
International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.7 (2015), pp.171-182

http://dx.doi.org/10.14257/ijmue.2015.10.7.18

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

On-Line Dynamic Voltage Scaling for EDZL Scheduling on

Symmetric Multiprocessor Real-Time Systems

Xuefeng Piao † and Moonju Park
1
 ‡

 †School of Computer Science and Technology, Harbin Institute of Technology,

Weihai, Shandong, China

 ‡ School of Computer Science and Engineering, Incheon National University,

Incheon, Korea

hbpark@hit.edu.cn, mpark@incheon.ac.kr

Abstract

EDZL (Earliest Deadline Zero Laxity) scheduling is known to be at least as EDF

(Earliest Deadline First) in task scheduling on symmetric multiprocessor real-time

systems; however, there are few works on energy conversation on the EDZL. This paper

proposes an on-line Dynamic Voltage Scaling (DVS) algorithm of the global EDZL to

reduce energy consumption of real-time tasks. The proposed algorithm dynamically

adjusts processor speed at each scheduling point with re-assigning deadlines of active

jobs that reduces power consumption of processors while making all real-time tasks

schedulable by EDZL. Extensive simulations show that the proposed algorithm reduces

power consumption more than the previous algorithm for EDZL.

Keywords: Real-time scheduling, Multiprocessor, Dynamic voltage scaling, EDZL

1. Introduction

As the processing power of embedded processors grows, modern embedded systems

can use the computation power of multiprocessors to run complex real-time applications.

However, due to limited power supply, minimizing energy consumption while

guaranteeing timing constraints is an important design issue of multiprocessor embedded

systems. To reduce energy consumption, dynamic voltage scaling techniques have been

introduced to exploit the hardware characteristics of processors by lowering supply

voltage or speed. A small reduction in processor speed, which is linearly proportional to

supply voltage, can result in a significant reduction in energy consumption since power

consumption of a processor is in quadratic relation with supply voltage or speed [1]. But

lowering supply voltage or speed might affect the schedulability of real-time tasks on the

system. Therefore, the main objective of DVS algorithms is to control processor supply

voltage or speed without missing any deadlines of real-time tasks.

There have been many DVS algorithms proposed to reduce energy consumption for

real-time tasks. Aydin et al. [2] proposed energy-aware algorithms for periodic tasks on

multiprocessor platforms. Also, polynomial time approximation algorithms were

proposed for frame-based tasks in [3,4]. Based on the observation that tasks might

complete earlier than their worst-case execution time, a slack time reclamation algorithm

was proposed in [5]. Though the global EDZL [6] outperforms EDF [7-10], few works on

energy conservation for EDZL other than our previous works in [11,12] could be found.

In previous works, we proposed an off-line algorithm and an on-line algorithm for EDZL;

the off-line algorithm determines a static processor speed at design time and the on-line

algorithm determines a dynamic speed at each scheduling point. This paper is an

extension of our previous works: an enhanced on-line DVS algorithm of the global EDZL

1
 Corresponding author

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.7 (2015)

172 Copyright ⓒ 2015 SERSC

scheduling which makes all real-time tasks schedulable while reducing power

consumption of processors on symmetric multiprocessor real-time systems.

The rest of this paper is organized as follows. Section 2 defines the system model.

Section 3 briefly reviews the EDZL scheduling and Section 4 presents a deadline re-

assignment method for scaling voltage with the EDZL scheduling. In Section 5, we

present a new on-line DVS algorithm based on the deadline re-assignment method.

Section 6 presents the simulation results comparing energy consumption of the proposed

method with the previous works and Section 7 concludes our work.

2. System Model

We consider a preemptive hard real-time system in which periodic tasks are

scheduled by EDZL on 𝑚 processors running at an identical speed. A periodic task

set 𝜏 = {𝜏1, 𝜏2, ⋯ , 𝜏𝑛} consists of 𝑛 independent periodic tasks. A periodic task 𝜏𝑖 is

characterized by (𝑒𝑖, 𝑝𝑖), where 𝑒𝑖 represents the worst case execution time at the

maximum processor speed and 𝑝𝑖 represents a period. The relative deadline of each

task is equal to its period. The utilization of 𝜏𝑖 is defined as

𝑈𝑖 = 𝑒𝑖/𝑝𝑖. (1)

The total utilization of a task set 𝜏 is defined as

𝑈(𝜏) = ∑ 𝑛
𝑖=1 𝑈𝑖 . (2)

The maximum utilization of 𝜏 is defined as

𝑈max(𝜏) = max
𝜏𝑖∈𝜏

(𝑈𝑖). (3)

