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Abstract 

In this paper, a Parallel Multiprocessor (PM) based on SIMT (Single Instruction and 

Multiple Threads) architecture is proposed. With co-issue architecture and multi-

dimensional parallelism implemented in high-effective PM, Embedded Graphics 

Processing Unit (EGPU) provides great performance for various situations, such as 

general purpose computing, 3D scene rendering, and graphics processing. Application 

programs are departed into separated threads. Allocated by Thread Processing Unit 

(TPU), separated threads can be executed in parallel. Parallelism in different hierarchy 

and dimension are implemented by Multi-Dimensional Parallelism Processor (MD-PP), 

which has made a proper trade-off between performance and cost. Additionally, PM 

improves the hardware occupancy with its co-issue architecture and internal bus 

accessing mechanism to meet the demand of processing capability. Its unified shading 

architecture also helps to hide processing latency. PM can execute 4 basic operations in 

the best case and 2 in the worst case within each clock cycle. With 32nm process 

technology and 200MHz clock frequency, PM’s area is about 5104494um
2
, power 

consumption is about 101.838mW, and it can process nearly 28M vertices or fragments in 

average. Experimental results show that the MD-PP based PM can process data with 

high performance and get a balance between efficiency and hardware consumption 

simultaneously. 
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1. Introduction 

Embedded application systems, such as mobile phones, hand-held consumer 

electronics and automobile electronics, have become more and more powerful and 

popular. People tend to rely on embedded systems, playing games with smartphones, 

watching high quality videos and images, editing photos, etc. Most of these functions are 

involved with powerful computation capability and complex data processing. That is the 

assigned task of EGPU processors. EGPUs have already become an essential component 

in current embedded systems [1-2]. 

GPU, first designed by NVDIA in 1999, is the most pervasive parallel processor to 

date [3]. GPUs have been widely used in both acceleration of 3D graphics processing and 

general purpose computing [4-7]. Along with the coming of big data age, how to improve 

the efficiency of mass data processing has become a challenging problem, which needs to 

be solved urgently by hardware systems. The efficiency of processing units has been more 

and more important in the design of modern GPUs, especially in embedded systems. 

http://dx.doi.org/10.14257/ijmue.2015.10.5.17
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During the last decade, hardware design of GPU has been dramatically changed from 

fixed pipeline to unified programmable architecture, which leads to more flexible and 

efficient GPUs. However, unlike desktop GPU, EGPU design is limited by some critical 

factors, such as power consumption, area efficiency, and chip cost [8]. Most EGPUs still 

use traditional pipeline to do the graphics processing. How to enhance the performance of 

EGPU under limited condition is a critical challenge, which needs to be considered from 

both architecture innovation and technical integration. 

Among all the challenges, the design of an efficient parallel architecture is the most 

critical one. There are several methods to implement the parallel computation, in which 

the most popular methods are SIMD (Single Instruction and Multiple Data) and SIMT 

(Single Instruction and Multiple Threads). Nowadays, SMT (Simultaneous 

Multithreading) has been proposed for better performance. In SIMD, elements of short 

vectors are processed in parallel. While in SMT, multiple instructions are issued from 

multiple threads and run in parallel. SIMT is somewhere in between: an interesting hybrid 

between vector processing and hardware threading [9]. Hence, the SIMT is the most 

promising model in parallel computation of GPUs, especially for EGPUs [10]. 

In this paper, a neoteric SIMT PM architecture with TPU and MD-PP is proposed. 

MD-PP allows multi-dimensional and hierarchical parallelism.  Multi-threads are well 

mapped into multiple cores with the help of TPU. TPU reads instructions from Instruction 

Pool (IP) and allocates different threads to MD-PP. MD-PP consists of 4 Streaming 

Processors (SP). After all the data have been processed, MD-PP writes results back. 

Instruction operations include basic and complex calculations. Basic calculation refers to 

add, multiply, comparison, etc., which can be executed in 1 cycle. Complex calculation 

refers to sine, cosine, logarithm, trigonometric, etc., which need multiple cycles. By 

separating complex calculations from basic calculations, SPs only deals with basic 

operations. Complex calculations are processed by Special Function Processor (SFP). 

There are 4 SP cores and 1 SFP core integrated in a PM. Five PEs in each SP core are 

organized in a hierarchy way, which can be configured to work in pipeline or parallel 

way. Based on MD-PP architecture, software threads can be mapped to MD-PP and SFP, 

which unifies the software programming and hardware execution. And it will bring more 

convenience for EGPU programming. 

