
International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015), pp.395-410

http://dx.doi.org/10.14257/ijmue.2015.10.5.37

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

RealCoins: A Case Study of Enhanced Model Driven Development

for Pervasive Games

Hong Guo, Hallvard Træ tteberg, Alf Inge Wang and Shang Gao

Department of Computer and Information Science, Norwegian University of

Science and Technology

{guohong, hal, alfw, shanggao}@idi.ntnu.no

Abstract

Model Driven Development (MDD) and Domain Specific Modeling (DSM) have been

widely used in information system domains and achieved success in many open or in-

house scenarios. But its application in the game domain is seldom and immature. In our

research, we identified three issues that should be considered carefully in order to play

the strength of MDD in the game development environment to a larger extend: 1)

structured domain analysis should be done to assure the size and familiarity of the

domain; 2) adapted process should be designed to save cost and support evolution; and

3) proper tools (especially language workbenches) should be evaluated and utilized to

ease DSM tasks and accelerate iterations. In this paper, we explain these three issues and

illustrate our solutions to them by presenting the development details (both technical and

procedural) of one pervasive game case. We evaluate the gains and costs by involving

MDD into the game development process. We reflect on the issues we have met, and

discuss possible future works as well.

Keywords: Model Driven Software Development, Domain Specific Modeling,

Pervasive Game, Computer Game, Process.

1. Introduction
Using models to design complex systems including software systems is not new.

Models can help us understand the problem and potential solutions through

abstractions. The popularity of UML [1] made even more people understand and

accept the importance of model and design by means of model [2]. However, due to

practical reasons, models in software engineering were infrequently used . Or, even

when used, they often played a secondary role [3]. Until later when Model Driven

Development (MDD) and Domain Specific Modeling (DSM) methods were devised

to take more advantage from models, models became the primary and only artifacts

that needed to be made. MDD is based on two key factors: abstraction and

automation. By providing abstractions that are closer to the problem domain, the

complex problem domain knowledge is embodied and becomes easier to use [4]. By

providing automation, the complexity of solution domain is hidden and full -scale

code generation becomes possible. As a result of abstraction and automation, more

people without much domain knowledge or programming experiences can write a

full specification of the system and generate the software. Further, the productivity,

the quality and maintainability of software systems are increased [2].

While MDD has been used widely and successfully in many domains, researchers

also tried to apply it in the computer game domain. There are a number of potential

advantages of this application. First, game software is complex on both the domain

knowledge and the architecture. MDD helps to separate them (by hiding the domain

http://dx.doi.org/10.14257/ijmue.2015.10.5.17

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

396 Copyright ⓒ 2015 SERSC

complexity in DSM artifacts). Thus the overall complexity is alleviated. Second, it

is quite common that game software utilizes a generic game engine which executes

specific level descriptions which are produced in a level editor. MDD helps to

achieve similar goal: generic code patterns executes specific data (model) which is

produced in a Domain Specific Language (DSL) editor, but in a more structural and

customized way. Also, the automation degree is expected to be much higher.

However, MDD’s application in computer game domains is not quite common

and mature as expected till now. During the process of our research on this field,

we identified several issues that are quite common or not solved in a desired way

which may partly contribute to the current unsuccessful situation. In this paper, we

illustrate these issues and present our solutions to them by a case study about the

development of the location-based game RealCoins. We illustrate the issues in

Section 2, Section 3, and Section 4. Then we demonstrate the case study with our

solutions to the issues in Section 5. In Section 6, we discuss the costs and gains by

involving MDD to our pervasive game development process. We conclude this

paper and point out future works in Section 7.

2. Structured Domain Analysis to Assure the Effectiveness and

Efficiency
Despite all the benefits DSM may probably bring to software development, DSM is

not easy and cheap. Applying DSM does not always sustain its costs. In [5], the author

promoted to use DSM whenever it is possible, but still warned that there are some

circumstances where DSM solution may not be so plausible. Such circumstances include

for example short-term projects or unfamiliar domains. That is why [6] proposed that

there should be a decision stage when whether to involve DSM should be decided

according to the specific situation among the overall four stages of DSM. The other three

stages of DSL development are analysis stage, design stage, and implementation stage.

Domain analysis within analysis stage plays an important role because it supports the

decision stage with solid data like the domain size for decision-making, and it provides

detailed and structured domain knowledge for the design and development. Such

knowledge includes: a domain vocabulary with semantic meanings, a model describing

the commonality and a model describing the variability space of the domain. These kinds

of information are vital for the Domain Specific Language (DSL) meta-model

construction that mainly consists of concepts, attributes and relationships. While DSL

concepts often come from the domain vocabulary directly, attributes and relationships can

be thought as the main means to implement variability (by instantiating and integrating).

Such knowledge is also very important for the construction of the generator and the

domain specific library [6].

