
International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015), pp.343-354

http://dx.doi.org/10.14257/ijmue.2015.10.5.32

ISSN: 1975-0080 IJMUE

Copyright ⓒ 2015 SERSC

A 32nm EGPU Parallel Multiprocessor Based on Co-issue and

Multi-Dimensional Parallelism Architecture

 Yang Wang
1
, Li Zhou

1*
, Tao Sun

2
, Yanhu Chen

1
, Jia Wang

1
, Yuanzhi Zhang

1
,

and Yuanyuan Gao
1

1
School of Information Science and Engineering, Shandong University, P.R.

China
 2

Shandong Provincial Key Laboratory of Network Based Intelligent

Computing

University of Jinan, P.R. China

vincent.sdu09@gmail.com, * zhou_li@sdu.edu.추, Corresponding Author

Abstract

In this paper, a Parallel Multiprocessor (PM) based on SIMT (Single Instruction and

Multiple Threads) architecture is proposed. With co-issue architecture and multi-

dimensional parallelism implemented in high-effective PM, Embedded Graphics

Processing Unit (EGPU) provides great performance for various situations, such as

general purpose computing, 3D scene rendering, and graphics processing. Application

programs are departed into separated threads. Allocated by Thread Processing Unit

(TPU), separated threads can be executed in parallel. Parallelism in different hierarchy

and dimension are implemented by Multi-Dimensional Parallelism Processor (MD-PP),

which has made a proper trade-off between performance and cost. Additionally, PM

improves the hardware occupancy with its co-issue architecture and internal bus

accessing mechanism to meet the demand of processing capability. Its unified shading

architecture also helps to hide processing latency. PM can execute 4 basic operations in

the best case and 2 in the worst case within each clock cycle. With 32nm process

technology and 200MHz clock frequency, PM’s area is about 5104494um
2
, power

consumption is about 101.838mW, and it can process nearly 28M vertices or fragments in

average. Experimental results show that the MD-PP based PM can process data with

high performance and get a balance between efficiency and hardware consumption

simultaneously.

Keywords: Embedded GPU, SIMT, Co-issue, Multi-Dimensional parallelism

1. Introduction

Embedded application systems, such as mobile phones, hand-held consumer

electronics and automobile electronics, have become more and more powerful and

popular. People tend to rely on embedded systems, playing games with smartphones,

watching high quality videos and images, editing photos, etc. Most of these functions are

involved with powerful computation capability and complex data processing. That is the

assigned task of EGPU processors. EGPUs have already become an essential component

in current embedded systems [1-2].

GPU, first designed by NVDIA in 1999, is the most pervasive parallel processor to

date [3]. GPUs have been widely used in both acceleration of 3D graphics processing and

general purpose computing [4-7]. Along with the coming of big data age, how to improve

the efficiency of mass data processing has become a challenging problem, which needs to

be solved urgently by hardware systems. The efficiency of processing units has been more

and more important in the design of modern GPUs, especially in embedded systems.

http://dx.doi.org/10.14257/ijmue.2015.10.5.17

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

344 Copyright ⓒ 2015 SERSC

During the last decade, hardware design of GPU has been dramatically changed from

fixed pipeline to unified programmable architecture, which leads to more flexible and

efficient GPUs. However, unlike desktop GPU, EGPU design is limited by some critical

factors, such as power consumption, area efficiency, and chip cost [8]. Most EGPUs still

use traditional pipeline to do the graphics processing. How to enhance the performance of

EGPU under limited condition is a critical challenge, which needs to be considered from

both architecture innovation and technical integration.

Among all the challenges, the design of an efficient parallel architecture is the most

critical one. There are several methods to implement the parallel computation, in which

the most popular methods are SIMD (Single Instruction and Multiple Data) and SIMT

(Single Instruction and Multiple Threads). Nowadays, SMT (Simultaneous

Multithreading) has been proposed for better performance. In SIMD, elements of short

vectors are processed in parallel. While in SMT, multiple instructions are issued from

multiple threads and run in parallel. SIMT is somewhere in between: an interesting hybrid

between vector processing and hardware threading [9]. Hence, the SIMT is the most

promising model in parallel computation of GPUs, especially for EGPUs [10].