In this work, the following contributions have been made: 

1) TPU is designed to dispatch separated threads to deal with corresponding data based 

on the same instructions. TPU balances the workload of execution cores dynamically 

and efficiently. 

2) The architecture of MD-PP is designed to work simultaneously. MD-PP achieves 

multi-dimensional parallel processing in both horizontal and vertical direction.  

3) Based on the co-issue architecture, instructions are combined according to 

parallelism dimension, and hardware utilization is also increased.  

4) An efficient anti-collision bus accessing mechanism is applied in PM to solve the 

conflicts between different executing units. Memory accessing latency can be hidden 

dramatically.  

The rest of paper is organized as following. In Section 2, the development of GPU and 

EGPU architecture is introduced. Section 3 describes the detail architecture design of 

proposed PM. Experimental results are provided in Section 4. Section 5 presents the 

conclusion and further consideration of future research works. 

 

2. Development of GPUs with SIMT Architecture 

Modern GPU has evolved from a traditional fixed pipeline to a programmable parallel 

processor with computing capability exceeding that of multicore CPUs [8]. Comparing 

with the traditional pipeline, which can only deal with graphics tasks, programmable 

processor is more flexible. With the advent of vertex shader and fragment shader, 
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graphics processing is divided into vertex stage and fragment stage. Vertex stage works 

on the vertices of primitives, including points, lines, and triangles. Typical operations 

transform coordinates into screen space before setting up and raster. And lighting and 

texture parameters are also prepared for fragment processing. Fragment stage fills the 

interior of primitives for raster output, along with the interpolated parameters [8]. 

However, the workloads of vertex and fragment stages are not well balanced sometime 

in different situations. So unified processor architecture is presented, which can execute 

both vertex and fragment programs. Unification enables dynamic load balancing of 

varying vertex processing and fragment processing workloads, and permits the new 

graphics shader stage, geometry stage [11-13]. The generality required of a unified 

processor opened the door to a completely new GPU parallel-computing capability. 

To further accelerate data processing, some GPU parallel processing architectures are 

presented based on the unified architecture. SIMT, which has been widely used, is a good 

choice for GPU and EGPU architecture design. NVDIA SIMT hardware architectures 

provide a convenient platform for CUDA (Compute Unified Device Architecture) 

programming [3]. CUDA’s hierarchical threads map to hierarchical processors of SIMT 

GPUs. GPU executes one or more CUDA kernel grids, where a PM core in GPU executes 

one or more thread blocks; several SP cores and other execution units in PM complete 

threads execution [3]. Once the instruction is set, multiple registers are set, multiple 

addresses, and multiple flow paths are ready for execution. This kind of SIMT 

architecture brings great advantages in software programming flexibility and execution 

efficiency. With the development of mobile technologies, parallel processing technology 

has been massively adopted in EGPUs.  

 

3. MD-PP based Parallel Multiprocessor 

In this section, MD-PP based PM architecture is presented in detail. PM consists of 5 

parts, IP, TPU, MD-PP, SFP, and internal memory, as shown in Figure1. Command 

Processor (CP), Data Preparation Buffer (DPB) and Data Output Buffer (DOB) are also 

demonstrated in the diagram. IP, with a depth of 32, is designed to store the instructions 

from CP. TPU reads 4 instructions each time from IP and packs them as a warp, which is 

then allocated to MD-PP as independent threads. Specifically, TPU allocates an 

instruction package, including 4 independent instructions, to MD-PP’s execution units to 

achieve 4 co-issues at one time. MD-PP is organized to deal with basic calculations which 

can be finished within one clock cycle. SFP focuses on complex calculations, which may 

need multiple cycles. Memory unit is a combination of memory blocks used for various 

purposes. Constant buffer contains constant used by MD-PP and SFP in EGPU’s shading 

stage. Shared memory is commonly owned by both MD-PP and SFP. To resolve data 

interaction and reusing problems during graphics processing, shared memory is designed 

to store intermediate results. It saves operating time, and finally accelerates processing. 

Besides texture, relative memory also stores data for shading stages. 
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Figure 1. Overview of PM 

PM processing begins with the commands from CP. CP communicates with host CPU, 

responds to the command of CPU, and coordinates all the blocks of EGPU. CP fetches the 

instructions from system bus. After analyzing each instruction, CP sends control signals 

to the relative blocks, awaking them to execute the current instruction. Since this paper 

focus on MD－PP design, the details of CP and data preparation process are not included. 