As said above, domain analysis is very important since it ensures the proper size of the

domain and the familiarity of participants to decide whether to use DSM. What is more, it

provides solid and structured data to ensure an effective and efficient construction of

DSM artifacts. However, this part has not been paid enough attention to or, at least has

not been done in a visible way among most practices described in the literature regarding

to model driven computer game development. Despite various architectures or DSLs they

have created or used, few of them present a specified domain definition and a structured

domain analysis process to make abstractions.

The work in [7] may be the only one that illustrated the detailed domain analysis

process and result structure. In this paper, core dimensions for the game development

were considered and analyzed, and the results were recorded in a feature model with

almost 150 features (which models the commonality and variability).

3. Adapted Process to Save Costs and Support Evolution

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 397

Both computer game development and domain specific modeling are not simple.

Increasing challenges due to the overall project size or domain specific characteristics

make game development much harder than before during the past decades [8]. But the

hardest part of game development has always been the engineering [8]. Computer game

development takes big technical risks as well as game design risks due to the fact that you

never know whether a gameplay design is really appealing before you can try it out [9].

That is why computer game development emphasizes the importance of prototyping and

play-testing [10]. Numerous prototypes are constructed and play-testing is carried out to

test the gameplay and the overall user experience in an iterative way before a game can

finally be finished. On the other hand, domain specific modeling emphasizes the agility

and ability to evolve as well (that usually is realized by an agile or iterative process) [5].

As said by [3], when trying to apply a new technology to an existed production

environment, process should also be considered besides the software and environment.

The combined process should at least meet the needs of both technologies, and ideally,

improve the quality and efficiency of them. When discussing about the application of

MDD in game development, how to design the overall process to support agile iterations

(as a common requirements coming from both participants) is a must naturally. Further,

how to adapt the tasks of original processes – by combining overlapped parts, utilizing

deliverables produced by each other efficiently – to make the overall process compact and

productive can be crucial to the practicality of the application.

As we said, supporting iterative development and keeping a compact process can be

important to the application of MDD in computer game development. There are few

articles in the domain of model driven game development. Even fewer mentioned the

overall process. While [11] emphasized iterative processes and [12] talked about

relationships among tasks of computer game development and domain specific modeling,

none of them illustrated in detail and came up with an adapted workflow with combined

tasks and iteration support.

4. Language Workbench Tools to Ease DSM Tasks and Accelerate

Iterations

Domain specific modeling is not easy [6]. Developing DSL and tools requires not only

comprehensive domain knowledge, but also proficient language development techniques

[6]. Few people have both. Domain knowledge can be acquired from various technical

documents or domain experts. The complexity and difficulty to carry this process (domain

analysis) can be lowered by knowledge engineering techniques. Knowledge capture and

representation, as well as ontology development [13] for example can be useful. On the

other hand, language workbench tools can alleviate the expertise and efforts needed to

develop the language and the tool chain. There is inherently reduced set-up cost with

language workbenches for DSM approaches [14]. As what we have found, the usage of

language workbench tools in this domain has become visible from around 2008.

Workbenches that have been used in this domain include: DiaMeta [14], Microsoft DSL

Tools [15, 16], and the Eclipse modeling tools [12, 17, 18]. Besides these, Epsilon,

MetaEdit and IntelliJ also provide similar tools. Few people talked about why they chose

which workbench tools, and analyze how the workbench tools eased their work and

accelerate the process. In [5], the author evaluated several language workbench tools

(IDEs). But many of the information there may be out of date now due to the rapid

development of these software products, especially the open source tools that are

available on the Eclipse platform [19].

Different organizations and software may choose the language bench tools that fit them

best according to different criteria like feature set that is provided, price, stability,

documents, support, community, and etc. For us, full scale support for language

definition, DSL editor, validation, and generator construction is the most important factor

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

398 Copyright ⓒ 2015 SERSC

since it decides the costs and worthiness of involving DSM greatly. Another reason we

choose to use Eclipse-based tools is that they are free. Further, these tools present good

stability and inter-operability. However, from our experiences, lack of documentation and

sharp learning curve may be the biggest challenges for more people to use them. We will

introduce this with more details about its usage for our case study in the next section.

5. Case Study

In this section, we demonstrate our solution to the previous raised issues by a case

study. First of all, we introduce the game case. Then we describe how we carried the

domain analysis in a structured way basing on a pre-defined ontology. We introduce how

we embedded the DSM tasks and made a compact process that in overall still keeps

iterative. And at last, we present how we made use of different tools on the Eclipse

platform to support DSM definition and usage, in an efficient way.

5.1. Game Description

Instead of conventional computer games, a pervasive game is used by use for the case

study. Pervasive games have emerged during the last ten years. Such games involve more

physical and social elements into the game, and blend game and usual life by providing

game experience all the time and everywhere. Well known pervasive games are like

“Mobio Threat [20]”, “SupaFly [21]”, “Epidemic Menace [22]”, and “Capture the Flag

[23]”. A typical pervasive game has features like location-based, involving physical user

interfaces, mobility, and long lasting [24]. Below is the description of our pervasive game

case:

Real Coins is a location-based, mobile version of traditional treasure-hunting games.