An execution instance of a periodic task 𝜏𝑖 at time 𝑡, denoted by 𝒥𝑖(𝑡), is called as

a job which is characterized by (𝒞𝑖(𝑡), 𝒟𝑖(𝑡)), where 𝒞𝑖(𝑡) represents a remaining

execution time and 𝒟𝑖(𝑡) represents an absolute deadline at time 𝑡. An active job set

at time 𝑡 is denoted by 𝒥(𝑡) = {𝒥𝑖(𝑡)}. The laxity of 𝒥𝑖(𝑡) is defined as

𝒟𝑖(𝑡) − 𝑡 −
𝒞𝑖(𝑡)

𝒮(𝑡)
, (4)

where 𝒮(𝑡) represents the speed of processors at time 𝑡 normalized to the

maximum speed of the processor. The density of 𝒥(𝑡) is defined as

𝜆𝑖(𝑡) =
𝒞𝑖(𝑡)

𝒟𝑖(𝑡)−𝑡
. (5)

The density set for 𝒥(𝑡) is defined as

𝜆(𝑡) = {𝜆𝑖(𝑡)}. (6)

Then the maximum density of 𝒥(𝑡) is defined as

𝜆max(𝑡) = max
𝜆𝑖(𝑡)∈𝜆(𝑡)

(𝜆𝑖(𝑡)). (7)

Now we introduce the power model used in this paper. Power consumption of a

processor is dominated by dynamic power dissipation

𝑃𝐷 = 𝐶𝑒𝑓 ⋅ 𝑉𝐷
2 ⋅ 𝑓, (8)

where 𝐶𝑒𝑓 represents effective switched capacitance, 𝑉𝐷 represents supply voltage

and 𝑓 represents clock frequency.

The circuit delay 𝑡𝑑 is inversely related to the supply voltage 𝑉𝐷 as given by the

formula

𝑡𝑑 =
𝑘𝑉𝐷

(𝑉𝐷−𝑉𝑡)2, (9)

where 𝑘 is a constant and 𝑉𝑡 is a threshold voltage. Since clock frequency is

inversely proportional to circuit delay and processor speed is approximately

proportional to the supply voltage [13], the power consumption is roughly

proportional to the cube of the supply voltage.

In essence, Voltage scaling technique saves energy at the expense of increased

latency. We assume that the processor speed can be adjusted to any value from 0% to

100% of the maximum processor speed, and power loss of voltage switching and time

overhead to change processor supply voltage/speed are assumed to be negligible as in

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.7 (2015)

Copyright ⓒ 2015 SERSC 173

[4].

3. EDZL Overview

In multiprocessor real-time systems, scheduling algorithms is classified into a

partitioned approach or a global approach by the job-level migration. If no migration is

permitted in a scheduling algorithm, it is referred as partitioned approach; otherwise, it is

a global approach. Each approach has advantages over the other. Comparing to the global

scheduling approach, the partitioned scheduling has the following advantages: (a) there is

no penalty in terms of migration cost, (b) when a task overruns its worst-case execution

time, it only affects tasks on the same processor, and (c) the overhead of manipulating a

separate run-queue per processor is lower than that of manipulating a single global queue.

On the other hand, the global scheduling has the following advantages over the

partitioned scheduling: (a) there are typically fewer context switches and preemptions, (b)

there is no need for re-balancing and task re-allocation even if the task set changes in run

time, and (c) if the actual task execution is less than its worst-case execution time, then

spare capacity which can be used later for other task is reserved. In this sense, global

scheduling is more appropriate for open systems [14] where tasks can join and leave

dynamically.

EDF [15], LLF (Least Laxity First) [16], EDF-US [17] and fpEDF [18] are some

examples of the scheduling algorithms following the global approach. The global EDF

assigns the highest priority to jobs with the earliest deadline and is optimal on

uniprocessor, but the utilization bound could be very low in the worst case on

multiprocessor. The LLF might utilize processor higher than the global EDF but it can

cause a large number of context switches. The EDF-US and the fpEDF are variants of

EDF. They divide tasks into higher utilization and lower utilization tasks. The higher

utilization tasks are given the highest priority and lower utilization tasks are given

priorities according to EDF. Two algorithms differ in the boundary condition that dives

tasks and in their schedulable utilization bound.

