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Abstract 

Sound Source Localization (SSL) has a wide application in speech separation, 

recognition and enhancement. Binaural sound source localization based on human 

spatial hearing mechanism is an important research field of SSL. The recent binaural SSL 

research is focused on the system robust against noise and reverberation. In order to 

improve the localization performance in degraded environment, this paper proposes an 

algorithm to adaptively select the ‘good’ sub-bands to compute the binaural localization 

cues. Firstly, sub-band Signal-Noise Ratio (SNR) is estimated based on the auto-

correlation matrix of binaural sound signals. Then, Inter-aural Time Difference (ITD) is 

computed by adaptively selecting the sub-bands which have the high SNR. Since the ITD 

is calculated through the sub-bands which are less affected by the noise, the sound source 

azimuth is estimated more accurate. The simulation results show that compared to the 

conventional binaural SSL algorithm, the localization accuracy of the proposed algorithm 

has been improved significantly. 

 

Keywords: Binaural sound source localization; Sub-band signal-noise ratio 

estimation; Binaural localization cues 

 

1. Introduction 

Sound Source Localization (SSL) has a wide application in Robot navigation, speech 

recognition and blind source separation. One method to localize the sound source is based 

on microphone array, in which multi-channel signals need to be processed. That means a 

large computational complexity. The other method is based on the human hearing 

mechanism, which uses binaural sound source to estimate the sound source direction. The 

binaural localization method has the advantage of simple structure, small complexity and 

accurate localization, which makes it an important research field of SSL. 

Lord Rayleigh’s [1] ‘duplex theory’ firstly analyzed the physical properties of binaural 

perception. Rayleigh pointed out that two physical cues are used to perceive the sound 

locations, which are Inter-aural Time Difference (ITD) and Inter-aural Intensity 

Difference (IID). ITD is due to the distance difference from sound source to two ears, and 

IID is due to the intensity difference from shading effect of head. Li [2] explored the ITD, 

IID and frequency spectrum of binaural signals to localization sound source based on 

Bayes criterion. Raspaud and Evangelista [3] used the Fourier Transformation (FT) to 

estimate the sound direction for clean sound. Kim [4] proposed the algorithm based on 

Zero-Crossing Time Difference (ZSTD) to estimate the sound source direction, and 

extended to multi-band ZSTD [5]. Stern [6] utilized the Short-Time Fourier 

Transformation (STFT) and Gammatone weight to calculate the ITD. In order to reduce 

the effect of noise and reverberation on binaural SSL, Tobias [7] trained the ITD and IID 

of each band in reverberation environment using Gaussian Mixed Model (GMM). This 

method can realize the binaural SSL for reverberation signal. Rodemann [8] also trained 

the signal in reverberation environment, and utilized the signal onset to imitate the 
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precedence effect human hearing. Wang [9, 10] realized the binaural SSL based on ITD, 

IID and pitch information. Also, Wang [11] traced the moving speaker using Hidden 

Markov Model (HMM) and binaural cues. Stern [12-14] improved the performance of 

binaural SSL through re-reverberation and echo-suppression. For noisy environment, 

Uncini [15] employed the pre-filter in spectrum domain to reduce the noise disturb. 

Tobias [16] utilized the GMM model to ITD and IID, which realized the localization and 

speaker recognition in reverberation and noisy environment. Also, Karim [17] provided 

the binaural cues as inputs for a neural network. This learning approach obtained good 

azimuth and elevation angles estimates performance. 

Since the performance of binaural SSL degraded rapidly in noisy and reverberation 

environment, the research of anti-noise and anti-reverberation is the key point of SSL. 

Based on the SNR estimation method for microphone array [18], this paper presents an 

algorithm to estimate sub-band SNR of each frame, which utilizes the auto-correlation 

matrix of binaural signals in sub-band. Then, the proposed algorithm adaptively selects 

the sub-bands with high sub-band SNR to estimate the ITD and localize sound source. 

Since ITD are estimated by the sub-bands which are less affected by noise, the proposed 

algorithm significantly improves the performance of binaural SSL.  

This rest of the paper is organized as follows: Section 2 introduces the principle of 

binaural SSL. Section 3 describes the method of sub-band SNR estimation and binaural 

SSL in detail. Section 4 gives the simulation results and analysis.  

 

2. The Structure of Binaural Sound Source Localization 

In the process of sound propagation from source to two ears of human, the sound wave 

is reflected and scattered. All those influence can be integrated by the transfer function, 

which is called Head Related Transfer Function (HRTF), the corresponding time form is 

Head Related Impulse Response (HRIR). HRTF is defined as the spectral acoustic 

transform function from the sound source to eardrum in free sound field, which reflects 

the acoustic filter effect of human physiological structure on sound wav. The HRTF is 

described in Eq.(1): 
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where HL and HR denote HRTF of left ear and right ear respectively; PL and PR are the 

spectral sound pressure of left ear and right ear from the point sound source; P0 is the 

spectral sound pressure in the original position of head when the human moves.  