Several groups of players can participate with mobile devices like tablet PCs or smart

phones with them. The mobile devices should be equipped with GPS so that position

information of players can be sensed and known by the game. To play the game, all

players should be physically at the same place and login to the web based game with their

group ID and player ID that all players have agreed upon. When the game starts, several

treasure zones (with some hidden virtual coins inside) and some other virtual coins

outside are scattered in the game area around where players are. In the main view of the

game, a real map with information of the treasure zones, coins, players are presented.

Players are not able to see the hidden virtual coins before they or their group members

enter the treasure zone where hidden coins locate. The main game play is that players

need to move physically to enter a treasure zone (by locating within the zone) or get a

virtual coin (by co-locating with the coin). An optional gameplay is to steal coins from

other group players by approaching them (locating nearby) and pressing a hot key. The

action of stealing always costs a fix amount of coins of the player, while the result coins

that the player can steal is randomly calculated. Thus it is possible to lose some coins as

a result. When the game ends after some time, the group or player with the most coins

wins the game.

5.2. Ontology Based Domain Analysis

In this case, we did domain analysis based on a pre-defined ontology named Pervasive

Game Ontology (PerGO) [25] which is part of our previous research results. The PerGO

ontology contains two levels of abstractions: higher level abstractions that are common to

all computer games and lower level abstractions that are primarily used or often used by

pervasive games. These abstractions can be used directly or as a base to derive new

concepts in target DSL. All the abstractions are organized in perspectives like ‘Challenge

and Action’, ‘Virtual World Element’ and ‘Presentation’. These perspectives are helpful

to frame domain analysis as well as the concepts identification in a systematic way. Based

on the perspectives and abstractions provided in PerGO, we did domain analysis in three

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 399

steps: 1) Go through all the perspectives, identify perspectives that relate to current

domain, and record them; 2) Go into each perspective that has been recorded, analyze the

common game design, express them as concepts by utilizing existed abstractions in

PerGO or deriving new ones basing on PerGO; and 3) Go through the perspectives and

concepts identified in step 2, imagine and scope possible variability space basing on the

concepts, and express the variability as concept attributes or relationships among

concepts. Table 1 presents part of the result of domain analysis (due to limitation of

space) as below.

Table 1. Commonality and Variability of RealCoins

PerGO

Perspectives

Commonality

(Concepts)

Variability

Challenge and

Action

(Challenge):

GetMoreCoin;

(Actions): Move,

GeTreasure,

StealTreasure

Game Duration, Max coin of single win or max coin

of total win, Whether to support get treasure action,

Whether to support steal treasure action, Cost and

value range of steal coin action,

World Element Map, Location,

Treasure, Group,

Player

Location number, location size, location position,

treasure value, treasure position, treasure number,

player position

Presentation MainView, GUI,

LoginGUI

Map style for client, map style for server,

transparency for group members, transparency for

opponents,

Control PhysicalMove,

GetTreasureByKey

Key for GetTreasure, key for StealCoin

5.3. Compact and Iterative Process

As we mentioned previously, computer game software is traditionally developed and

polished in a highly iterative way. Within each iteration, game design and game software

development progress alternatively. Thus domain analysis cannot be done in an ideal

stage located between requirements collection (game design) and software development.

As a result when we developing the case, DSM tasks were interleaved with game

development tasks, and the process in overall kept highly iterative. We introduce these

tasks in a linear way to make our discussion concise.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

400 Copyright ⓒ 2015 SERSC

DSM Definition

DSM Usage

2. Variability

5. Generated Codes

1. Commonality

3. Reference Code

6. Other Inputs

4. Model in DSL

DSL
Genera

tor

Other
Tools

DS
Library

Figure 1. Inputs and Outputs of DSM

As Figure 1 shows, a DSM solution consists of two parts: DSM definition and DSM

usage. In the DSM definition, artifacts (DSL, domain specific library for instances) are

defined and tools (DSL editor, generator for instances) are produced. While in DSM

usage, models are constructed in the DSL editor, then code is generated automatically.

DSM hides the domain specific complexity by encapsulating them in DSL concepts and

domain specific libraries. Thus the construction of artifacts and tools in DSM definition

requires inputs from the domain, usually in the form of Commonality space, Variability

space, and Reference Code.

