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Abstract 

To further enhance the distribution uniformity and extensiveness of the solution sets 

and to ensure effective convergence of the solution sets to the Pareto front, we proposed a 

MOEA approach based on a clustering mechanism. We named this approach improved 

multi-objective evolutionary algorithm (LMOEA). This algorithm uses a clustering 

technology to compute and maintain the distribution and diversity of the solution sets. A 

fuzzy C-means clustering algorithm is used for clustering individuals. Finally, the 

LMOEA is applied to solve the classical multi-objective knapsack problems. The 

algorithm performance was evaluated using convergence and diversity indicators. The 

proposed algorithm achieved significant improvements in terms of algorithm convergence 

and population diversity compared with the classical NSGA-II and the MOEA/D. 

 

Keywords: Multi-objective optimization; Multi-objective evolutionary algorithm; 

Knapsack problem; Clustering 

 

1. Introduction 

A variety of engineering applications involve multi-objective optimization problems 

(MOPs). In addition, there are often mutual conflicts between objectives. Therefore, many 

real-world engineering optimization problems have multiple mutually conflicting 

objective functions [1]. Multi-objective optimization would compromise these multiple 

objectives. In such cases, a set of Pareto optimization solution sets can be derived. Due to 

the complexity of MOPs, traditional methods from operations research alone cannot 

produce solutions to these problems [2]. An evolutionary algorithm is a randomized 

optimization method that simulates the natural evolution process. Evolutionary algorithms 

have high degrees of parallel mechanisms that can optimize multiple objectives 

simultaneously. Thus, one run of an evolutionary algorithm can derive multiple Pareto 

optimal solutions. Moreover, evolutionary algorithms are not limited by the Pareto front 

shapes and continuities. This situation makes evolutionary algorithms the most suitable 

algorithms for solving MOPs. As a result, a new multi-objective evolutionary algorithm 

(MOEA) has been established [3]. MOEAs have been proven to be among the most 

effective methods for solving MOPs. The goal of multi-objective optimization is to let the 

solution set distribute evenly and quickly as it approaches a real Pareto front. Scholars 

have proposed a number of effective MOEAs based on this goal. MOEA research can be 

divided into three stages. In the first stage, Pareto domination is adopted to design a 

simple fitness function. The algorithms used in this stage include the multi-objective 

genetic algorithm (MOGA) proposed by Fonseca and Fleming [4], the niched Pareto 

genetic algorithm (NPGA) proposed by Horn and Nafpliotis [5], and the non-dominated 

sorting genetic algorithm (NSGA) proposed by Srinivas and Deb [6]. The second stage 
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uses elite groups to maintain the distribution from the Pareto optimal solution distribution. 

The algorithms used in this stage include the Pareto archiving evolutionary strategy 

(PAES) proposed by Knowles and Core [7], the strong Pareto evolutionary algorithm 

(SPEA) and the improved SPEA (SPEA2) proposed by Zitzler and Thiele et al. [8,9], and 

the improved NSGA (NSGA-II) proposed by Deb and Pratap et al. based on an elite 

strategy [10]. The third stage is characterized by a number of mixed algorithms generated 

via the combination of a MOEA and other novel intelligent algorithms. These mixed 

algorithms include the immune multi-objective optimization algorithm (IMOA) [11], the 

multi-objective particle swarm optimization algorithm (MOPSO)[12], and the quantum-

inspired multi-objective evolutionary algorithm(QMEA) [13]. As stated in the previous 

studies [15-16]. To further enhance the distribution uniformity and extensiveness of the 

solution sets and to ensure effective convergence of the solution sets to the Pareto front, 

we proposed a MOEA approach based on a clustering mechanism. 

 

2. Key Concepts 
 

2.1 Multi-objective Optimization 
 

Definition 2.1: A MOP is composed of n variable parameters, K objective functions, 

and M constraint conditions. The optimization objective is described by  

)}(),...,(y),(max{ 2211 xfyxfxfy qq  　  

..ts mixgi ,...,2,1,0)(       (1) 

where 
nRx  is a vector with n decision variables, )(xfi  is an objective function, and 

)(xgi  are the m inequality constraint functions that form a feasible solution set.  

Definition 2.2: The feasible solution set fX  is a set composed of decision vectors that 

satisfy all of the constraint conditions described as follows.  