Combining the advantage of EDF and LLF, EDZL is introduced to provide a high

schedulable utilization bound with a small number of preemptions. EDZL considers both

deadline and laxity of jobs in priority assignment. Jobs with zero laxity are assigned the

highest priority and other jobs are assigned priorities by EDF, and ties between jobs with

same priority are broken arbitrarily. Since the global EDF and the global EDZL

scheduling are both work conserving [7], the processors are never idle if there is a ready

job. A scheduling algorithm A1 is said to strictly dominate another scheduling

algorithm A2 if any task set schedulable by A2 is also schedulable by A1 and there is

a task set which is schedulable by A1 but not schedulable by A2. The global EDZL

strictly dominates the global EDF and it is suboptimal for two processors [9]. It was

shown that the EDZL is completion time predictable in [20] in the sense defined by Ha

and Liu [19].

For EDZL scheduling, we proposed low-power algorithms for static speed

determination and dynamic speed determination in [11,12]. To determine a static speed,

we was used the schedulability condition of EDZL and the schedulability condition of

EDF. Since EDZL strictly dominates EDF, a speed obtained from EDF schedulability

condition can be used as a static speed of EDZL. Therefore, the static speed is determined

as a small value between a speed obtained from EDF schedulability condition and a speed

obtained from EDZL schedulability condition. To determine a dynamic speed at each

scheduling point, we was used a property of EDZL which is if the density of an active job

set within an time interval from current time to the minimum upcoming release time, and

the maximum density within the interval is less than or equal to one, then the active job

set is schedulable by EDZL even though the deadlines of all active jobs are set to the

minimum upcoming release time. Therefore, a speed can be obtained whenever an active

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.7 (2015)

174 Copyright ⓒ 2015 SERSC

job set satisfies the above conditions. Ultimately, the dynamic speed is determines as a

small value between the static speed and the speed obtained from the property of EDZL.

4. Deadline Re-Assignment Method
Let us introduce the following notations for further discussion. At time t, the next

release time of a task 𝜏𝑖 is given by

ℛ𝑖(𝑡) = 𝒟𝑖(𝑡) + 𝑝𝑖 . (10)

The first k upcoming release times of all tasks sorted by increasing order at time t

are denoted by ℛ1(𝑡), ℛ2(𝑡), ⋯ , ℛ𝑘(𝑡). We can choose any 𝑘 such that

ℛ𝑘(𝑡) ≤ max{𝒟𝑖(𝑡)}. (11)

The minimum upcoming release time is defined as

ℛmin(𝑡) = min
𝜏𝑖∈𝜏

(ℛ𝑖(𝑡)) = ℛ1(𝑡). (12)

In previous work of [11], the method of dynamic speed calculation for EDZL was

applicable only when all the active jobs can be completed before ℛmin(𝑡). Thus the

previous method could be applied for very limited cases only. If active jobs are not to

be completed before ℛmin(𝑡) , tasks run at the static speed, so additional energy

saving could not be achieved even though actual execution time of a job is shorter

than the worst case execution time. However, we found that by considering the

farther release times of tasks, the speed of the processors can be more reduced, which

may result in less power consumption. This is done by re-assigning deadlines that

makes tasks schedulable by EDZL.

Algorithm 1 shows the pseudo-code for absolute deadline assignment. The

algorithm tries to find a deadline assignment with which the jobs can complete before

R
i
(t) where 𝑖 ≤ 𝑘. The absolute deadlines are set to the upcoming release times by

Algorithm 1 in 𝑂(𝑘𝑛) time when there are n tasks. An assigned deadline is shorter

than or equal to the existing one. The schedulability of the jobs with re-assigned

deadline will be discussed later.

Example: Let us consider a periodic task set 𝜏 is 𝜏1 = (2,5), 𝜏2 = (4,12), 𝜏3 =
(1,4), 𝜏4 = (2,8). Assume that the tasks in are released at time zero for the first

time simultaneously. When the job set is scheduled by EDZL on two processors 𝑃1

and 𝑃2, the job set is scheduled in the same way as the EDF schedule since no job

reaches zero laxity as shown in Figure 1(a).

Consider the situation at time 1 when the job of 𝜏3 finishes. The active job set 𝒥(1)

is 𝒥1(1) = (1,5), 𝒥2(1) = (4,12), 𝒥4(1) = (2,8). For this job set, the dynamic speed

determination method presented in [11] cannot be applied because
1+4+2

4−1
> 2.

However, if we re-assign the absolute deadlines of jobs as 𝒟1(1) = 4, 𝒟2(1) = 5,

𝒟4(1) = 4 at time 1, then the job 𝒥2(1) reaches zero laxity at time 1 and the job set

is scheduled by EDZL as shown in Figure 1(b). As a result, the latest completion time

of jobs in 𝒥(0) becomes shorter than Figure 1(a).