On the other hand, traditional game development mainly involves two stages: Pre-

Production stage and Development stage. The main deliverables from a Pre-production

stage is Game Design and a workable Baseline Prototype. While the main deliverables

from a Development stage is Level Design and numerous Tuning Prototypes to tune the

gameplay and the integration of everything. Since game design traditionally decides

global settings (common parts among all prototypes) like epoch and space, primary game

play, basic game world element types and etc., and level design mainly decides more

specific ones (variable parts among all prototypes) like the detailed game play, element

objects, and their integration in one level (this stands for one level games as well). Thus

we did commonality and variability analysis within these two tasks respectively as Figure

2 shows. Notice that, the variability analysis is done basing on an expectation of possible

design for all levels, instead of design for one specific level (which will be mentioned a

little bit later). Further, the baseline prototype that has been built can be used as the

reference code to build the generator. After DSM language and tools have been defined,

the design for each one specific level can be written as a Model in DSL, and the

Generated Codes will be available by running the tool chain.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 401

Pre-Production

Game Design

Development

Level Design

Tuning
Prototypes

Baseline
Prototype

DSM
1

4

3

5

2

Figure 2. Game Development Process with Embedded DSM Tasks

Figure 3 shows UI of the baseline prototype that we have developed (Server side and

Client Side). We will illustrate the detailed result of DSM definition and DSM usage

together with the usage of language workbench tools in Section 5.4.

Figure 3. Server-side and Client-side Applications of RealCoins

5.4 Full Functional Language Workbench

All the tools that we used were based on Eclipse. Eclipse is an open source software

community which is available for both individuals and organizations. There are many

modeling projects that focus on the promotion and evolution of model based techniques

within this community by providing modeling frameworks, tools and standard

implementation. Some researchers used different combination of such projects to develop

their DSM solutions for computer games [12, 17, 18]. Table 2 is a list of tools that we

have used according to which tasks in DSM definition or DSM usage they can support.

The tasks are basing on the description in [5]. We will illustrate the details of some of the

tools by demonstrating their usage in our case in the left part of this section. To make a

complete view, we also listed the domain analysis task (identifying and defining modeling

concepts) in the table. It is possible to use any text editor (better to support table) for this

task actually. For the integration of multiple languages, we will not introduce in detail

since it is not used in this case. Also, maintaining the language requires the cooperation

among all the tools instead of a specific one, and will be discussed later. The last two

tasks (Domain framework construction and code automation) will not be elaborated also

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

402 Copyright ⓒ 2015 SERSC

because they are basing on embedded and implicit mechanisms, and developers do not

have to manually write codes or make complex configurations to invoke them usually.

Table 2. DSM Tasks vs. Eclipse Modeling Tools

DSM Tasks [5] Tools

Identifying and defining modeling

concepts (domain analysis)

Text editors (can be outside of Eclipse)

Formalizing languages with meta-

modeling (defining abstract syntax) by

Meta-model Editor (see Section 5.4.1)

“ECore Diagram Editor” (diagrammatic),

“Sample Reflective Ecore Model Editor” (tree-

based)

Defining language rules by Constraints

Validator (see Section 5.4.2)

“Interactive OCL Console”, testing on “Dynamic

Instance” (reference model/ sample model).

Integrating multiple languages Importing ECore Model (Not used in this case

study)

Notation for the language (defining

concrete syntax) by Concrete Syntax

Editor (see Section 5.4.3)

Xtext [26] Editor

Testing the language by creating

models in DSL Editor (see Section

5.4.4)

“Sample Reflective Ecore Model Editor”

(creating “Dynamic Instance” to test abstract syntax/

meta-model),

Generated DSL Editor (to test both met-model

and concrete syntax)

Maintaining the language Cooperation among all the tools (will be discussed

later)

Generator definition by Generator

Editor (see Section 5.4.5)

Xtend [27] Editor

Domain framework / domain specific

library construction

Automatically generated GenModel (generating

infrastructural classes)

Code automation by generator (see

Section 5.4.5)

Embedded and implicit mechanism

5.4.1 Meta-model Editor: As presented in Figure 4, there are two editors available to

define the abstract syntax of the DSL: a diagrammatic editor (“ECore Diagram Editor”

shown in the left part) which allows to draw the meta-model visually, and a tree based

editor (“Sample Reflective Ecore Model Editor” shown in the middle part) which allows

to specify the concepts and relationship according to the aggregation tree. DSL developers

can choose which one to use according to different preference and needs. These two

editors save the meta-model in two files separately (shown to the right in Figure 4), but

changes to one of them will automatically be applied to another when they are saved.

Most of the time, we used the diagrammatic editor because it is more intuitive.

Figure 4. Meta-model of Sample DSL in ECore Diagram Editor and Sample
Reflective Ecore Model Editor

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 403

Figure 5. Sample Data and Constraints Validation

5.4.2 Constraints Validator: Once the meta-model was decided, a data model

(“Dynamic instance” which will be introduced a bit later) can be specified basing on it

(without having defined the concrete syntax). Then, we validated constrains which were

written in OCL [28]. Figure 5 shows a typical view where OCL constrains were tested on

a data model: a node in the data model was selected (upper part of the figure), then the

constraints were typed within the console window (lower part of the figure), and the result

of the constraint validation was displayed (middle in the figure).