In this paper, a neoteric SIMT PM architecture with TPU and MD-PP is proposed.

MD-PP allows multi-dimensional and hierarchical parallelism. Multi-threads are well

mapped into multiple cores with the help of TPU. TPU reads instructions from Instruction

Pool (IP) and allocates different threads to MD-PP. MD-PP consists of 4 Streaming

Processors (SP). After all the data have been processed, MD-PP writes results back.

Instruction operations include basic and complex calculations. Basic calculation refers to

add, multiply, comparison, etc., which can be executed in 1 cycle. Complex calculation

refers to sine, cosine, logarithm, trigonometric, etc., which need multiple cycles. By

separating complex calculations from basic calculations, SPs only deals with basic

operations. Complex calculations are processed by Special Function Processor (SFP).

There are 4 SP cores and 1 SFP core integrated in a PM. Five PEs in each SP core are

organized in a hierarchy way, which can be configured to work in pipeline or parallel

way. Based on MD-PP architecture, software threads can be mapped to MD-PP and SFP,

which unifies the software programming and hardware execution. And it will bring more

convenience for EGPU programming.

In this work, the following contributions have been made:

1) TPU is designed to dispatch separated threads to deal with corresponding data based

on the same instructions. TPU balances the workload of execution cores dynamically

and efficiently.

2) The architecture of MD-PP is designed to work simultaneously. MD-PP achieves

multi-dimensional parallel processing in both horizontal and vertical direction.

3) Based on the co-issue architecture, instructions are combined according to

parallelism dimension, and hardware utilization is also increased.

4) An efficient anti-collision bus accessing mechanism is applied in PM to solve the

conflicts between different executing units. Memory accessing latency can be hidden

dramatically.

The rest of paper is organized as following. In Section 2, the development of GPU and

EGPU architecture is introduced. Section 3 describes the detail architecture design of

proposed PM. Experimental results are provided in Section 4. Section 5 presents the

conclusion and further consideration of future research works.

2. Development of GPUs with SIMT Architecture

Modern GPU has evolved from a traditional fixed pipeline to a programmable parallel

processor with computing capability exceeding that of multicore CPUs [8]. Comparing

with the traditional pipeline, which can only deal with graphics tasks, programmable

processor is more flexible. With the advent of vertex shader and fragment shader,

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 345

graphics processing is divided into vertex stage and fragment stage. Vertex stage works

on the vertices of primitives, including points, lines, and triangles. Typical operations

transform coordinates into screen space before setting up and raster. And lighting and

texture parameters are also prepared for fragment processing. Fragment stage fills the

interior of primitives for raster output, along with the interpolated parameters [8].

However, the workloads of vertex and fragment stages are not well balanced sometime

in different situations. So unified processor architecture is presented, which can execute

both vertex and fragment programs. Unification enables dynamic load balancing of

varying vertex processing and fragment processing workloads, and permits the new

graphics shader stage, geometry stage [11-13]. The generality required of a unified

processor opened the door to a completely new GPU parallel-computing capability.

To further accelerate data processing, some GPU parallel processing architectures are

presented based on the unified architecture. SIMT, which has been widely used, is a good

choice for GPU and EGPU architecture design. NVDIA SIMT hardware architectures

provide a convenient platform for CUDA (Compute Unified Device Architecture)

programming [3]. CUDA’s hierarchical threads map to hierarchical processors of SIMT

GPUs. GPU executes one or more CUDA kernel grids, where a PM core in GPU executes

one or more thread blocks; several SP cores and other execution units in PM complete

threads execution [3]. Once the instruction is set, multiple registers are set, multiple

addresses, and multiple flow paths are ready for execution. This kind of SIMT

architecture brings great advantages in software programming flexibility and execution

efficiency. With the development of mobile technologies, parallel processing technology

has been massively adopted in EGPUs.