According to Eq.(1), HRTF is the function of distance r from sound source to head, 

sound source azimuth θ, elevation ϕ and frequency f. HRTF integrates the localization 

information of human ear, and each spatial position corresponds to a pair of HRTF. 

Based on HRTF, we introduce the binaural SSL process. Here we assume the sound 

source is s(t). The left-ear signal xL(t) and right-ear signal xR(t) are defined as binaural 

signals, which are given by: 

( ) ( ) ( )

( ) ( ) ( )

L L L

R R R

x t h s t n t

x t h s t n t

  

  
            (2) 

where hL and hR represent the HRIR of left-ear and right ear; “  ” denotes linear 

convolution; nL(t) and nR(t) represent noise signal of left-ear and right-ear, which include 

reverberation and additive noise. Here, reverberation is supposed to be related with 

source, while additive noise is unrelated with the source. 

After binaural signals are pre-processed (framed and windowed) and Voice Activity 

Detected(VAD), xL(t) and xR(t) become discrete signals xL(i,n) and xR(i,n),where i 

indicates the number of frame. ITD are extracted for each frame. The ITD is the delay 
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corresponding to the maximum cross-correlation function of binaural signals. ITDi of the 

ith frame is derived in time domain through Eq.(3): 
1

0

arg max ( , ) arg max ( , ) ( , )
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i x x L R

n

ITD R i x i n x i n
 

 




 
   

 
           (3) 

where N represents the frame length; τ is time delay; RxLxR(i,τ) is the cross correlation 

function of binaural signals in the ith frame. 

Since Eq.(3) involves a larger number of multiplications, ITDi is generally computed in 

frequency domain. First, the spectral magnitude XL(i,k) and XR(i,k) of binaural signals in 

the ith frame are calculated through FT with Eq.(4): 
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Cross-Power Spectral Density (PSD) of binaural signals is given by: 

   *( , ) , * ,LR L RP i k X i k X i k                          (5) 

RxLxR(i,τ) is derived by inverse transform of the  cross PSD PLR(i,k) of Eq.(5): 
1
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Once the ITDi is estimated, it is compared with ITD models. And then based on the 

certain criterion, the direction of sound source in each frame is determined. But in real 

environment, RxLxR(i,τ) has several pseudo-peaks due to the existence of interference. That 

will cause performance degradation of localization method based on ITD.  

 

3. Binaural Sound Source Localization based on Sub-band SNR 

Estimation 

Since the sound source and noise has different distribution in spectrum, the noise 

interference on sound in different frequency within one frame is different. Also, because 

of the non-stationary characteristics of sound source and noise, the interference in 

different frames is also different. According to the above considerations, this paper 

estimates sub-band SNR estimation for each frame. The process of binaural SSL based on 

sub-band SNR estimation is described in detail as follows. 

Based on Eq.(2), the signal model in frequency domain for a frame is expressed in 

Eq.(7):  
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where HL(k) and HR(k) are HRTF, which are unrelated to the frame number i; XL(i,k) and 

XR(i,k) represent left-ear and right-ear spectrum of the kth frequency bin in the ith frame 

respectively; NL(i,k) and NR(i,k) are spectrum of noise in both ears of the kth frequency 

bin in the ith frame. 

Binaural spectral signal vector is defined as X(i,k)=[XL(i,k), XR(i,k)]
T
, the corresponding 

auto-correlation matrix is derived in Eq.(8): 
2

2

[ ( , )] [ ( , ) ( , )]
( , ) [ ( , ) ( , ) ]

[ ( , ) ( , )] [ ( , )]

H L L R

L R R

E X i k E X i k X i k
R i k E X i k X i k

E X i k X i k E X i k

 
   

 

 (8) 

In Eq.(8), since the auto-correlation matrix of the kth frequency bin is estimated only 

by XL(i,k) and XR(i,k) in current frame, the estimation error is relatively large. Thus, this 

paper doesn’t intend to estimate the auto-correlation matrix of each frequency bin, but 

estimates the auto-correlation matrix of each sub-band instead. The proposed method 

divides spectrum of each frame into M sub-bands, so each sub-band has L=N/M frequency 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.5 (2015) 

 

 

306   Copyright ⓒ 2015 SERSC 

bins. The method estimates the auto-correlation matrix of each sub-band using L 

frequency, which improves the estimation accuracy. 

Here defines the auto-correlation matrix R(i,m) of the mth sub-band in the ith frame:  
2

2
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The diagonal elements E[XL
2
(i,m)] and E[XR

2
(i,m)] respectively indicate the mean 

square value of left-ear spectrum, right-ear spectrum of the mth sub-band in the ith frame. 

E[XL(i,m)XR(i,m)] is the correlation function of left-ear spectrum and right-ear spectrum 

of the mth sub-band in the ith frame. 