)0)(|{  xeXxX f


      (2) 

Without loss of generality, we focus on the minimisation problem. For the 

maximisation problem, the definition is similar to the above definition.  

 

Figure 1. The Pareto Optimal Solution and the Pareto Front 

In Figure 1, the solution represented by point E is worse than the solutions represented 

by Points C and D in terms of the two performance indicators. Based on the definition of 

Pareto dominance, solution E dominates solutions C and D. Thus, solution E is superior to 
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solutions C and D. By comparing solution E and B, it can be found that solution E is 

superior to the solutions C and D in terms of the performance indicator 1. By comparing 

solutions E and B, it can be found that solution E is superior to solution B in terms of 

performance indicator 1, but is worse than solution B in terms of performance indicator 2. 

Therefore, solution E is no better than solution B. Based on the above concept, the 

concepts involved in MOP can be described as follows.  

Definition 2.3: Pareto dominance for decision vectors yx


, :  

 (1) If and only if },...,2,1{ Ki , )()( yfxf ii


 and },...2,1{ Kj , 

)()( yfxf ii


 , then yx





 ( x


 dominates y


). 

 (2) If and only if },...,2,1{ Ki  and )()( yfxf ii


 , then yx


  ( x


 weakly 

dominates y


). 

 (3) If and only if xyyx








 , then yx


~  ( x


 is no different from y


).  

Definition 2.4: If and only if xaAa





: and fXA  is non-dominant, the 

decision vector fXx


. If x


 is non-dominant in a feasible solution test fX , then we call 

x


 the Pareto optimal solution.  

Definition 2.5: Assuming the set fXA , )(Ap  is the collection of non-dominant 

solutions in A according to the following expression.  

)(Ap = },|{ abAbAa 


  (3) 

In this case, ))(( Apf  is called the A  non-dominant front end and )(Ap  is the non-

dominant solution set for A .  

 

2.2 Classical Literature Review 

 

A. Genetic algorithms with sorting fitness assignment (MOGA)  

MOGA is an evolutionary algorithm based on the Pareto optimization concept 

proposed by Fonseca and Fleming in 1993[4]. It determines an individual’s advantages 

and disadvantages based on the dominating situation inside the whole population. MOGA 

also adopts a fitness assignment strategy based on sorting, such that the population can 

quickly converge to the Pareto front. To use the method, an individual’s Pareto rank is 

first computed based on  

( )( , ) 1 t

i irank x t p 
       (4) 

where ),( txrank i  represents the rank of individual ix  for t-th generation of evolution 

and 
 t
ip  represents the number of individuals that are superior to ix  in the t-th generation 

population. When there is no other individual in the population dominating over the 

individual, then the rank for the individual is 1. Figure 2 shows an example using 

hierarchical ranking. An individual’s rank is not necessarily continuous. For example, no 

individuals are associated with rank=4. The next step is to use proper functions to assign 

values to individuals with different ranks. The smaller the rank, the better the fit will be. If 

the same ranks correspond to multiple individuals, then the fitness share is needed to 

perform the fitness assignment. Goldberg noted that the MOGA fitness assignment 

method is a static fitness assignment strategy. Thus, it is easy to produce a larger selection 

pressure, which can lead to premature convergence. Therefore, MOGA adopts a sharing 

function and a niche technology to improve the population diversity. Through the Pareto 

optimal domain size and the population size, it is possible to determine the sharing radius 

and niche parameter share . The solution vector sets with distances between objective 
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vectors smaller than share  will share fitness values. The main advantages of MOGA 

include its ease of execution and high efficiency.  

 

Figure 2: Sorting Individuals for the MOGA Algorithm according to Rank 

B．Non-dominated sorting in genetic algorithms and improved algorithm (NSGA, NSGA-

II)  

NSGA was proposed by Srinivas and Deb in 1994[6]. It designed for multi-layer 

classification on a multi-objective solution population. Before the pairing selection for 

every generation, sorting can be performed based on the individual’s Pareto relation. A 

sharing function method based on the decision vector space is then introduced to maintain 

the population diversity. Before the selection operation for the population, classification is 

performed based on an individual’s Pareto and dominance conditions. All of the Pareto 

individuals are categorised as one class, and the same fitness is assigned to all Pareto 

solutions. Next, based on the sharing method proposed by Goldberg and Deb et al., every 

Pareto-optimal solution niche number can be calculated based on formulas (5) and (6). 