3. MD-PP based Parallel Multiprocessor

In this section, MD-PP based PM architecture is presented in detail. PM consists of 5

parts, IP, TPU, MD-PP, SFP, and internal memory, as shown in Figure1. Command

Processor (CP), Data Preparation Buffer (DPB) and Data Output Buffer (DOB) are also

demonstrated in the diagram. IP, with a depth of 32, is designed to store the instructions

from CP. TPU reads 4 instructions each time from IP and packs them as a warp, which is

then allocated to MD-PP as independent threads. Specifically, TPU allocates an

instruction package, including 4 independent instructions, to MD-PP’s execution units to

achieve 4 co-issues at one time. MD-PP is organized to deal with basic calculations which

can be finished within one clock cycle. SFP focuses on complex calculations, which may

need multiple cycles. Memory unit is a combination of memory blocks used for various

purposes. Constant buffer contains constant used by MD-PP and SFP in EGPU’s shading

stage. Shared memory is commonly owned by both MD-PP and SFP. To resolve data

interaction and reusing problems during graphics processing, shared memory is designed

to store intermediate results. It saves operating time, and finally accelerates processing.

Besides texture, relative memory also stores data for shading stages.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

346 Copyright ⓒ 2015 SERSC

Data Output Buffer

D
ata P

rep
aratio

n
 In

p
u

t B
u

ffer

Command Processor

Instruction Pool

Thread Processing Unit

SFP

C
o

n
stan

t B
u

ffer

Sh
ared

 M
em

o
ry

R
elative M

em
o

ry

PM

SP

MD-PP

Figure 1. Overview of PM

PM processing begins with the commands from CP. CP communicates with host CPU,

responds to the command of CPU, and coordinates all the blocks of EGPU. CP fetches the

instructions from system bus. After analyzing each instruction, CP sends control signals

to the relative blocks, awaking them to execute the current instruction. Since this paper

focus on MD－PP design, the details of CP and data preparation process are not included.

Once instructions are pushed into IP, PM is awoken and starts to run. PM executes 4

instructions at the same time with the help of co-issue mechanism in TPU. By sharing the

results of each SP in shared memory, the speed of calculation is dramatically increased.

When the current instruction is finished, result will be written back to DOB. If IP’s empty

state is detected, PM goes into idle state, and waits to be awoken by new instructions from

CP.

3.1. Instruction Design

PM instruction is 64-bit SIMT instruction set to implement various kinds of operations,

as shown in Table 1. Besides fundamental operation code, destination operand, and source

operands, specific bits are designed to distinguish different threads, dimensions, and

operation types.

Table 1. Format of Instruction

[63:60] [59:57] [56:49] [48:41] [40:33]

Op-code Type Destination Scr1 Scr2

[32:25] [24:23] [22:21] [20:17] [16:0]

Scr3 Dimension-tag Thread-id Synchronization Reserved

Different operations are distinguished by 3-bit type code, which is used to separate the

basic operations from complex ones, and to indicate specific types of operations, such as

algorithm operations, logic operations, or memory access. Cooperated with 4-bit op-code,

the instruction can provide up to 16 kinds of specific operations for each instruction type.

That can cover most of the operations of EGPU’s processing.

Four dimension types are designed, 1D~4D. All operations are classified according to

their dimension types. Individual SP is 1D scalar processor, dealing with 32-bit floating

operations. So 64-bit operations, 96-bit operations, and 128-bit operations are distributed

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 347

as 2D, 3D, and 4D thread operations. Two-bit dimension tag in instruction is used to

mark the dimension of operations, which is an important factor for computing efficiency.

Threads and SP cores are mapped based on MD-PP architecture. They are distributed

to different SPs according to their thread ID. Two-bit thread ID is set to signify 4 threads.

Another 4 bits are set as synchronization bit. The rest bits of the instruction are reserved

for further extensions.

