the job of 𝜏3 finishes. The active job set 𝒥(1) 

is 𝒥1(1) = (1,5), 𝒥2(1) = (4,12), 𝒥4(1) = (2,8). For this job set, the dynamic speed 

determination method presented in [11] cannot be applied because 
1+4+2

4−1
> 2.  

However, if we re-assign the absolute deadlines of jobs as 𝒟1(1) = 4, 𝒟2(1) = 5, 

𝒟4(1) = 4 at time 1, then the job 𝒥2(1) reaches zero laxity at time 1 and the job set 

is scheduled by EDZL as shown in Figure 1(b). As a result, the latest completion time 

of jobs in 𝒥(0)  becomes shorter than Figure 1(a).  

Algorithm 1: Absolute Deadline Assignment 

                      𝒟𝑖(𝑡) ← ℛ 𝑗(𝑡) 

Input: a job set 𝒥(𝑡)  

Output: a modified job set with absolute deadlines reassigned   

forall 𝒥𝑖(𝑡) ∈ 𝒥(𝑡) do 
 for 𝑗 = 𝑘 downto 1 do 

if  𝒟𝑖(𝑡) ≥ ℛ 𝑗(𝑡) and 
𝒞𝑖(𝑡)

ℛ𝑗(𝑡)−𝑡
≤ 1  then 

endif 

   endfor 

endfor 
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In the above example, we found that an active job set can be completed with 

absolute deadline re-assignment. Moreover, the following conditions must be 

satisfied for the jobs to meet their deadlines. The re-assigned absolute deadline of 

𝒥𝑖(𝑡) by Algorithm 1 is denoted by 𝒟𝑖
′(𝑡). 

 

• The density of each job with the re-assigned absolute deadline must be less than 1,  

i.e.,  

∀𝒥𝑖(𝑡) ∈ 𝒥(𝑡), 𝜆𝑖(𝑡) ≤ 1,       (13) 

where  

𝜆𝑖(𝑡) =
𝒞𝑖(𝑡)

𝒟𝑖
′(𝑡)−𝑡

.        (14) 

• The sum of 𝜆𝑖(𝑡)'s must be less than the number of processors,  i.e.,  

∑  ∀𝒥𝑖(𝑡)∈𝒥(𝑡) 𝜆𝑖(𝑡) ≤ 𝑚.       (15) 

The following theorem provides a schedulability condition for EDZL with re-assigned 

absolute deadline. 

 

Theorem 1 If the absolute deadlines of jobs in an active job set 𝒥(𝑡) are set by 

Algorithm 1 such that the 𝒥(𝑡) satisfies Equation (13) and Equation (15), then all 

jobs in 𝒥(𝑡) meet deadlines by the EDZL.  

 

Proof. We will show that if a job misses its deadline, then  

∑  

∀𝒥𝑖(𝑡)∈𝒥(𝑡)

𝜆𝑖(𝑡) > 𝑚. 

Suppose that all jobs in 𝒥(𝑡) have re-assigned deadlines by Algorithm 1 but a job 𝒥𝑖(𝑡) 

in 𝒥(𝑡) misses its deadline. Let 𝑡′ be the time at which any job in 𝒥(𝑡) has zero laxity for 

the first time after or at 𝑡, and 𝒟𝑖
′(𝑡) be the re-assigned deadline of 𝒥𝑖(𝑡). Note that before 

𝑡′, the tasks are scheduled by the EDF. Without loss of generality, we can assume that 

 

(a) 𝒟1(1) = 5, 𝒟2(1) = 12, 𝒟3 = 4,𝒟4(1) = 8 

 

(b) 𝒟1(1) = 4, 𝒟2(1) = 5, 𝒟3 = 4,𝒟4(1) = 4 

 

Figure 1. An EDZL Schedule of the Example 
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𝒟𝑖
′(𝑡) is the shortest re-assigned deadline among jobs with zero laxity at time 𝑡′, since the 

EDZL can break ties arbitrarily. 