Once instructions are pushed into IP, PM is awoken and starts to run. PM executes 4 

instructions at the same time with the help of co-issue mechanism in TPU. By sharing the 

results of each SP in shared memory, the speed of calculation is dramatically increased. 

When the current instruction is finished, result will be written back to DOB. If IP’s empty 

state is detected, PM goes into idle state, and waits to be awoken by new instructions from 

CP. 
 

3.1. Instruction Design 

PM instruction is 64-bit SIMT instruction set to implement various kinds of operations, 

as shown in Table 1. Besides fundamental operation code, destination operand, and source 

operands, specific bits are designed to distinguish different threads, dimensions, and 

operation types.  

Table 1. Format of Instruction 

[63:60] [59:57] [56:49] [48:41] [40:33] 

Op-code Type Destination Scr1 Scr2 

[32:25] [24:23] [22:21] [20:17] [16:0] 

Scr3 Dimension-tag Thread-id Synchronization Reserved 

 

Different operations are distinguished by 3-bit type code, which is used to separate the 

basic operations from complex ones, and to indicate specific types of operations, such as 

algorithm operations, logic operations, or memory access. Cooperated with 4-bit op-code, 

the instruction can provide up to 16 kinds of specific operations for each instruction type. 

That can cover most of the operations of EGPU’s processing.  

Four dimension types are designed, 1D~4D. All operations are classified according to 

their dimension types.  Individual SP is 1D scalar processor, dealing with 32-bit floating 

operations. So 64-bit operations, 96-bit operations, and 128-bit operations are distributed 
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as 2D, 3D, and 4D thread operations.  Two-bit dimension tag in instruction is used to 

mark the dimension of operations, which is an important factor for computing efficiency.  

Threads and SP cores are mapped based on MD-PP architecture. They are distributed 

to different SPs according to their thread ID. Two-bit thread ID is set to signify 4 threads. 

Another 4 bits are set as synchronization bit. The rest bits of the instruction are reserved 

for further extensions. 
 

3.2. Thread Processing Unit 

SP is a 32-bit scalar processor. To deal with common 128-bit operations in graphics 

processing, 4-channel should be used simultaneously. For example, coordinates 

transformation in vertex processing and the colors conversion in fragment processing are 

all 128-bit operations. Instructions are expected to execute in 4 SPs at the same time. So 

instructions must be assigned into different threads, and mapped to different SPs. TPU, as 

shown in Figure 2, is designed to distribute threads. TPU reads instructions from IP, 

packs several instructions together and then sends to MD-PP. It guarantees the utilization 

of hardware according to their dimension tags. When MD-PP is idle, TPU distributes the 

corresponding instruction packages. There are mainly 4 different cases, which can be 

processed in parallel. 4D instructions, referring to 128-bit operations, can be assigned into 

4 independent SPs as different threads. Each SP channel deals with its 32-bit data 

according to the thread ID. For 3D and 2D instructions, MD-PP can’t be fully occupied. 

So these instructions should be co-issued with others to fully utilize MD-PP. 3D and 1D 

instruction are combined to launch simultaneously. Three SPs are used to deal with 3D 

instruction, and one SP processes 1D instruction simultaneously. Similarly, two 2D 

instructions are packaged together. Four independent 1D instructions are allocated to 4 

SPs in MD-PP. TPU receives acknowledge signals from SPs, and balances the workload 

dynamically. 

 

3.3. MD-PP and SFU 

Since graphics operations include basic operations and complex operations, the 

processing units are organized as MD-PP and SFP. Considering the complexities of SFP 

operations in accessing Look-Up Table (LUT), SFP unit is separated from MD-PP and 

shared by the SPs to reduce the consumption of area on chip. 

MD-PP is designed to achieve the multi-dimensional parallelism, in direction of both 

horizontal and vertical. The horizontal parallelism is realized by utilizing 5 independent 

PEs in each SP as execution pipeline. Vertical parallelism is realized by taking advantage 

of 4 SPs in MD-PP, operating in parallel to execute independent threads. 
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Figure 2. Overview of TPU 

For each PE, execution pipeline is divided into 5 sub-stages: Instruction Fetch (IF), 

Instruction Decode (ID), Memory Access (MA), Execution (EXE), and Write Back (WB). 

Instruction is firstly fetched from instruction FIFO, and then decoded in ID stage. For 

algorithm or logic instruction, after reading relative data in MA stage and calculating the 

result in EXE sage, it writes those results back to the output data buffer in WB stage. 