3.2. Thread Processing Unit

SP is a 32-bit scalar processor. To deal with common 128-bit operations in graphics

processing, 4-channel should be used simultaneously. For example, coordinates

transformation in vertex processing and the colors conversion in fragment processing are

all 128-bit operations. Instructions are expected to execute in 4 SPs at the same time. So

instructions must be assigned into different threads, and mapped to different SPs. TPU, as

shown in Figure 2, is designed to distribute threads. TPU reads instructions from IP,

packs several instructions together and then sends to MD-PP. It guarantees the utilization

of hardware according to their dimension tags. When MD-PP is idle, TPU distributes the

corresponding instruction packages. There are mainly 4 different cases, which can be

processed in parallel. 4D instructions, referring to 128-bit operations, can be assigned into

4 independent SPs as different threads. Each SP channel deals with its 32-bit data

according to the thread ID. For 3D and 2D instructions, MD-PP can’t be fully occupied.

So these instructions should be co-issued with others to fully utilize MD-PP. 3D and 1D

instruction are combined to launch simultaneously. Three SPs are used to deal with 3D

instruction, and one SP processes 1D instruction simultaneously. Similarly, two 2D

instructions are packaged together. Four independent 1D instructions are allocated to 4

SPs in MD-PP. TPU receives acknowledge signals from SPs, and balances the workload

dynamically.

3.3. MD-PP and SFU

Since graphics operations include basic operations and complex operations, the

processing units are organized as MD-PP and SFP. Considering the complexities of SFP

operations in accessing Look-Up Table (LUT), SFP unit is separated from MD-PP and

shared by the SPs to reduce the consumption of area on chip.

MD-PP is designed to achieve the multi-dimensional parallelism, in direction of both

horizontal and vertical. The horizontal parallelism is realized by utilizing 5 independent

PEs in each SP as execution pipeline. Vertical parallelism is realized by taking advantage

of 4 SPs in MD-PP, operating in parallel to execute independent threads.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

348 Copyright ⓒ 2015 SERSC

classifier

dimension
discriminator

1D 2D 3D 4D

assembler

4D

3D

1D 1D 1D 1D

2D 2D

distributor

…

1D

instruction

co
m

p
lex

in
stru

ctio
n

TPU

basic

Figure 2. Overview of TPU

For each PE, execution pipeline is divided into 5 sub-stages: Instruction Fetch (IF),

Instruction Decode (ID), Memory Access (MA), Execution (EXE), and Write Back (WB).

Instruction is firstly fetched from instruction FIFO, and then decoded in ID stage. For

algorithm or logic instruction, after reading relative data in MA stage and calculating the

result in EXE sage, it writes those results back to the output data buffer in WB stage.

When memory access instruction is executed, the relative address is calculated in EXE

stage in advance to support memory accessing in MA stage. Sub-stage results are stored in

General Purpose Registers (GPR) array. GPR array is the interface to access the shared

memory and to communicate with other PEs. The internal architecture of SP is shown in

Figure 3.

PE0

G
en

eral P
u

rp
o

se R
egisters

SP
Instruction

FIFO
ACC OP

Memory
Access

B

OP

Address
Caculation

Relative Memory
Register Arry

Output Control

AL MA

PE

A

PE1

PE2

PE3

PE4

Figure 3. Architecture of SP

SFP, which is designed for complex calculation, is organized as a longer pipeline for

intricate operation, as shown in Figure 4. SFP pipeline is similar to SP, except an

additional LUT unit and execution stage. Three extra execution cycles are added to meet

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 349

the requests of complex operations. Execution cycles are defined as EXE0, EXE1, EXE2,

and EXE3. SFP execution core is called Computing Units (CU). Compared with PE cores

which can only deal with basic operations, CU cores are mainly used to execute complex

operations.

LUT uses an array indexing to get complex calculation result directly. Since retrieving

a value from memory is often faster than undergoing a complex algorithm or logic

computation, the execution time is reduced significantly. The input operand width

determines LUT accuracy and hardware realization area. High accuracy leads to a bigger

hardware logic area, which is one of the critical factors in embedded platforms. The input

operand width of LUT in this paper is 6-bit width along with 3-bits for function control.