Algorithm 1: Absolute Deadline Assignment

 𝒟𝑖(𝑡) ← ℛ 𝑗(𝑡)

Input: a job set 𝒥(𝑡)

Output: a modified job set with absolute deadlines reassigned

forall 𝒥𝑖(𝑡) ∈ 𝒥(𝑡) do
 for 𝑗 = 𝑘 downto 1 do

if 𝒟𝑖(𝑡) ≥ ℛ 𝑗(𝑡) and
𝒞𝑖(𝑡)

ℛ𝑗(𝑡)−𝑡
≤ 1 then

endif

 endfor

endfor

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.7 (2015)

Copyright ⓒ 2015 SERSC 175

In the above example, we found that an active job set can be completed with

absolute deadline re-assignment. Moreover, the following conditions must be

satisfied for the jobs to meet their deadlines. The re-assigned absolute deadline of

𝒥𝑖(𝑡) by Algorithm 1 is denoted by 𝒟𝑖
′(𝑡).

• The density of each job with the re-assigned absolute deadline must be less than 1,

i.e.,

∀𝒥𝑖(𝑡) ∈ 𝒥(𝑡), 𝜆𝑖(𝑡) ≤ 1, (13)

where

𝜆𝑖(𝑡) =
𝒞𝑖(𝑡)

𝒟𝑖
′(𝑡)−𝑡

. (14)

• The sum of 𝜆𝑖(𝑡)'s must be less than the number of processors, i.e.,

∑ ∀𝒥𝑖(𝑡)∈𝒥(𝑡) 𝜆𝑖(𝑡) ≤ 𝑚. (15)

The following theorem provides a schedulability condition for EDZL with re-assigned

absolute deadline.

Theorem 1 If the absolute deadlines of jobs in an active job set 𝒥(𝑡) are set by

Algorithm 1 such that the 𝒥(𝑡) satisfies Equation (13) and Equation (15), then all

jobs in 𝒥(𝑡) meet deadlines by the EDZL.

Proof. We will show that if a job misses its deadline, then

∑

∀𝒥𝑖(𝑡)∈𝒥(𝑡)

𝜆𝑖(𝑡) > 𝑚.

Suppose that all jobs in 𝒥(𝑡) have re-assigned deadlines by Algorithm 1 but a job 𝒥𝑖(𝑡)

in 𝒥(𝑡) misses its deadline. Let 𝑡′ be the time at which any job in 𝒥(𝑡) has zero laxity for

the first time after or at 𝑡, and 𝒟𝑖
′(𝑡) be the re-assigned deadline of 𝒥𝑖(𝑡). Note that before

𝑡′, the tasks are scheduled by the EDF. Without loss of generality, we can assume that

(a) 𝒟1(1) = 5, 𝒟2(1) = 12, 𝒟3 = 4,𝒟4(1) = 8

(b) 𝒟1(1) = 4, 𝒟2(1) = 5, 𝒟3 = 4,𝒟4(1) = 4

Figure 1. An EDZL Schedule of the Example

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.7 (2015)

176 Copyright ⓒ 2015 SERSC

𝒟𝑖
′(𝑡) is the shortest re-assigned deadline among jobs with zero laxity at time 𝑡′, since the

EDZL can break ties arbitrarily.

Let the job set that will have zero laxity at time 𝑡′ be 𝒥′(𝑡). Since the EDZL is work-

conserving, if a job misses its deadline then there is no idle time before the deadline. So

𝑚(𝑡′ − 𝑡) times are executed during the time interval [𝑡, 𝑡′] . Any job 𝒥𝑗
′(𝑡) executed

during [𝑡, 𝑡′] must have non-zero laxity and 𝒟𝑗
′(𝑡) ≤ 𝒟𝑖

′(𝑡) because jobs are scheduled by

the EDF during the time interval [𝑡, 𝑡′]. Thus we have

∑ ∀𝒥𝑗(𝑡)∈𝒥(𝑡)−𝒥′(𝑡) 𝒞𝑗(𝑡) ≥ 𝑚(𝑡′ − 𝑡). (16)

 So

∑ ∀𝒥𝑗(𝑡)∈𝒥(𝑡)−𝒥′(𝑡)
𝒞𝑗(𝑡)

𝒟𝑗
′(𝑡)−𝑡

≥ ∑ ∀𝒥𝑗(𝑡)∈𝒥(𝑡)−𝒥′(𝑡)
𝒞𝑗(𝑡)

𝒟𝑖
′(𝑡)−𝑡

≥
𝑚(𝑡′−𝑡)

𝒟𝑖
′(𝑡)−𝑡

. (17)

Because 𝒥𝑖(𝑡) misses its deadline, there must be at least 𝑚 + 1 jobs with zero laxity at

time 𝑡′ when there are 𝑚 processors. If the laxity of a job 𝒥𝑗(𝑡′) is zero, then we can see

that 𝒞𝑗(𝑡′) = 𝒟𝑗
′(𝑡) − 𝑡′.