Let the job set that will have zero laxity at time 𝑡′ be 𝒥′(𝑡). Since the EDZL is work-

conserving, if a job misses its deadline then there is no idle time before the deadline. So 

𝑚(𝑡′ − 𝑡) times are executed during the time interval [𝑡, 𝑡′] . Any job 𝒥𝑗
′(𝑡)  executed 

during [𝑡, 𝑡′] must have non-zero laxity and 𝒟𝑗
′(𝑡) ≤ 𝒟𝑖

′(𝑡) because jobs are scheduled by 

the EDF during the time interval [𝑡, 𝑡′]. Thus we have  

∑  ∀𝒥𝑗(𝑡)∈𝒥(𝑡)−𝒥′(𝑡) 𝒞𝑗(𝑡) ≥ 𝑚(𝑡′ − 𝑡).                                                                  (16) 

 So  

∑  ∀𝒥𝑗(𝑡)∈𝒥(𝑡)−𝒥′(𝑡)
𝒞𝑗(𝑡)

𝒟𝑗
′(𝑡)−𝑡

≥ ∑  ∀𝒥𝑗(𝑡)∈𝒥(𝑡)−𝒥′(𝑡)
𝒞𝑗(𝑡)

𝒟𝑖
′(𝑡)−𝑡

≥
𝑚(𝑡′−𝑡)

𝒟𝑖
′(𝑡)−𝑡

.               (17) 

Because 𝒥𝑖(𝑡) misses its deadline, there must be at least 𝑚 + 1 jobs with zero laxity at 

time 𝑡′ when there are 𝑚 processors. If the laxity of a job 𝒥𝑗(𝑡′) is zero, then we can see 

that 𝒞𝑗(𝑡′) = 𝒟𝑗
′(𝑡) − 𝑡′. 

From the above observation, we have  

∑  

∀𝒥𝑗(𝑡)∈𝒥(𝑡)

𝜆𝑗(𝑡)     = ∑  

∀𝒥𝑗(𝑡)∈𝒥(𝑡)−𝒥′(𝑡)

𝜆𝑗(𝑡)     + ∑  

∀𝒥𝑗(𝑡)∈𝒥′(𝑡)

𝜆𝑗(𝑡) 

≥     
𝑚(𝑡′ − 𝑡)

𝒟𝑖
′(𝑡) − 𝑡

    + ∑  

∀𝒥𝑗(𝑡)∈𝒥′(𝑡)

𝒞𝑗(𝑡′)

𝒟𝑗
′(𝑡) − 𝑡

. 

Since the number of jobs in 𝒥′(𝑡) is larger than 𝑚, it becomes  

∑  

∀𝒥𝑗(𝑡)∈𝒥(𝑡)

𝜆𝑗(𝑡) ≥ ∑  

𝑜𝑛𝑙𝑦 𝑚 𝑗𝑜𝑏𝑠

∀𝑗≠𝑖,𝒥𝑗(𝑡)∈𝒥′(𝑡)

(
𝑡′ − 𝑡

𝒟𝑖
′(𝑡) − 𝑡

+
𝒞𝑗(𝑡′)

𝒟𝑗
′(𝑡) − 𝑡

) +
𝒞𝑖(𝑡′)

𝒟𝑖
′(𝑡) − 𝑡

 

≥ ∑  

𝑜𝑛𝑙𝑦 𝑚 𝑗𝑜𝑏𝑠

∀𝑗≠𝑖,𝒥𝑗(𝑡)∈𝒥′(𝑡)

(
𝑡′ − 𝑡 + 𝒞𝑗(𝑡′)

𝒟𝑗
′(𝑡) − 𝑡

) +
𝒞𝑖(𝑡′)

𝒟𝑖
′(𝑡) − 𝑡

 

= ∑  

𝑜𝑛𝑙𝑦 𝑚 𝑗𝑜𝑏𝑠

∀𝑗≠𝑖,𝒥𝑗(𝑡)∈𝒥′(𝑡)

(
𝑡′ − 𝑡 + 𝒟𝑗

′(𝑡) − 𝑡′

𝒟𝑗
′(𝑡) − 𝑡

) +
𝒞𝑖(𝑡′)

𝒟𝑖
′(𝑡) − 𝑡

> 𝑚 

which proves the theorem.  
 

5. On-line DVS Algorithm: Determining Dynamic Speed 

In this Section, we present dynamic speed calculation method based on Theorem 1. 