Functions implemented by LUT include reciprocal, sine, cosine, exponent, and binary

logarithm.

ACC

Instruction
FIFO

OPB OPA
Memory
Access

C B A

OP1

OP2

OP3

OP4

Address
Caculation

Relative
Memory
Register

Arry

Normalization

LUT

Output Control

Truncation

Output

Index

AL MA SF

CUCU1

CU2

CU3

CU6

CU5

CU0

CU7

G
en

eral P
u

rp
o

se R
egisters

LU
T

SFP

CU4

Figure 4. Architecture of SFP

Floating-point operations are implemented in both PE cores and CU cores. Compared

with integer operations in the same bit length, floating-point numbers are more accurate

and can support a wider range of values. Moreover, hardware implementation of floating-

point arithmetic is also with high efficiency comparably with integer. Input integer can be

converted to 32-bit floating-point format, and then be utilized in PE and CU cores.

3.4. Bus Accessing Mechanism and Memory Architecture

Different instructions are classified and repacked based on parallelism dimension. For

4D operations, data is organized in 128-bit, and can be read in 1 clock cycle, which leads

that all the SPs executing simultaneously. This is the best parallel case based on MD-PP

architecture. For 1D~3D dimension instructions, operations are packed with different data

which cannot be ready synchronously, so the efficiency PM are limited by the memory

accessing throughput. That is critical for EGPU execution performance.

Two AXI buses are added to guarantee data accessing efficiency of MD-PP. When 4D

instructions are executed, 128-bit data will be read at one time. Another situation, 3D

instruction combined with 1D one, 2 independent data (96-bit and 32-bit), are read

simultaneously. Similarly, 2D and 2D case also needs to read data twice. Based on double

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

350 Copyright ⓒ 2015 SERSC

AXI buses, all data can be prepared in 1 clock cycle for all the above situations. For the

worst case, which is the packed instruction consisting of 1D operations, memory access

cycle can also be reduced to 2 clock cycles. For SFU, additional memory channel is

reserved to speed SFU memory accessing. Table 2 shows the pipeline of PE and CU. It is

obvious that only one PE occupies the memory bus of SP in each cycle. The executions of

5 PEs are stagger. Eight CUs are also well organized with the same strategy.

Table 2. Pipeline of PE and CU

IF Instruction Fetch ID Instruction Decode MA Memory Access

EXE Execution WB Write Back

Clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CU0 IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID MA EXE0 EXE1 EXE2 EXE3 WB

CU1 IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID MA EXE0 EXE1 EXE2 EXE3

CU2 IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID MA EXE0 EXE1 EXE2

CU3 IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID MA EXE0 EXE1

CU4 IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID MA EXE0

CU5 IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID MA

CU6 IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF ID

CU7 IF ID MA EXE0 EXE1 EXE2 EXE3 WB IF

PE0 IF ID MA EXE WB IF ID MA EXE WB IF ID MA EXE WB IF

PE1 IF ID MA EXE WB IF ID MA EXE WB IF ID MA EXE WB

PE2 IF ID MA EXE WB IF ID MA EXE WB IF ID MA EXE

PE3 IF ID MA EXE WB IF ID MA EXE WB IF ID MA

PE4 IF ID MA EXE WB IF ID MA EXE WB IF ID

A flexible memory accessing architecture is proposed in this paper. PM contains 3

memory hierarchies, that is, external memory, internal memory, and FIFOs. Graphics

source data and final processing results are stored in external memory DPB and DOB.

Internal memory consists of 3 parts, constant buffer, shared memory, and internal function

memory. Unlike the constant buffer and internal function memory, shared memory causes

data conflicts inevitable. It is defined that writing accessing has higher priority than

reading, then the conflictions of read and write can be prevented. This kind of conflicts

may not be aware by software programmers can be solved by the hardware. Shared

memory is separated into 5 independent banks corresponding to 4 SPs and SFP. Each PE

can only write intermediate data into its own bank. So conflicts caused by different

processing units writing to the same address can be avoided. If the same memory address

is read by multiple cores, different priorities are distributed according to thread IDs. The

same strategy is also applied into the constant buffer and internal function memory.