From the above observation, we have

∑

∀𝒥𝑗(𝑡)∈𝒥(𝑡)

𝜆𝑗(𝑡) = ∑

∀𝒥𝑗(𝑡)∈𝒥(𝑡)−𝒥′(𝑡)

𝜆𝑗(𝑡) + ∑

∀𝒥𝑗(𝑡)∈𝒥′(𝑡)

𝜆𝑗(𝑡)

≥
𝑚(𝑡′ − 𝑡)

𝒟𝑖
′(𝑡) − 𝑡

 + ∑

∀𝒥𝑗(𝑡)∈𝒥′(𝑡)

𝒞𝑗(𝑡′)

𝒟𝑗
′(𝑡) − 𝑡

.

Since the number of jobs in 𝒥′(𝑡) is larger than 𝑚, it becomes

∑

∀𝒥𝑗(𝑡)∈𝒥(𝑡)

𝜆𝑗(𝑡) ≥ ∑

𝑜𝑛𝑙𝑦 𝑚 𝑗𝑜𝑏𝑠

∀𝑗≠𝑖,𝒥𝑗(𝑡)∈𝒥′(𝑡)

(
𝑡′ − 𝑡

𝒟𝑖
′(𝑡) − 𝑡

+
𝒞𝑗(𝑡′)

𝒟𝑗
′(𝑡) − 𝑡

) +
𝒞𝑖(𝑡′)

𝒟𝑖
′(𝑡) − 𝑡

≥ ∑

𝑜𝑛𝑙𝑦 𝑚 𝑗𝑜𝑏𝑠

∀𝑗≠𝑖,𝒥𝑗(𝑡)∈𝒥′(𝑡)

(
𝑡′ − 𝑡 + 𝒞𝑗(𝑡′)

𝒟𝑗
′(𝑡) − 𝑡

) +
𝒞𝑖(𝑡′)

𝒟𝑖
′(𝑡) − 𝑡

= ∑

𝑜𝑛𝑙𝑦 𝑚 𝑗𝑜𝑏𝑠

∀𝑗≠𝑖,𝒥𝑗(𝑡)∈𝒥′(𝑡)

(
𝑡′ − 𝑡 + 𝒟𝑗

′(𝑡) − 𝑡′

𝒟𝑗
′(𝑡) − 𝑡

) +
𝒞𝑖(𝑡′)

𝒟𝑖
′(𝑡) − 𝑡

> 𝑚

which proves the theorem.

5. On-line DVS Algorithm: Determining Dynamic Speed

In this Section, we present dynamic speed calculation method based on Theorem 1.

We claim that if

∑

∀𝒥𝑖(𝑡)∈𝒥(𝑡)

𝜆𝑖(𝑡) ≤ 𝑚,

the dynamic processor speed at time 𝑡, denoted by 𝑆𝐷(𝑡), can be set to

𝒮𝐷(𝑡) = max (
1

𝑚
∑ ∀𝒥𝑖(𝑡)∈𝒥(𝑡) 𝜆𝑖(𝑡), 𝜆max(𝑡)) (18)

for jobs with 𝜆max(𝑡) ≤ 1, where

𝜆𝑖(𝑡) =
𝒞𝑖(𝑡)

𝒟𝑖
′(𝑡)−𝑡

, (19)

𝒟𝑖
′(𝑡) is the absolute deadline re-assigned by Algorithm 1, and 𝑚 is the number of

processors. The following theorem shows that the processor speed given by Equation

(18) guarantees to meet deadlines.

Theorem 2 If absolute deadlines of jobs in 𝒥(𝑡) are set by Algorithm 1 such that

𝜆𝑚𝑎𝑥(𝑡) ≤ 1, then all jobs meet deadlines by EDZL with a dynamic speed 𝑆𝐷(𝑡)

given by Equation (18) if

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.7 (2015)

Copyright ⓒ 2015 SERSC 177

∑ ∀𝒥𝑖(𝑡)∈𝒥(𝑡) 𝜆𝑖(𝑡) ≤ 𝑚 (20)

Proof. Let 𝒥′(𝑡) be a modified job set of 𝒥(𝑡) such that 𝒥𝑖(𝑡)′ ∈ 𝒥′(𝑡) is given by

(𝒞𝑖(𝑡)′, 𝒟𝑖
′(𝑡)) where 𝒞𝑖

′(𝑡) =
𝒞𝑖(𝑡)