Finally, for the individual, the original fitness is divided by the niche number to obtain the 

shared fitness. Therefore, for Pareto solutions located on the same Pareto front, both the 

niche numbers and the final sharing fitness values should be different, as expressed by 

shareij
share

ij
dif

d

otherwise

ijdSh












,)(1

,0

2

)(
      (5),  

where ijd  represents the distance between individual i  and individual j , share  is the 

maximum allowed distance between individuals in the same niche, and )( ijdSh  is the 

sharing function value when the distance is ijd  according to 





Popj

iji dShm )(         (6),  

where im  is the niche number for individual i . 

NSGA has three disadvantages: (1) high computational complexity, (2) use of a non-

elite strategy, and 3) the need to set the sharing parameters. Based on the NSGA Pareto 

1 

5 

3 

1 

1 

1 

1 

2

1 

f1 

f2 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.5 (2015) 

 

 

Copyright ⓒ 2015 SERSC   387 

sorting method, every individual should be compared with other individuals for every 

objective. Thus, the maximum number of comparisons required is 
3MN , where M is the 

number of objectives and N is the population size. To reduce the computation complexity, 

Deb and Pratap et al. proposed an improved NSGA in 2000 named NSGA-II[10]. This 

algorithm adopts an elite strategy and requires the maximum number of comparisons of 
2MN . In doing so, it greatly improves the computation speed. However, this algorithm 

has a higher demand on system storage performance.  

In addition, NSGA-II uses a crowded comparison operator n  to solve the problem of 

sorting individuals with the same ranking during Pareto solution sorting, thus avoiding the 

need to set the sharing parameter share . When several Pareto solutions with the same 

ranking exist, we used formula (7) to determine their partial order priority relations 

according to  

))()(()( tantan cediscedisrankrankrankrankn jijijiifji    (7), 

where rank  is the Pareto sorting level and cedis tan  is the crowding distance. 

Therefore, NSGA-II can overcome the following disadvantages found in NSGA and other 

algorithms: (1) the excessive computational load for a non-dominant classification 

process, (2) the lack of an elite-preservation mechanism, and (3) the difficulties in 

selecting the sharing parameter share . 

 

C．Pareto archived evolution strategy (PAES)  

The objective of designing PAES was to provide a local search operation that adopts 

the same method to process all of the Pareto optimum solution points [7]. In PAES, a 

parent body and an offspring individual search solution space are adopted. This is a type 

of evolutionary strategy based on a (1+1) local search, which adopts a population size of 1 

to construct a history set based on the previously found solution plan.  

The algorithm initially generates an individual for the subsequent evaluation of all sub-

objective functions. After the comparison of the new individual and a mutation with its 

parent individual, one of the Pareto individuals is selected. If two individuals have the 

same Pareto and cannot be compared, the new individual can be compared with the 

existing archived solution plan. It is worth mentioning that the uniqueness of PAES is its 

network crowding mechanism, e.g., the commonly referred to exclusion process, that 

maintains the population diversity. This type of crowding operator is different from the 

usual crowding and niche computation methods. The exclusion process divides the 

objective space using an iterative method. Every solution is placed in a grid based on its 

objective value. Once the Pareto solution is identified, it is ready to be assigned to an 

archived set. If the Pareto solution point network number is relatively low, it will replace 

the individual associated with the maximum grid number in the archived geometry. The 

complexity of the PAES algorithm is defined by )( MNO  , where  is the archive 

length, M  is the number of objectives, and N  is the population size. PAES is an 

important MOEA that has very good evolutionary performance and convergence speed. 

Many MOEAs described later in this paper are based on PAES. Thus, the contribution of 

Knowles is indelible.  

 

D．The strength Pareto evolutionary algorithm and improved algorithm (SPEA, 

SPEA2)  

The SPEA algorithm saves the Pareto solutions found from the evolution process in an 

external set and introduces the concept of concentration to perform a fitness assignment 

on individuals in the external Pareto solution set and the current population [8]. Assuming 
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that the current population is P , the external Pareto solution set is
/P  for any 

PjPi  ,/
 according to  

sif i      (8) 

and 

 sif j 1     (9), 

where 
1


N

n
si is the concentration, n  is the number of individuals P  worse than 

individual i , and N  is the total number of individuals in P . Obviously, 

),1[),1,0[ Nff ji  . For SPEA, individuals associated with a smaller fitness have a 

higher chance of selection. Using this assignment strategy, a larger number of individuals 

in a niche will result in a higher Pareto solution concentration related to the niche. In 

addition, the results for the individuals inside the niche will have a higher fitness. 