We claim that if  

∑  

∀𝒥𝑖(𝑡)∈𝒥(𝑡)

𝜆𝑖(𝑡) ≤ 𝑚, 

the dynamic processor speed at time 𝑡, denoted by 𝑆𝐷(𝑡), can be set to 

𝒮𝐷(𝑡) = max (
1

𝑚
∑  ∀𝒥𝑖(𝑡)∈𝒥(𝑡) 𝜆𝑖(𝑡), 𝜆max(𝑡))      (18) 

for jobs with 𝜆max(𝑡) ≤ 1, where  

𝜆𝑖(𝑡) =
𝒞𝑖(𝑡)

𝒟𝑖
′(𝑡)−𝑡

,         (19)   

𝒟𝑖
′(𝑡) is the absolute deadline re-assigned by Algorithm 1, and 𝑚 is the number of 

processors. The following theorem shows that the processor speed given by Equation 

(18) guarantees to meet deadlines. 

 

Theorem 2  If absolute deadlines of jobs in 𝒥(𝑡) are set by Algorithm 1 such that 

𝜆𝑚𝑎𝑥(𝑡) ≤ 1, then all jobs meet deadlines by EDZL with a dynamic speed 𝑆𝐷(𝑡) 

given by Equation (18) if  
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∑  ∀𝒥𝑖(𝑡)∈𝒥(𝑡) 𝜆𝑖(𝑡) ≤ 𝑚         (20) 

  

Proof. Let 𝒥′(𝑡) be a modified job set of 𝒥(𝑡) such that 𝒥𝑖(𝑡)′ ∈ 𝒥′(𝑡) is given by 

(𝒞𝑖(𝑡)′, 𝒟𝑖
′(𝑡)) where 𝒞𝑖

′(𝑡) =
𝒞𝑖(𝑡)

𝒮𝑖(𝑡)
. First, if  

1

𝑚
∑  ∀𝒥𝑗∈𝒥(𝑡) 𝜆𝑗(𝑡) > 𝜆max(𝑡)        

(21) 

 then  

𝜆𝑖
′(𝑡) =

𝒞𝑖
′(𝑡)

𝒟𝑖
′(𝑡)

1

𝑚
∑  ∀𝒥𝑗∈𝒥(𝑡) 𝜆𝑗(𝑡)

=
𝑚

∑  ∀𝒥𝑗∈𝒥(𝑡) 𝜆𝑗(𝑡)
⋅

𝒞𝑖(𝑡)

𝒟𝑖
′(𝑡)

.      (22) 

Otherwise,  

𝜆𝑖
′(𝑡) =

𝒞𝑖
′(𝑡)

𝜆max(𝑡)𝒟𝑖
′(𝑡)

≤
𝒞𝑖

′(𝑡)

𝒟𝑖
′ 1

𝑚
∑  ∀𝒥𝑗∈𝒥(𝑡) 𝜆𝑗(𝑡)

=
𝑚

∑  ∀𝒥𝑖∈𝒥(𝑡) 𝜆𝑗(𝑡)

𝒞𝑖(𝑡)

𝒟𝑖
′(𝑡)

.    (23) 

Therefore, we have  

∑  

∀𝒥𝑖∈𝒥(𝑡)

𝜆𝑖
′(𝑡) ≤

𝑚

∑  ∀𝒥𝑖∈𝒥(𝑡) 𝜆𝑖(𝑡)
∑  

∀𝒥𝑖∈𝒥(𝑡)

𝒞𝑖(𝑡)

𝒟𝑖
′(𝑡)

 

≤
𝑚

∑  ∀𝒥𝑖∈𝒥(𝑡) 𝜆𝑖(𝑡)
∑  

∀𝒥𝑖∈𝒥(𝑡)

𝜆𝑖(𝑡) = 𝑚. 

So by Theorem 1, the jobs in 𝒥′(𝑡) meet their deadlines. ■ 

During scheduling, for an active job set set 𝒥(𝑡) satisfying Equation (13) and 

Equation (15), our on-line algorithm computes a dynamic speed at each scheduling 

point, and determines dynamic speeds of the current jobs. Otherwise, the dynamic 

speeds of the jobs is set as a static speed which is obtained by the off-line algorithm 

proposed in [12]. 

 

 

 

 

 

6. Performance Evaluation 
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We evaluated the proposed on-line DVS algorithm by simulation. In the 

simulation, the period 𝑝𝑖  of a task was given as a random number uniformly 

distributed in the range [100,1000], and the utilization 𝑈𝑖 was uniformly distributed 

in the range [0.1,1). Then the worst-case execution time is given by 𝑒𝑖 = 𝑈𝑖𝑝𝑖. The 

energy consumption function is proportional to the cube of the processor speed for 

each time unit as modeled in [5]. The simulations were conducted on 4  and 16 

processors for the following two cases: (G1) increasing the number of tasks with 

𝑈(𝜏) = 2 on 𝑚 = 4, and 𝑈(𝜏) = 8 on 𝑚 = 16; (G2) increasing the total utilization 

with 𝑛 = 12 on 𝑚 = 4, and 𝑛 = 48 on 𝑚 = 16. 