𝒮𝑖(𝑡)
. First, if

1

𝑚
∑ ∀𝒥𝑗∈𝒥(𝑡) 𝜆𝑗(𝑡) > 𝜆max(𝑡)

(21)

 then

𝜆𝑖
′(𝑡) =

𝒞𝑖
′(𝑡)

𝒟𝑖
′(𝑡)

1

𝑚
∑ ∀𝒥𝑗∈𝒥(𝑡) 𝜆𝑗(𝑡)

=
𝑚

∑ ∀𝒥𝑗∈𝒥(𝑡) 𝜆𝑗(𝑡)
⋅

𝒞𝑖(𝑡)

𝒟𝑖
′(𝑡)

. (22)

Otherwise,

𝜆𝑖
′(𝑡) =

𝒞𝑖
′(𝑡)

𝜆max(𝑡)𝒟𝑖
′(𝑡)

≤
𝒞𝑖

′(𝑡)

𝒟𝑖
′ 1

𝑚
∑ ∀𝒥𝑗∈𝒥(𝑡) 𝜆𝑗(𝑡)

=
𝑚

∑ ∀𝒥𝑖∈𝒥(𝑡) 𝜆𝑗(𝑡)

𝒞𝑖(𝑡)

𝒟𝑖
′(𝑡)

. (23)

Therefore, we have

∑

∀𝒥𝑖∈𝒥(𝑡)

𝜆𝑖
′(𝑡) ≤

𝑚

∑ ∀𝒥𝑖∈𝒥(𝑡) 𝜆𝑖(𝑡)
∑

∀𝒥𝑖∈𝒥(𝑡)

𝒞𝑖(𝑡)

𝒟𝑖
′(𝑡)

≤
𝑚

∑ ∀𝒥𝑖∈𝒥(𝑡) 𝜆𝑖(𝑡)
∑

∀𝒥𝑖∈𝒥(𝑡)

𝜆𝑖(𝑡) = 𝑚.

So by Theorem 1, the jobs in 𝒥′(𝑡) meet their deadlines. ■

During scheduling, for an active job set set 𝒥(𝑡) satisfying Equation (13) and

Equation (15), our on-line algorithm computes a dynamic speed at each scheduling

point, and determines dynamic speeds of the current jobs. Otherwise, the dynamic

speeds of the jobs is set as a static speed which is obtained by the off-line algorithm

proposed in [12].

6. Performance Evaluation

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.7 (2015)

178 Copyright ⓒ 2015 SERSC

We evaluated the proposed on-line DVS algorithm by simulation. In the

simulation, the period 𝑝𝑖 of a task was given as a random number uniformly

distributed in the range [100,1000], and the utilization 𝑈𝑖 was uniformly distributed

in the range [0.1,1). Then the worst-case execution time is given by 𝑒𝑖 = 𝑈𝑖𝑝𝑖. The

energy consumption function is proportional to the cube of the processor speed for

each time unit as modeled in [5]. The simulations were conducted on 4 and 16

processors for the following two cases: (G1) increasing the number of tasks with

𝑈(𝜏) = 2 on 𝑚 = 4, and 𝑈(𝜏) = 8 on 𝑚 = 16; (G2) increasing the total utilization

with 𝑛 = 12 on 𝑚 = 4, and 𝑛 = 48 on 𝑚 = 16.

(𝑎) 𝑚 = 4, 𝑈(𝜏) = 2

(b) 𝑚 = 16, 𝑈(𝜏) = 8

Figure 2. Simulation Results for Task Group G1 when Tasks Run with the Worst
Case Execution Time

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.7 (2015)

Copyright ⓒ 2015 SERSC 179

Firstly, we tested the performance when the tasks run with the worst case

execution. We compared the energy consumption of the proposed algorithm with the

algorithm proposed in [11]. Figure 2 and Figure 3 shows simulation results for G1

and G2 when the tasks run with the worst case execution. In the figures, no-DVS

represents the energy consumption when all tasks run without DVS, static

represents the energy consumption only with a static speed, original dynamic

represents the energy consumption by the on-line algorithm proposed in [11], and

new dynamic represents the energy consumption by the new on-line algorithm

proposed in this paper. The DVS algorithms reduce energy more efficiently as the

number of tasks is increased in Figure 2 where 𝑚 and 𝑈(𝜏) are fixed. The reason is

(𝑎) 𝑚 = 4, 𝑛 = 12

(b) 𝑚 = 16, 𝑛 = 48

Figure 3. Simulation Results for Task Group G2 when Tasks Run with the Worst
Case Execution Time