Figure 6. Concrete Syntax Definition

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

404 Copyright ⓒ 2015 SERSC

5.4.3 Concrete Syntax Editor: When the meta-model has been specified, we chose to

automatically generate the concrete syntax of the DSL. In case other language developers

intend to invent a set of notations that is more user-friendly, the generated syntax also

provides a good starting point which is bug-free and workable. As a result, the overall

workflow was accelerated significantly. Figure 6 shows the automatically generated

concrete syntax of our DSL in the editor which was enabled by Xtext project [26]. Notice

that Xtext supports to define abstract syntax as well actually, but we did not use it to

define abstract syntax due to poor visibility of the meta-model.

5.4.4 DSL Editor: After defining the syntax, the DSL editor could be generated as a

plugin and enabled in a new instance of the Eclipse IDE (also called “Eclipse”). In this

new Eclipse instance, we opened a data file written in the DSL, all the keywords would be

highlighted, and the data file could be analyzed and understood then. In the left part of

Figure 7, it shows that a data file was opened in a common textual editor without any

keyword highlighted. In the middle part of Figure 7, it shows that the same file was

opened in the DSL editor with all the keywords, numbers, and strings highlighted in

different colors (keywords in red, strings in blue, and numbers in gray). In the right part of

the figure, we can see that from that time, the data file had been able to be analyzed by the

tree-based editor (“Sample Reflective Ecore Model Editor”).

Figure 7. Sample Data in Text Editor, DSL Editor and Sample Reflective
Ecore Model Editor

5.4.5 Generator Editor vs. Generator: As suggested in [5], a simplified process to

construct the generator can utilize the reference codes available (the baseline prototype in

our case) by pasting them as the entire content of generated codes, then modify parts that

contain repetition or alternatives which relate to the model data. Figure 8 shows a view of

the generator editor we used that was enabled by the Xtend project [27]. Figure 9 shows

that a set of files (left part) with codes was generated (right part) from the model written

in the DSL (middle part).

6. Discussion

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 405

In Section 5, we followed the three issues we have identified previously and

demonstrated how we handled them during the process of developing a MDD solution for

location-based treasure hunting games. In this section, we analyze the gain and cost by

involving DSM in this case. We reflect on some issues we have met and discussed about

possible ways to solve them.

6.1 Evaluation

We evaluated the costs of involving DSM to this case by two means: the working hours

used and the codes lines written for DSM definition tasks. We evaluated the gains of

involving DSM from by these two means also: we estimated hours and codes that can be

saved for each prototype we may develop later. In Table 3 and Table 4, we listed the main

result. We discuss more about them as below.

Figure 8. Generator Definition of Sample DSL

Figure 9. Generated Codes for the Sample Data

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

406 Copyright ⓒ 2015 SERSC

In Table 3, it shows that we used 14 hours to develop the first prototype, and 11 hours

to develop DSM artifacts. Less than one hour may be needed to develop each one more

prototype after that. From this data, it seems that, involving DSM can be worthy when we

develop more than 3 prototypes. In Table 4, there were in total 1263 lines of code that

have been manually written for the 1
st
 prototype, 1232 lines of code for the DSM

definition. Developing new prototypes requires around 59 lines for each prototype. The

conclusion seems to be in line with the conclusion drawn from Table 3: the gain

counteracts the cost from the time when the third prototype is to develop.

Table 3. Working Hours for Sample DSL Development

Tasks Hours

Constructing baseline prototype 14h

DSM

definition

Meta model

and data file

3h

Syntax and

generator

8h

Tuning prototypes 0.5h-1h per prototype

Table 4. Lines of Code for Sample DSL Development

Tasks Lines of Code (LoC)

Constructing baseline prototype 413(client-side) +186(database)

+25(login) +419(server-side) +220(database

manipulation) = 1263

DSM

definition

Meta model 82

Data file 59

Syntax 0(manual) +137(auto-generated)= 137

Generator 173(manual) +1059(pasting from the

prototype) = 1232

Tuning prototypes Around 59 per prototype

However, this is not a precise model. In the real circumstances, involving DSM is quite

challenging for developers who are used to write application codes in the domain. Even if

language developers are involved to develop the DSM solution, the application

developers may need more time than us to write codes in the DSL. On the other hand,

writing more prototypes that share many common parts do not always cost same hours

since the common codes can be pasted and modified. Also, there is reconstruction cost to

the DSM solution that is hard to calculate since it relates to the language developer’s

knowledge and expertise tightly (and also the domain complexity). This cost can be huge

at the earlier stage, but will significantly decrease after several iterations (when the DSM

gets mature). But anyway, involving DSM can be quite expensive for a project which

only aims to several prototypes, but will be more worthy when more prototypes are to be

developed (increased productivity).

Besides the increased productivity, from our experiences in this case, we have gained

more due to the decreased complexity. Since most of the common domain knowledge has

been encapsulated (in DSLs, libraries and generators) and do not need to modify (except

for reconstructions), only a few of design details need to be specified in order to produce

codes for new prototypes. Obviously the quality and maintainability was improved (as we

mentioned earlier) also.