FIFOs are used in PEs and CUs to store instructions temporarily. Details of designed

internal memory are presented in Table 3 as following.

Table 3. Details about Internal Memory

Name Description Size

Constant Buffer Store constant 4Kb, 128*32bit

Shared Memory Share intermediate data 6Kb, 4*32*32bit + 64*32bit

Relative Memory Store relative memory 8Kb

Single FIFO Store instructions 1Kb, 16*64bit

With hierarchical memory architecture and flexible bus accessing mechanism, memory

accessing time is greatly reduced and the efficiency of the whole PM is improved.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 351

4. Experimental Results

In this section, experimental results are presented to evaluate the performance and the

cost of the whole PM design.

A verification platform is established to verify the performance of the PM design

proposed in this paper. Instructions are designed in different test cases to verify whether

PM’s function is correct. The relative data are prepared in external memory in advance.

All instructions and data in test cases meet the design rules of PM. Verification results are

given out after comparing with golden data.

Processing performance is another verification target. Instruction numbers executed per

second can reflect the performance directly, but it relied on the amount hardware

resources to a great extent. The increasing use of hardware resources increases area and

power consumption. The balance between performance and hardware cost is considered

during PM design. Clock cycle numbers spent by each instruction are used to evaluate the

performance in this paper. Table 4 presents the result of processing.

Table 4. Design Indicators

Case

Number

Instructions Package Type : Number

(4 basic operation)

Clock

Cycles

Execution

Unit

1 1D*4 : X X+5 MD-PP

2 1D+3D : X X+4 MD-PP

3 2D+2D : X X+4 MD-PP

4 4D : X X+4 MD-PP

5 Complex Operation : X X+7 SFP

Instruction is organized by basic 32-bit floating operation. The performance is

evaluated by the capability to calculate basic 32-bit floating operations, and instruction

package (from 1D to 4D) contains 4 basic operations. Based on parallel MD-PP

architecture, the processing performance has been greatly improved. In execution sub-

stages, PM can process 4 floating operations per cycle in the best cases (4D). In the worst

cases (1D), 2 floating operations are finished in each cycle. With a large number of

programed instructions, almost 4 basic operations can be executed in each clock cycle. At

200MHz frequency, about 28M vertices or fragments can be processed in average. In

general, the PM has reached a preferable quality. PM’s backend design is listed in Table 5

and Figure 5. The voltage of standard cells provided in the library ranges from 0.7V to

1.25V, while the temperature ranges from 25℃ to 125℃. Based on worst PVT corner,

area, power, frequency and layout results are given out.

Table 5. Technology Condition & Results

Processing

Technology
32nm CMOS

Voltage 0.7V

Temperature 125℃

Area 5104494um
2

Power

Consumption
101.838mW

Frequency 200M

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

352 Copyright ⓒ 2015 SERSC

Figure 5. Layout of PM

5. Conclusion

With the limitation of embedded devices, the innovations of architecture and

processing mechanism are playing more and more important roles in the design of

embedded devices. This paper provides an exploration of parallel processing in embedded

processor design. An efficient PM architecture is proposed with a co-issue and MD-PP

technology. TPU dispatches multiple threads and MD-PP implements multi-dimensional

parallelism. Specific bus accessing mechanism is designed to avoid memory accessing

conflicts. PM can be used in both general purpose computing and graphics processing

acceleration in order to meet the increasing requirements of data processing. Experimental

results show that the PM can execute instructions efficiently, completing 4 basic

operations in the best case and 2 in the worst case within each clock cycle. And it can

process about 28M vertices or fragments per second with 32nm CMOS design technology

library and 200M clock frequency. Its area is about 5104494um
2
, and power consumption

is nearly 101.838mW. Further improvements can be obtained by integrating more

processing cores. The relationship between thread smart distribution and memory

accessing confliction could also be further studied. How to get the balance between

performance and cost is another long-term research topic in EGPU design. These research

directions will be covered in the next stage of research.