When memory access instruction is executed, the relative address is calculated in EXE 

stage in advance to support memory accessing in MA stage. Sub-stage results are stored in 

General Purpose Registers (GPR) array. GPR array is the interface to access the shared 

memory and to communicate with other PEs. The internal architecture of SP is shown in 

Figure 3. 
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Figure 3. Architecture of SP 

SFP, which is designed for complex calculation, is organized as a longer pipeline for 

intricate operation, as shown in Figure 4. SFP pipeline is similar to SP, except an 

additional LUT unit and execution stage. Three extra execution cycles are added to meet 
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the requests of complex operations. Execution cycles are defined as EXE0, EXE1, EXE2, 

and EXE3. SFP execution core is called Computing Units (CU). Compared with PE cores 

which can only deal with basic operations, CU cores are mainly used to execute complex 

operations.  

LUT uses an array indexing to get complex calculation result directly. Since retrieving 

a value from memory is often faster than undergoing a complex algorithm or logic 

computation, the execution time is reduced significantly. The input operand width 

determines LUT accuracy and hardware realization area. High accuracy leads to a bigger 

hardware logic area, which is one of the critical factors in embedded platforms. The input 

operand width of LUT in this paper is 6-bit width along with 3-bits for function control. 

Functions implemented by LUT include reciprocal, sine, cosine, exponent, and binary 

logarithm. 
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Figure 4. Architecture of SFP 

Floating-point operations are implemented in both PE cores and CU cores. Compared 

with integer operations in the same bit length, floating-point numbers are more accurate 

and can support a wider range of values. Moreover, hardware implementation of floating-

point arithmetic is also with high efficiency comparably with integer. Input integer can be 

converted to 32-bit floating-point format, and then be utilized in PE and CU cores.  
 

3.4. Bus Accessing Mechanism and Memory Architecture 

Different instructions are classified and repacked based on parallelism dimension. For 

4D operations, data is organized in 128-bit, and can be read in 1 clock cycle, which leads 

that all the SPs executing simultaneously. This is the best parallel case based on MD-PP 

architecture. For 1D~3D dimension instructions, operations are packed with different data 

which cannot be ready synchronously, so the efficiency PM are limited by the memory 

accessing throughput. That is critical for EGPU execution performance. 

Two AXI buses are added to guarantee data accessing efficiency of MD-PP. When 4D 

instructions are executed, 128-bit data will be read at one time. Another situation, 3D 

instruction combined with 1D one, 2 independent data (96-bit and 32-bit), are read 

simultaneously. Similarly, 2D and 2D case also needs to read data twice. Based on double 
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AXI buses, all data can be prepared in 1 clock cycle for all the above situations. For the 

worst case, which is the packed instruction consisting of 1D operations, memory access 

cycle can also be reduced to 2 clock cycles. For SFU, additional memory channel is 

reserved to speed SFU memory accessing. Table 2 shows the pipeline of PE and CU. It is 

obvious that only one PE occupies the memory bus of SP in each cycle. The executions of 

5 PEs are stagger. Eight CUs are also well organized with the same strategy.  

Table 2. Pipeline of PE and CU 

IF Instruction Fetch ID Instruction Decode MA Memory Access  

EXE Execution WB Write Back  

Clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

CU0 IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID MA EXE0 EXE1 EXE2 EXE3 WB 

CU1  IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID MA EXE0 EXE1 EXE2 EXE3 

CU2   IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID MA EXE0 EXE1 EXE2 

CU3    IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID MA EXE0 EXE1 

CU4     IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID MA EXE0 

CU5      IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID MA 

CU6       IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID 

CU7        IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF 

 

PE0 IF ID MA EXE WB IF ID MA EXE WB IF ID MA EXE WB IF 

PE1  IF ID MA EXE WB IF ID MA EXE WB IF ID MA EXE WB 

PE2   IF ID MA EXE WB IF ID MA EXE WB IF ID MA EXE 

PE3    IF ID MA EXE WB IF ID MA EXE WB IF ID MA 

PE4     IF ID MA EXE WB IF ID MA EXE WB IF ID 

 

A flexible memory accessing architecture is proposed in this paper. PM contains 3 

memory hierarchies, that is, external memory, internal memory, and FIFOs. Graphics 

source data and final processing results are stored in external memory DPB and DOB. 