Therefore, SPEA does not need to configure the distance parameter to achieve the goal of 

fitness level sharing. Considering that an exceedingly large external Pareto set 
/P  will 

reduce the selection pressure, search speed, and local search, SPEA adopts an average 

coupled cluster method to control the size of
/P . 

SPEA2 offers the following three improvements [9]:  

(1) in terms of the individual fitness assignment strategy, not only does it consider 

the condition of how the current individual is better than the other individuals, but it also 

considers the condition where the current individual is worse than the other individuals;  

(2) it adopts the nearest neighbouring individual density to evaluate technologies for 

improving the search accuracy;  

(3) it proposes a new external Pareto solution updating algorithm to ensure that the 

boundary solutions are preserved.  

SPEA2 redefines the concentration based on  

|}|{| jiPPjjs ti         (10), 

where i  and j  represents any individual in the current population tP  and external Pareto 

solution set tP  and is  is the concentration for individual i . 

Formula (11) defines individual i’s original fitness level according to the following 

expression.  

 ji sr          (11) 

To differentiate individuals with the same original fitness level, Formula (12) defines 

the individual density as 

2

1




k

i

id


         (12), 

where 
k

i denotes the sum of distances from k individuals that are the closest to 

individual i and k usually takes on the value of NN  , where N  and N  are the sizes 

of the current population and external Pareto solution set, respectively.  

Thus, individual i’s fitness is described by the following equation.  

iii drf           (13) 

The main idea of the SPEA2 external Pareto solution set updating algorithm is that 

assuming the size of external Pareto solution set is N , after every evolution of the current 

population and the original Pareto solution set, N  number of individuals with the 

smallest fitness are selected to replace the individuals in the original Pareto solution set.  
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3. An Improved Multi-objective Evolutionary Algorithm Framework 
 

3.1 Clustering Individuals in the Population to Form Solution Clusters 

Assuming the population individual set
 

s

n RxxxX  },...,,{ 21
 is a finite individual 

set among n individuals in the population individual space, s

jdjjj Rxxxx  ),...,,( 21  
is 

individual jx ’s characteristic vector or pattern vector and jkx  is the value assignment for 

the k-th characteristic of the characteristic vector jx . Cluster analysis on a given 

individual set X  produces X ’s C  partition. Using the most classical cluster method 

based on the FCM partition algorithm, the optimization objective is represented by  

2

1 1

),( ij

C

i

N

j

m

ijM duVUJ 
 

                                                    (14),  

where )()()(
2

2

ij

T

ijijij vxvxvxd   denotes the Euclidean distance for 

individual jx  and the cluster centre iv . In )1(}{ civV i  , iv is the cluster centre and 

m  is the weighted index ( 1m ). The FCM partition matrix is the individual’s 

membership matrix, which usually can be denoted as 
cn

ij RuU  ][  (fuzzy partition 

matrix), where iju  ( njci  1,1 ) denotes the membership of the j -th individual jx  

belonging to i-th category, which satisfies the following constraint condition.  

1

1 , 1
C

ij

i

u j n


     

0 1 , 1 , 1iju i c j n     
             

(15)  

The FCM algorithm framework is shown in Table 1.  

Table 1. The Fuzzy C-means Clustering Algorithm 

Input: First, the number of clusters C is given based on nC 2 , where n  is the 

number of individuals in the population. Next, the cluster centre )0(V  is randomly 

initialised with the number of iterations 0t  . 

Repeat: 

1. ;1 tt  

2. Based on formula 

2

1

1

1
mc

ij

ij

k kj

d
u

d





 
   

 
 , compute partition matrix U ; 

3. Based on formula 
1 1

n n
m m

i ij j ij

j j

v u x u
 

  , compute cluster centre matrix V ; 

4. Compare 
( )t

iv  and 
( 1)t

iv 
; if ( ) ( 1)t t

i iv v   , then stop iteration and output the 

partition matrix U and cluster the centre matrix V . 
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Otherwise Go back to Step 1. 

 

 

3.2 Overall Algorithm Framework 

 

  The LMOEA algorithm framework is shown in Table  2.  