Acknowledgements

This work was supported by Natural Science Foundation of Shandong Province

(ZR2013FQ006), Fund of Independent Innovation in Shandong Province

(2013CXB3020), Foundation Grant of State Key Laboratory of ASIC & System

(10KF011), State Key Laboratory of Digital Multimedia Technology (2013-1-2569),

Shandong Post-Doctor Innovation Foundation Grant (201002029), Shandong University

Innovation Foundation Grant (10000059614021), Grant of China Post-Doctor Innovation

Foundation (20110491601) and University of Jinan Ph.D Foundation Grant (xbs1018).

The authors would like to thank all research partners for their significant contributions in

this work. Thank Jinan University for supporting in hardware platform.

References

[1] L. Garber, “GPUs Go Mobile”, Computer, vol. 46, no. 2, (2013), pp. 16-19.

[2] Imagination Technologies Ltd, “POWERVR Series5 Graphics SGX Architecture Guide for Developers”,

1.0.8 Ed., Imagination Technologies Ltd, (2011).

[3] C. M. Wittenbrink, K. Emmett, and A. Prabhu, “Fermi GF100 GPU architecture”, IEEE Micro, vol. 31,

no. 2, (2011), pp. 50-59.

[4] L. Santos, E. Magli, R. Vitulli, J. F. Lopez, and R. Sarmiento, “Highly-parallel GPU architecture for

lossy hyperspectral image compression”, IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 6, no. 2, (2013), pp. 670-681.

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

Copyright ⓒ 2015 SERSC 353

[5] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “GPU computing”,

Proceedings of the IEEE, vol. 96, no. 5, (2008), pp. 879-899.

[6] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and the future of parallel

computing”, IEEE Micro, vol. 31, no. 5, (2011), pp. 7-17.

[7] A. Bayoumi, M. Chu, Y. Hanafy, P. Harrell and G. Refai-Ahmed, "Scientific and engineering computing

using ati stream technology”, Computing in science & engineering, vol. 11, no. 6, (2009), pp. 92-97.

[8] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A Unified Graphics and

Computing Architecture”, IEEE Micro, vol. 28, no. 2, (2008), pp. 39 - 55.

[9] Y. Kreinin, “SIMD< SIMT< SMT: parallelism in NVIDIA GPUs”, (2011).

[10] H. Y. Kim, Y. J. Kim, J. H. Oh, L. S. Kim, “A Reconfigurable SIMT Processor for Mobile Ray Tracing

with Contention Reduction in Shared Memory”, IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 60, no. 4, (2013), pp. 938 - 950.

[11] Y. K. Lai, and Y. C. Chung, “3-D graphics processor unit with cost-effective rasterization using valid

screen space region”, IEEE Transactions on Consumer Electronics, vol. 59, no. 3, (2013), pp. 705 - 713.

[12] T. Schiffer, and D. Fellner, “Ray Tracing: Lessons Learned And Future Challenges”, IEEE

Potentials, vol. 32, no. 5, (2013), pp. 34 - 37.

[13] J. Spjut, A. Kensler, D. Kopta, and E. Brunvand, “TRaX: A Multicore Hardware Architecture for Real-

Time Ray Tracing”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 28, no. 12, (2009), pp. 1802 - 1815.

[14] S. F. Hsiao, P. H. Wu, C. S. Wen, and L. Y. Chen, “Design of a programmable vertex processor in

OpenGL ES 2.0 mobile graphics processing units”, 2013 International Symposium on VLSI Design,

Automation, and Test (VLSI-DAT), IEEE, (2013).

[15] J. Balfour, W. J. Dally, D. Black-Schaffer, V. Parikh, and J. Park, “An Energy-Efficient Processor

Architecture for Embedded Systems”, Computer Architecture Letters, vol. 7, no. 1, (2008), pp. 29-32.