6.2 Reflections

In our case, we did domain analysis basing on an ontology that contains common

concepts for pervasive games in several perspectives. We felt that perspectives help us

structure our analysis well. We felt more confident that we have identified all the concepts

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 407

that may be needed in the DSL. On the other hand, many predefined abstractions that can

be used directly or with slight modification makes the process much more quicker. Even

if we need to make new abstractions, the perspectives and the concepts within them

provide us a good context to make such abstractions. Thus in overall, we felt satisfied to

the ontology as well the domain analysis process.

However, we also found there may exist places where we can do more. Since the

ontology we were using (PerGO) was targeted to various kinds of pervasive game instead

of one specific kind (like treasure hunting pervasive game), it is natural that some of the

common concepts that are often used in treasure hunting games, like Treasure, are not

covered by PerGO since they do not apply to other pervasive games. Further, many

attributes and relationships that are common to all treasure hunting games are not covered

by PerGO either. This makes that, in case a series of treasure hunting game DSLs are to

be developed, such part of domain analysis work is repeated. This raises a question that

do we need another layer of artifacts between the ontology and the DSL meta-models, a

generic model with all common concepts, attributes, and relationships for various treasure

hunting games for example? From engineering’s perspective, this may be helpful to

develop such DSLs more quickly. However, there are also some open issues. First, it is

not easy to come up with a clear scope about what elements treasure-hunting games

should have. To our knowledge, There are no comprehensive investigation and commonly

agreed definitions for such a specific game genre. As a result, developing such a generic

model requires a lot of research work to make it generic and useful. Second, even if we

find a proper way to define treasure-hunting games, the actual games that we need to

develop often try to involve different elements that can make them unique, innovative,

and appeal. This is caused by the fact that whether a game can succeed mostly depends on

its gameplay- whether it is interesting enough- instead of whether it fulfills a pre-defined

requirement sets. As a result, it is still inevitable that some domain analysis needs to be

done, new concepts need to be identified, and attributes as well as relationships need to be

added. At that time, the generic model will need to be reconstructed to be consistent. The

reconstruction effort may exceed the efforts that we have expected to save by introducing

the generic model. To summarize, involving an extra layer of abstractions brings extra

cost and the gain may be unknown in an open discussion. Thus whether it is necessary is

an open question, and the answer depends on the specific scenario that developers are

facing.

During the overall process, we found that even for such a simple and direct domain, it

was still impossible to carry out the tasks one time and everything works fine. We often

faced the fact that some artifacts needed to be reconstructed. Such artifacts include

reference code (since it cannot fulfill the design), reference model (due to the change of

syntax), generator (since it does not generate the code as expected), DSL meta-model

(since some of variability cannot be expressed by models that are written in the DSL),

level design (since it is not playable), and even game design (since implementing some of

the design requires resources that exceed the ability of current platform). However, these

artifacts needed to be reconstructed in different frequency. And once an artifact was

reconstructed, only the artifacts that were produced in a latter stage in the process needed

to be reconstructed accordingly. Normally, the earlier stage one artifact was at (like

overall game design), the lower frequency the reconstruction it needed. And by utilizing

the automation provided by workbench tools, the time to finish one iteration of

reconstruction is shortened to a large extend. From these experiences, we realized more

about the importance of an efficient workflow to support evolution. Further, the cost issue

for involving DSM, especially about the reconstruction of DSM, must not be overlooked.

We should try our best to lower the fixed cost while involving DSL solutions in a specific

domain in order to benefit more from it.

With our experience in this case, the language workbench tools available in the Eclipse

platform brought us many conveniences. First, the full-spectrum tools make it easy to

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

408 Copyright ⓒ 2015 SERSC

build all the artifacts without having to look for other solutions and integrating them.

These tools provided many practical functions that saved us a lot of time also. For

example, the concrete syntax can be automatically produced which conforms to the

abstract syntax. This saves efforts and accelerates the process significantly from our

experiences. Another example is, before the concrete syntax is defined, it is possible to

create data models that conform to the meta-model to initially validate the meta-model

and decreased the possibility to reconstruct the meta-model later greatly. Second, the tools

are all open sourced and free, this makes us avoid of cost concern. Third, all the tools we

have used in our workflow are presenting high quality and we met few bugs or significant

usability issues. However, due to the complexity and lack of documents and other

support, we can imagine the sharp learning curve for those who do not have experience on

this platform may bring big impact to their choices.

6.3 Related Work

There is some related work about applying model driven approaches in game

development. However, as model driven software development itself is quite new, model

driven game development is even newer. We only found few scientific papers in this

domain. While some of them provided higher level envision about this domain [11, 12,

14], some other papers presented concrete demonstrations and initial data as well as

lessons they have gained [16, 17, 29]. Very few of them touched in-depth issues like how

to perform domain analysis to ensure the quality of the meta-model as it is the most

important and starting point in the overall development. Very few of them tried to make

some domain-specific adaptation for the process and the tasks. Instead, they mainly

treated game development as software development as in common business domains.