(𝑎) 𝑚 = 4, 𝑈(𝜏) = 2 

 

 

(b) 𝑚 = 16, 𝑈(𝜏) = 8 

Figure 2. Simulation Results for Task Group G1 when Tasks Run with the Worst 
Case Execution Time 
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Firstly, we tested the performance when the tasks run with the worst case 

execution. We compared the energy consumption of the proposed algorithm with the 

algorithm proposed in [11]. Figure 2 and Figure 3 shows simulation results for G1 

and G2 when the tasks run with the worst case execution. In the figures, no-DVS 

represents the energy consumption when all tasks run without DVS, static 

represents the energy consumption only with a static speed, original dynamic 

represents the energy consumption by the on-line algorithm proposed in [11], and 

new dynamic represents the energy consumption by the new on-line algorithm 

proposed in this paper. The DVS algorithms reduce energy more efficiently as the 

number of tasks is increased in Figure 2 where 𝑚 and 𝑈(𝜏) are fixed. The reason is 

(𝑎) 𝑚 = 4, 𝑛 = 12 

 

 

(b) 𝑚 = 16, 𝑛 = 48 

Figure 3. Simulation Results for Task Group G2 when Tasks Run with the Worst 
Case Execution Time 

(𝑎) 𝑚 = 4, 𝑈(𝜏) = 2 

 

 

(b) 𝑚 = 16, 𝑈(𝜏) = 8 

Figure 4. Simulation Results for task Group G1 when Tasks Run with the Actual 
Execution Times 
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that 𝑈max(𝜏) is decreased as the number of tasks increases when 𝑚  and 𝑈(𝜏) are 

fixed. In this case, the original on-line algorithm (original dynamic) shows little 

enhancement than the off-line algorithm. On the other hand, the DVS algorithms 

become less efficient as the total utilization increases in Figure 3 where 𝑚 and 𝑛 are 

fixed. The reason is that 𝑈max(𝜏)  is increased as the total utilization increases. 

However in both experiments of G1 and G2, the new on-line algorithm proposed in 

this paper outperforms other algorithms. At the best case, the new on-line algorithm 

reduces more power consumption than the original on-line algorithm 30% 

approximately. 

Secondly, the simulation was built on realistic assumption that the actual 

execution time of tasks is commonly less than its worst case execution time. In this 

simulation, the actual execution time of a task 𝜏𝑖  is given by 𝑒𝑖𝛽𝑖 , where 𝛽𝑖  is 

normally distributed in the range of (0,1)  with a mean value 𝛼  and a standard 

(𝑎) 𝑚 = 4, 𝑛 = 12 

 

 

(b) 𝑚 = 16, 𝑛 = 48 

Figure 5. Simulation results for task group G2 when Tasks Run with the Actual 
Execution Times 
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deviation 0.05. Figure 4 and Figure 5 shows simulation results for G1 and G2 when 

tasks run with the actual execution. Intuitively, the new on-line algorithm reduces 

more power consumption as the actual execution time is less than the worst case 

execution time in both experiments of G1 and G2. The influence of 𝛼 on the power 

consumption decreases as the number of tasks increases as shown in Figure 4 when 

the total utilization is fixed. On the hand, the influence of 𝛼 on power consumption 

increases as the total utilization increases as shown in Figure 5 when the number of 

tasks is fixed. We can guess it is because if the number of tasks is increased then the 

active job sets satisfying the Theorem 2 is increased (many jobs with small 

execution time), and as the total utilization is increased the number active job sets 

satisfying the Theorem 2 is decreased. 

 

7. Conclusion 

We have presented an on-line DVS algorithm for the EDZL scheduling to reduce 

power consumption of real-time tasks on multiprocessor platforms in which all processors 

run at an identical speed. The proposed algorithm determines a dynamic speed of 

processors at each scheduling point by re-assigning deadlines that makes tasks 

schedulable by the EDZL. Simulation results show that the proposed algorithm further 

reduce the power consumption than previous algorithms for the EDZL. 
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