(𝑎) 𝑚 = 4, 𝑈(𝜏) = 2

(b) 𝑚 = 16, 𝑈(𝜏) = 8

Figure 4. Simulation Results for task Group G1 when Tasks Run with the Actual
Execution Times

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.7 (2015)

180 Copyright ⓒ 2015 SERSC

that 𝑈max(𝜏) is decreased as the number of tasks increases when 𝑚 and 𝑈(𝜏) are

fixed. In this case, the original on-line algorithm (original dynamic) shows little

enhancement than the off-line algorithm. On the other hand, the DVS algorithms

become less efficient as the total utilization increases in Figure 3 where 𝑚 and 𝑛 are

fixed. The reason is that 𝑈max(𝜏) is increased as the total utilization increases.

However in both experiments of G1 and G2, the new on-line algorithm proposed in

this paper outperforms other algorithms. At the best case, the new on-line algorithm

reduces more power consumption than the original on-line algorithm 30%

approximately.

Secondly, the simulation was built on realistic assumption that the actual

execution time of tasks is commonly less than its worst case execution time. In this

simulation, the actual execution time of a task 𝜏𝑖 is given by 𝑒𝑖𝛽𝑖 , where 𝛽𝑖 is

normally distributed in the range of (0,1) with a mean value 𝛼 and a standard

(𝑎) 𝑚 = 4, 𝑛 = 12

(b) 𝑚 = 16, 𝑛 = 48

Figure 5. Simulation results for task group G2 when Tasks Run with the Actual
Execution Times

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.7 (2015)

Copyright ⓒ 2015 SERSC 181

deviation 0.05. Figure 4 and Figure 5 shows simulation results for G1 and G2 when

tasks run with the actual execution. Intuitively, the new on-line algorithm reduces

more power consumption as the actual execution time is less than the worst case

execution time in both experiments of G1 and G2. The influence of 𝛼 on the power

consumption decreases as the number of tasks increases as shown in Figure 4 when

the total utilization is fixed. On the hand, the influence of 𝛼 on power consumption

increases as the total utilization increases as shown in Figure 5 when the number of

tasks is fixed. We can guess it is because if the number of tasks is increased then the

active job sets satisfying the Theorem 2 is increased (many jobs with small

execution time), and as the total utilization is increased the number active job sets

satisfying the Theorem 2 is decreased.

7. Conclusion

We have presented an on-line DVS algorithm for the EDZL scheduling to reduce

power consumption of real-time tasks on multiprocessor platforms in which all processors

run at an identical speed. The proposed algorithm determines a dynamic speed of

processors at each scheduling point by re-assigning deadlines that makes tasks

schedulable by the EDZL. Simulation results show that the proposed algorithm further

reduce the power consumption than previous algorithms for the EDZL.

Acknowledgements

This work was supported by the Incheon National University Research Grant in 2014.

References

[1] D. Zhu, M. Rami and R. C. Bruce, “Scheduling with Dynamic Voltage/Speed Adjustment Using Slack

Reclamation in Multiprocessor Real-Time Systems,” IEEE Transactions on Parallel and Distributed

System, vol. 14, (2003), pp. 7.

[2] H. Aydin and Y. Qi, “Energy-Aware Partitioning for Multiprocessor Real-Time Systems,” Proceedings

of the 17th International Parallel and Distributed Processing Symposium, Nice, France, April 22-26,

(2003).

[3] J. Chen and T. Kuo, “Multiprocessor Energy-Efficient Scheduling for Real-Time Tasks with Different

Power Characteristics,” Proceedings of the International Conference on Parallel Processing, Olso,

Norway, June 14-17, (2005).

[4] C. Yang, J. Chen and T. Kuo, “An Approximation Algorithm for Energy-Efficient Scheduling on a Chip

Multiprocessor,” Proceedings of the Conference on Design, Automation and Test, Munich, Germany,

March 7-11, (2005).

[5] J. Chen, C. Yang and T. Kuo, “Slack Reclamation for Real-Time Task Scheduling over Dynamic

Voltage Scaling Multiprocessors,” Processing of the IEEE International Conference on Sensor Networks,

Ubiquitous, and Trustworthy Computing Taichung, Taiwan, June 5-7, (2006).

[6] S. Cho, S. Lee, S. Ahn and K. J. Lin, “Efficient Real-Time Scheduling Algorithms for Multiprocessor

Systems,” IEICE Transactions on Communications, vol. 85, (2002), pp. 12.

[7] M. Cirinei and T. P. Baker, “EDZL Scheduling Analysis,” Proceedings of the 19th Euromicro

Conference on Real-Time Systems, Pisa, Italy, July 4-6, (2007).