Thus some special procedural and practical issues could not be considered and took care

of. Such issues are like how to combine the traditional game design with model driven

tasks, and how to design the overall process so that game design, game software and

model artifacts can be developed in an overall iterative way (as both computer game

development and model driven approaches require). In addition, we have not found any

such paper which focused on pervasive games. We expect our research would provide

more insights to this area, especially about the domain analysis strategy and the overall

procedure design.

In [30], a conceptual framework was introduced which consisted of three tier design

architecture (flow, scenarios and objects) and components (screen components, GUI

components, In-game components, and etc.) for serious games. This conceptual

framework structured the abstractions and relationships, but might not be able to work as

a domain analysis structure in the common way. Also, it was about serious games instead

of common computer games. Some concepts were enumerated in the framework which

can be thought as a semi-formal vocabulary from our perspective.

[7, 31] may be the work which is closest to our approach. The authors proposed ten

dimensions to define a product line including User interface, Game flow, Artificial

Intelligence, Sound/Music and etc. A more detailed ontology introduced in [31] was used

to define the SharpLudus product line (as the main part of domain analysis task) and

create the corresponding DSLs. However, the root concepts in the ontology did not match

the ten dimensions of product line definition or the top level DSL concepts in an explicit

way. How the product line definition (domain analysis) contributed to the DSL concepts

construction based on the ontology precisely is not quite clear.

7. Conclusion and Future Work

In this article, we raised three issues about the domain analysis, overall process, and

tools usage regarding to the DSM application in game domain. A common focus of these

three issues is how to save cost and accelerate process (how to improve the efficiency).

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 409

However, it is still an open question about how to evaluate the costs as well as the gains

brought by involving DSM. Exploring a more precise model than the traditional

comparison among hours used and lines coded can be a useful future work. Further, as our

domain analysis relies on a solid and useful ontology largely, we will try to extend,

improve, and polish the ontology by more case studies. Also, a more thorough review on

available workbench tools can be helpful to our future works as well. For example, Sirius

[32] which is available in Eclipse platform as well, supports diagrammatical, tree-based

and table-based editing of models, and is promising to provide more visualized and

efficient DSM experiences.

References

[1] S. Bennett, S. McRobb and R. Farmer, "Object-oriented systems analysis and design using UML",

McGraw-Hill Berkshire, UK (2006).

[2] T. Stahl, M. V lter and K. Czarnecki, "Model-driven software development: technology, engineering,

management", John Wiley & Sons (2006).

[3] B. Selic, "The pragmatics of model-driven development", Software, IEEE, vol. 20, (2003), pp. 19-25.

[4] S. Gao and J. Krogstie, "A Combined Framework for Development of Business Process Support

Systems", in: A. Persson, J. Stirna (Eds.) The Practice of Enterprise Modeling, Springer Berlin

Heidelberg (2009), pp. 115-129.

[5] S. Kelly and J.-P. Tolvanen, "Domain-Specific Modeling Enabling Full Code Generation", John Wiley &

Sons, Inc. (2008).

[6] M. Mernik, J. Heering and A.M. Sloane, "When and how to develop domain-specific languages", ACM

Comput. Surv., vol. 37 (2005), pp. 316-344.

[7] A. Furtado, A. Santos and G. Ramalho, "Streamlining Domain Analysis for Digital Games Product Lines

[8] Software Product Lines: Going Beyond", in: J. Bosch, J. Lee (Eds.), Springer Berlin / Heidelberg (2010),

pp. 316-330.

[9] B. Jonathan, "Game Development: Harder Than You Think", Queue, vol. 1, (2004), pp. 28-37.

[10] R. Rouse III, Game design: Theory and practice, Jones & Bartlett Learning (2010).

[11] T. Fullerton, C. Sawain and S. S. Hoffman, "Game design workshop: designing, prototyping and

playtesting games", Taylor & Francis US (2004).

[12] A. W. B. Furtado, A. L. M. Santos, G. L. Ramalho and E. S. de Almeida, "Improving Digital Game

Development with Software Product Lines", Software, IEEE, vol. 28, (2011), pp. 30-37.

[13] R. Walter and M. Masuch, "How to integrate domain-specific languages into the game development

process", Proceedings of the 8th International Conference on Advances in Computer Entertainment

Technology, ACM, Lisbon, Portugal, (2011), pp. 1-8.

[14] M. Denny, "Ontology building: A survey of editing tools", XML.com, (2002).

[15] S. Maier and D. Volk, "Facilitating language-oriented game development by the help of language

workbenches", Proceedings of the 2008 Conference on Future Play: Research, Play, Share, ACM,

Toronto, Ontario, Canada, (2008), pp. 224-227.

[16] A. W. Furtado and A. L. Santos, "Using domain-specific modeling towards computer games

development industrialization", The 6th OOPSLA Workshop on Domain-Specific Modeling (DSM06),

Citeseer, (2006).