Internal memory consists of 3 parts, constant buffer, shared memory, and internal function 

memory. Unlike the constant buffer and internal function memory, shared memory causes 

data conflicts inevitable. It is defined that writing accessing has higher priority than 

reading, then the conflictions of read and write can be prevented. This kind of conflicts 

may not be aware by software programmers can be solved by the hardware. Shared 

memory is separated into 5 independent banks corresponding to 4 SPs and SFP. Each PE 

can only write intermediate data into its own bank. So conflicts caused by different 

processing units writing to the same address can be avoided. If the same memory address 

is read by multiple cores, different priorities are distributed according to thread IDs. The 

same strategy is also applied into the constant buffer and internal function memory. 

FIFOs are used in PEs and CUs to store instructions temporarily. Details of designed 

internal memory are presented in Table 3 as following. 

Table 3. Details about Internal Memory 

Name Description Size 

Constant Buffer Store constant 4Kb, 128*32bit 

Shared Memory Share intermediate data 6Kb, 4*32*32bit + 64*32bit 

Relative Memory Store relative memory 8Kb 

Single FIFO Store instructions   1Kb, 16*64bit 

 

With hierarchical memory architecture and flexible bus accessing mechanism, memory 

accessing time is greatly reduced and the efficiency of the whole PM is improved. 
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4. Experimental Results 

In this section, experimental results are presented to evaluate the performance and the 

cost of the whole PM design.  

A verification platform is established to verify the performance of the PM design 

proposed in this paper. Instructions are designed in different test cases to verify whether 

PM’s function is correct. The relative data are prepared in external memory in advance. 

All instructions and data in test cases meet the design rules of PM. Verification results are 

given out after comparing with golden data.  

Processing performance is another verification target. Instruction numbers executed per 

second can reflect the performance directly, but it relied on the amount hardware 

resources to a great extent. The increasing use of hardware resources increases area and 

power consumption. The balance between performance and hardware cost is considered 

during PM design. Clock cycle numbers spent by each instruction are used to evaluate the 

performance in this paper. Table 4 presents the result of processing. 

Table 4. Design Indicators 

Case 

Number 

Instructions Package Type : Number 

(4 basic operation) 

Clock 

Cycles 

Execution 

Unit 

1 1D*4  :    X X+5 MD-PP 

2 1D+3D  :    X X+4 MD-PP 

3 2D+2D  :    X X+4 MD-PP 

4 4D  :    X X+4 MD-PP 

5         Complex Operation  :    X X+7 SFP 

 

Instruction is organized by basic 32-bit floating operation. The performance is 

evaluated by the capability to calculate basic 32-bit floating operations, and instruction 

package (from 1D to 4D) contains 4 basic operations. Based on parallel MD-PP 

architecture, the processing performance has been greatly improved. In execution sub-

stages, PM can process 4 floating operations per cycle in the best cases (4D). In the worst 

cases (1D), 2 floating operations are finished in each cycle. With a large number of 

programed instructions, almost 4 basic operations can be executed in each clock cycle. At 

200MHz frequency, about 28M vertices or fragments can be processed in average. In 

general, the PM has reached a preferable quality. PM’s backend design is listed in Table 5 

and Figure 5. The voltage of standard cells provided in the library ranges from 0.7V to 

1.25V, while the temperature ranges from 25℃ to 125℃. Based on worst PVT corner, 

area, power, frequency and layout results are given out. 

Table 5. Technology Condition & Results 

Processing 

Technology 
32nm CMOS 

Voltage 0.7V 

Temperature 125℃ 

Area 5104494um
2
 

Power 

Consumption 
101.838mW 

Frequency 200M 
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Figure 5. Layout of PM 

5. Conclusion 

With the limitation of embedded devices, the innovations of architecture and 

processing mechanism are playing more and more important roles in the design of 

embedded devices. This paper provides an exploration of parallel processing in embedded 

processor design. An efficient PM architecture is proposed with a co-issue and MD-PP 

technology. TPU dispatches multiple threads and MD-PP implements multi-dimensional 

parallelism. Specific bus accessing mechanism is designed to avoid memory accessing 

conflicts. PM can be used in both general purpose computing and graphics processing 

acceleration in order to meet the increasing requirements of data processing. Experimental 

results show that the PM can execute instructions efficiently, completing 4 basic 

operations in the best case and 2 in the worst case within each clock cycle. And it can 

process about 28M vertices or fragments per second with 32nm CMOS design technology 

library and 200M clock frequency. Its area is about 5104494um
2
, and power consumption 

is nearly 101.838mW. Further improvements can be obtained by integrating more 

processing cores. The relationship between thread smart distribution and memory 

accessing confliction could also be further studied. How to get the balance between 

performance and cost is another long-term research topic in EGPU design. These research 

directions will be covered in the next stage of research. 
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