[8] T. P. Baker, M. Cirinein and M. Bertogna, “EDZL Scheduling Analysis,” Real-Time Systems, vol. 40,

(2008), pp. 3.

[9] M. Park, S. Han, H. Kim, S. Cho and Y. Cho, “Comparison of Deadline-Based Scheduling Algorithms

for Periodic Real-Time Tasks on Multiprocessor,” IEICE Transactions on Information and Systems, vol.

88, (2005), pp. 3.

[10] H. Park, S. Han, H. Kim, S. Cho and Y. Cho, “ZL Scheme: Generalization of EDZL Scheduling

Algorithm for Real-Time Multiprocessor Systems,” INFORMATION: An International Interdisciplinary

Journal, vol. 8, (2005), pp. 5.

[11] X. Piao, H. Kim, Y. Cho, S. Han, M. Park, M. Park and S. Cho, “Power-Aware EDZL Scheduling Upon

Identical Multiprocessor Platforms,” Proceedings of International Conference on Reliable and

Autonomous Computational Science, Atlanta, GA, USA, October 27-30, (2010).

[12] X. Piao, H. Kim, Y. Cho, S. Han, M. Park, M. Park and S. Cho, “Low-Power Agorithm for EDZL

Scheduling on Multicore Processors,” INFORMATION: An International Interdisciplinary Journal, vol.

14, (2011), pp. 5.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.7 (2015)

182 Copyright ⓒ 2015 SERSC

[13] F. Zhang and S. T. Chanson, “Processor Voltage Scheduling for Real-Time Tasks with Non-Preemptible

Sections,” Proceedings of the Real-Time Systems Symposium Austin, TX, USA, December 3-5, (2002).

[14] R. Davis and A. Burns, “A Survey of Hard Real-Time Scheduling for Multiprocessor Systems,” ACM

Computing Surveys, vol. 43, (2011), pp.4.

[15] C. L. Liu and J. W. Layland, “Scheduling Alorithms for Multiprogramming in A Hard Real-Time

Environment,” ACM, vol. 20, (1973), pp. 1.

[16] J. Leung, “A New Algorithm for Scheduling Periodic Real-Time Tasks,” Algorithmica, vol. 4, (1989),

pp. 1.

[17] A. Srinivasan and S. Baruah, “Deadline-Based Scheduling of Periodic Task Systems on

Multiprocessors,” Information Processing Letters, vol. 84, (2002), pp. 2.

[18] S. Baruah, “Optimal Utilization Bounds for The Fixed-Priority Scheduling of Periodic Task Systems on

Identical Multiprocessors,” IEEE Transactions on Computers, vol. 53, (2004), pp. 6.

[19] R. Ha and J. Liu, “Validating Timing Constraints in Multiprocessor and Distributed Real-Time Systems,”

Proceedings of the 14th IEEE International Conference on Distributed Computing Systems, Poznan,

Poland, June 21-24, (1994).

[20] X. Piao, S. Han, H. Kim, M. Park and Y. Cho, “Predictability of Earliest Deadline Zero Laxity

Algorithm for Multiprocessor Real-Time Systems,” Proceedings of the 9th IEEE International

Symposium on Object and Component-Oriented Real-Time Distributed Computing Gyeongju, Korea,

April 24-26, (2006).

Authors

Xuefeng Piao, He received the B.E. and M.E. degrees in

Computer Science and Technology from Hoseo University in

2002 and 2004, respectively. He received Ph.D. degree in

Computer Science and Technology from Seoul National

University in 2011. He was a visiting researcher of Institute of

Computer Technology in Seoul National University from 2011 to

2012. He is an Assistant Professor in School of Computer

Science and Technology, Harbin Institute of Technology from

2011. His current research interests include operating systems,

real-time systems, and embedded systems.

Moonju Park, He received the B.E. in Naval Architecture and

Ocean Engineering, and the M.E. and the Ph.D. in Computer

Engineering from Seoul National University in 1995, 1998, and 2002

respectively. From 2000 to 2001, he was a visiting scholar in

University of Illinois at Urbana-Champaign. He was with LG

Electronics as a chief research engineer from 2002 to 2006, and with

IBM Ubiquitous Computing Laboratory as an advisory software

engineer from 2006 to 2007. He is currently an Associate Professor in

School of Computer Science and Engineering, Incheon National

University. He served as a chairperson of embedded software group

in ICT Standardization Committee of Korea from 2009 to 2013. His

current research interests include operating systems, real-time

scheduling, and embedded systems.