[17] F. E. Hernandez and F. R. Ortega, "Eberos GML2D: a graphical domain-specific language for modeling

2D video games", Proceedings of the 10th Workshop on Domain-Specific Modeling, ACM, Reno,

Nevada, (2010), pp. 1-1.

[18] M. Funk and M. Rauterberg, "PULP scription: a DSL for mobile HTML5 game applications,

Entertainment Computing-ICEC 2012", Springer (2012), pp. 504-510.

[19] E. Marques, V. Balegas, B.F. Barroca, A. Barisic and V. Amaral, "The RPG DSL: a case study of

language engineering using MDD for Generating RPG Games for Mobile Phones", Proceedings of the

2012 workshop on Domain-specific modeling, ACM, (2012), pp. 13-18.

[20] Eclipse, www.eclipse.org.

[21] W. Segatto, E. Herzer, C. Mazzotti, J. Bittencourt and J. Barbosa, "Mobio threat: A mobile game based

on the integration of wireless technologies", Computers in Entertainment (CIE), vol. 6, (2008).

[22] K. Jegers and M. Wiberg, "Pervasive gaming in the everyday world", Pervasive Computing, IEEE, vol. 5,

(2006), pp. 78-85.

[23] I. Lindt, J. Ohlenburg, U. Pankoke-Babatz and S. Ghellal, "A report on the crossmedia game epidemic

menace", Computers in Entertainment (CIE), vol. 5, (2007).

[24] A. D. Cheok, A. Sreekumar, C. Lei and L. N. Thang, "Capture the flag: mixed-reality social gaming with

smart phones, Pervasive Computing, IEEE, vol. 5, (2006), pp. 62 - 69.

http://www.eclipse.org/

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

410 Copyright ⓒ 2015 SERSC

[25] G. Hong, H. Træ tteberg, A. I. Wang and Z. Meng, "TeMPS: A Conceptual Framework for Pervasive and

Social Games", Digital Game and Intelligent Toy Enhanced Learning (DIGITEL), 2010 Third IEEE

International Conference on, (2010), pp. 31-37.

[26] G. Hong, T. Hallvard, W. Alf Inge and G. Shang, "PerGO: An Ontology Towards Model Driven

Pervasive Game Development, Ontologies, DataBases, and Applications of Semantics", Springer LNCS,

Amantea, Italy, (2014).

[27] text, http://eclipse.org/Xtext/.

[28] Xtend, http://www.eclipse.org/xtend/.

[29] O. M. Group., Object Constraint Language OMG Available Specification Version 2.0, (2006).

[30] E. M. Reyno and J. Á . Carsí Cubel, "Automatic prototyping in model-driven game development,

Computers in Entertainment (CIE), vol. 7, (2009), p. 29.

[31] S. Tang, M. Hanneghan, T. Hughes, C. Dennett, S. Cooper, M.A. Sabri, C. Carter, A. El Rhalibi, M.

Merabti and P. Fergus, "Towards a Domain Specific Modelling Language for Serious Game Design",

6th International Game Design and Technology Workshop (GDTW'08), Liverpool, UK, (2008), pp. 43-

52.

[32] A. Furtado and A. Santos, "Defining and Using Ontologies as Input for Game Software Factories",

Proceedings of the 3rd Brazilian Symposium on Computer Games and Digital Entertainment, (2006).

[33] Sirius, http://www.eclipse.org/sirius/.

http://eclipse.org/Xtext/
http://www.eclipse.org/xtend/
http://www.eclipse.org/sirius/

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 411

Authors

Hong Guo, she is a Ph.D. Research Fellow in Information

Systems at the Norwegian University of Science and Technology

(NTNU). Her research interests include model driven software

development, domain specific modeling, and their application in

the computer game domain and the pervasive game domain.

 Hallvard Træ tteberg, he is Associate Professor at the

Department of Computer and Information Science at NTNU. His

main research interest is model-driven development and in

particular model-based development of user interfaces.

 Alf Inge Wang, he holds a position as Professor in Game

Technology at Dept. of Computer and Information Science at the

Norwegian University of Science and Technology. He received

his PhD degree in 2001, and the main focus of his work is in the

intersection of software engineering, ubiquitous computing,

education, and game technology. Wang has over 90 international

peer-reviewed publications, received the Norwegian

Technological achievement of the year award 2014, and is the

inventor and a co-founder of the game-based learning platform

Kahoot!

Shang Gao, he is a Postdoctoral Research Fellow in

Information Systems at the Norwegian University of Science and

Technology (NTNU). He was Associate Professor at School of

Business Administration at the Zhongnan University of

Economics and Law, China. He obtained his PhD (2011) in

information systems from NTNU, and his MSc (2006) in

Engineering and Management of Information Systems from the

Royal Institute of Technology (KTH), Sweden. His research

interests include mobile information systems, technology

diffusion, business process modeling, and information systems

modeling. He has published more than 40 refereed papers in

journals, books and archival proceedings since 2006.