[16] Y. Wang, X. Zhou, L. Wang, J. Yan, W. Luk, C. Peng, and J. Tong, "SPREAD: A Streaming-Based

Partially Reconfigurable Architecture and Programming Model”, IEEE Trans. VLSI Syst., vol. 21, no.

12, (2013), pp. 2179-2192.

[17] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, and T. J. Purcell, “A

Survey of General-Purpose Computation on Graphics Hardware”, Computer graphics forum, vol. 26,

no. 1, Blackwell Publishing Ltd, (2007).

[18] M. M. I. Bhuiyan, "Designing a Line-clipping Algorithm by Categorizing Line Dynamically and Using

Intersection Point Method." 2009 International Conference on Electronic Computer Technology, IEEE,

(2009).

[19] M. Pharr, and R. Fernando, “GPU Gems 2: Programming Techniques for High-Performance Graphics

and General-Purpose Computation”, Addison-Wesley Professional, (2005).

[20] M. Daga, A. M. Aji, and W. Feng, “On the Efficacy of a Fused CPU+ GPU Processor (or APU) for

Parallel Computing”, 2011 Symposium on Application Accelerators in High-Performance Computing

(SAAHPC), IEEE, (2011).

Authors

Yang Wang, he was born on May 10, 1990. He received the BEng

degree in Integrated Circuit Design and Integrated System from

Shandong University, China, in 2013, and now he is pursing the

MEng degree in Circuit and System in Shandong University. His

current research interests include 3D-GPU and Computer

Architecture etc.

Li Zhou, she received doctor degree on 2004 from Zhejiang

University, China. On 2004, she joined Freescale semiconductor

R&D center as principle design architect till 2009. As an architect

and core team member, she participated in multiple National high-

tech SoC and HDTV fundamental research projects, led multiple

65nm/90nm 10 million gate scale VLSI SoC chips, and joined many

VLSI project and architecture researches. From 2009, She is an

assistant professor in Shandong University, China. Her current

research interests include stereo vision system algorithm and

International Journal of Multimedia and Ubiquitous Engineering

Vol.10, No.5 (2015)

354 Copyright ⓒ 2015 SERSC

hardware design, GPU architecture and VLSI design, high

performance processor architecture and VLSI design, etc.

Tao Sun, he received doctor degree on 2002 from Zhejiang

University, China. He joined Suzhou China Core Co. Ltd as a

researcher on CPU architecture and vice-general manager till 2007.

From 2007 to 2009, Dr. Sun was a senior manager in Spansion

China, led VLSI design projects. From 2009 till now, he is an

associated professor in University of Jinan, China. His research

interests include CPU/VLSI architecture, Solid storage architecture,

etc.

Yanhu Chen, he received doctor degree in 2007 from Chinese

Academy of Sciences, China. Since 2007 he joined the School of

Information Science and Engineering of Shandong University, where

he worked as an Assistant professor in the institute of electronic

design automation technology. His main present research interests are

in the fields of compound semiconductor RF& Microwave device

design, modeling and simulation technology; RFIC & MMIC design;

other new structure and new material semiconductor device design,

simulation and their integrated technology.

Jia Wang, she was born in October 1988, in China. She received

the BEng degree in Integrated Circuit Design and Integrated System

from Shandong University, China, in 2011, and now she is pursing

the doctor degree in Electronic Engineering in City University, Hong

Kong. Her current research interests include VLSI design, SoC

design, and chips design for security.

Yuanzhi Zhang, he received bachelor degree of engineering on

2011 from Shandong University, China. From 2011 till now, Zhang

is pursuing his master degree in Shandong University. His research

interests include CPU/GPU architecture design, human intelligence,

image processing, etc.

Yuanyuan Gao, she received bachelor degree of engineering on

2012 from Shandong University, China. From 2012 till now, Gao is

pursuing her master degree in Shandong University. Her research

interests include CPU/GPU architecture design, human intelligence,

image processing, global illumination, etc.