Table 2: the improved multi-objective evolutionary algorithm（LMOEA） 

Step1: Population initialization  

Step2: Choose an initial individual x  uniformly from 
nX }1,0{ , }{xP   

Step3: Calculate the fitness value of each individual for K  fitness 

Repeat:  

1. Clustering individuals in the population to form solution clusters by the fuzzy C-

means clustering algorithm; 

2. Create offspring 
'x  by crossover and mutation; 

4. After several local improvement in the cluster, the the intra-cluster individuals are 

evaluated by evaluation functions of the individual; 

5. Calculate the fitness value of each individual for K  fitness 

6. Non-dominated sorting operation 

7. if  not Pz  such that ( ))()( '' zfxfxz  then }{ 'xPP   

Until meet the termination conditions, otherwise go back repeat. 

 

4. Experimental Results and Analysis 

To verify the effectiveness and feasibility of the algorithm proposed in this paper, the 

authoritative data obtained from Zitler’s webpage 

(http://www.tik.ee.ethz.ch/~zitzler/testdata.html) was used. The hardware platform for the 

experiment was a Pentium (R) (CPU 1.0 GHz, 1G RAM). The programming software was 

Matlab 7.0. The selected numbers of knapsacks were 2 and 3, and the numbers of items 

were,100，250， 750. For each of the knapsack problems in the experiment, the LMOEA 

proposed in this paper, NSGA-II [10], and MOEA/D [17] were applied independently. 

The values for large and small S values contained in the space after running every 

algorithm were recorded. Figure 3(a) shows the non-dominant solution distribution results 

derived from the three algorithms after running 100 generations for an experiment with 2 

knapsacks and 100 items. Figure 3(b) shows the non-dominant solution distribution 

http://www.tik.ee.ethz.ch/~zitzler/testdata.html


International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.5 (2015) 

 

 

Copyright ⓒ 2015 SERSC   391 

results from the three algorithms after running 100 generations with 2 knapsacks and 750 

items. 

 

 
(a).（2, 100） 

 
(b).（2, 750）  

Figure 3. Pareto Optimal Solution Distribution (100 Generation) 

From Figure 3, it can be seen that compared with NSGA-II and MOEA/D, the search 

space determined by the LMOEA proposed in the paper is broader and the solution 

quality is higher. This result was due to the learning development approach introduced 

into the LMOEA, which offered an effective combination of global and local searches. 

The global search is deductive for the evolution moving towards the Pareto front, while 

the local search can be used to explore more feasible solutions in unknown regions. 

Therefore, the combination of these two can effectively maintain solution diversity, 

making the algorithm converge quickly and effectively. From Figure 5, it can be vividly 

seen that the solutions derived using the algorithm proposed in this paper are significantly 

superior to those produced by NSGA-II and MOEA/D in terms of convergence and 

uniformity. 

Table 3. S of the Three Algorithms (100 Statistics) 

 S(NSGA-II) S(MOEA/D) S(LMOEA) 

（2,100） 4.278e06 4.897e06 5.561e06 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.5 (2015) 

 

 

392   Copyright ⓒ 2015 SERSC 

（2,250） 7.011e07 7.599e07 8.673e07 

（2,750） 6.100e08 6.378e08 7.385e08 

（3,100） 3.981e10 4.345e10 4.601e10 

（3,250） 6.448e11 6.887e11 6.901e11 

（3,750） 1.785e13 1.776e13 1.901e13 

 

Table 3 shows that after 100 independent runs for the knapsack problems, the averages 

of the LMOEA-derived S values are all greater than those derived from NSGA-II and 

MOEA/D. This result indicates that compared with NSGA-II and MOEA/D, the Pareto 

optimal solution set derived by the LMOEA has higher diversity and a more uniform 

distribution. Furthermore, the above experimental results demonstrate that the Pareto 

curve derived by the LMOEA displays a more uniform distribution and a higher 

convergence. Thus, the solution accuracy of the LMOEA is higher.  

 

5. Conclusion 

In this study, we explore a new MOEA approach. The proposed algorithm achieved 

significant improvements in terms of algorithm convergence and population diversity 

compared with the classical NSGA-II and the MOEA/D. The expansion of the application 

scope and the theoretical analysis of the algorithm for solving optimization problems are 

of great significance, providing avenues for future research. 
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