Sound source S(i,k) is assumed to unrelated to NL(i,k) and NR(i,k) Also, NL(i,k) and 

NR(i,k) are unrelated. Based on the above assumptions and Eq.(7), each variable of R(i,m) 

is computed as follows:  

  2

2 2 2

2

[ ( , )] ( ) ( , ) ( , ) ( ) ( , ) ( , )

( ) ( , ) ( , )

( , ) ( , )
L

L L L L L

L L

L N

E X i m E H m S i m N i m H m S i m N i m

E H m S i m N i m

P i m i m

    

   

 

  (10) 

2 2[ ( , )] ( , ) ( , )
RR R NE X i m P i m i m        (11) 

where PL(i,m) and PR(i,m) represents the spectral power of received left-ear clean sound 

and received right-ear clean sound of the mth sub-band in the ith frame; σNL
2
(i,m) and 

σNR
2
(i,m) are variance of NL(i,k) and NR(i,k) respectively. 

Also: 
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Since the spectrum is divided into several sub-bands, the ratio HL(k)/HR(k) is supposed 

to be a constant within a sub-band, that is IIDm. Thus, the Eq.(12) is rewritten as: 
2 2[ ( , ) ( , )] [ ( ) ( , )] ( , )L R m R m RE X i m X i m E IID H m S i m IID P i m     (13) 

Based on Eq.(10), (11)and(13), R(i,m) is derived as follows: 
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Here we suppose that σNL
2
(i,m) and σNR

2
(i,m) are the same, that is σ2

(i,m). It should be 

noted that, the noise variance varies with the sub-band and frame. And also based on the 

formulation PL(i,m)/PR(i,m)=IIDm
2
, R(i,m) is derived in the following: 
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According to the Eq.(15), the diagonal elements of R(i,m) is the sum of sound 

source power and noise variance in the mth sub-band, the non-diagonal elements is 

the sound source power. 

Also, there are L frequency bins in the mth sub-band to estimate each component in 

Eq.(9): 
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Thus, Eq.(15) and Eq.(16) are equal: 
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According to Eq.(17), since the value of sound spectral power and noise variance are 

positive, we can obtain a unique solution of PL(i,m), PR(i,m),σ
2
(i,m) and IIDm from 

Eq.(17). Then, SNR(i,m) which means the SNR of the mth sub-band in the ith frame is 

defined: 

2
( , ) 10log
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L RP P
SNR i m
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 
             (18) 

The SNR(i,m) is compared with the threshold β to obtain the SNRIndex(i,k) 

,which means the SNR index of each frequency bin within the mth sub-band in the 

ith frame.  
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According to SNRIndex(i,k), cross PSD of Eq.(5) is modified as follows: 

    *( , ) ( , ), * , *LR L RP i k X i k X i SNRIndex ik k   (20) 

Based on Eq.(20), the frequency whose sub-band SNR is larger than threshold are 

utilized to compute the cross PSD. Otherwise, the frequency is neglected. All that means, 

the frequency which is less affected by the noise is used to estimate the cross PSD. 

RxLxR(i,τ) is calculated by reverse FT of PLR(i,k) through Generalized Cross 

Correlation (GCC) algorithm: 
1
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Then ITDi is the estimated: 

 arg max ( , )
L Ri x xITD R i


                      (22) 

The ITDi is calculated through above procedures. Then azimuth estimation based 

on ITDi is divided into two steps: the off-line training stage and the testing stage.  

Training stage: The azimuth model is set up. The input signal is the binaural signals of 

known azimuth. After pre-processed, ITD of each frame is computed based on GCC. The 

ITD is modeled using VQ for each azimuth. In this paper, the convolution result of MIT 

HRIR and white noise is set as training data for a certain azimuth. MIT HRIR used is the 

HRIR of KEMAR in the front horizontal plane. The azimuth is uniformly sampled with 

the steps of 5°. The range of azimuth is in the [-90° 90°]. -90° correspond to a point 

directly to the left, and 90° corresponds to a point directly to the right. 

Testing stage: ITDi of testing data is estimated based on sub-band SNR estimation 

algorithm. That is, Eq.(18)-(22) are utilized to compute the ITDi. azimuth θ̅i of each frame 

is estimated according to Eq.(23):  

   =arg min| |i iITD ITD


              (23) 

where ITDθ represents ITD value of VQ model for azimuth θ. 

The structure of binaural SSL based on sub-band SNR estimation is depicted in 

Figure 1. 
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Figure 1.Binaural Sound Source Localization Structure based on Sub-
band SNR Estimation 

 

The proposed method adaptively selects the sub-bands with less affected by noise 

to estimate the sound source direction, which improves the localization accuracy. 

In the process of sub-band SNR estimation algorithm, the number of sub-band 

and value of threshold need to be set. On the one hand, if we increase the number of 

sub-band, thus the number of frequency bins utilized to compute R(i,m)is reduced, 

which reduces the estimation accuracy of R(i,m). On the other hand, since we 

assume the IIDm of all frequency within the sub-band is the same in Eq.(13). If we 

decrease the number of sub-band, then the IID of each frequency bin within one 

sub-band will have larger difference, which means above assumption does not hold.  

The same problem also exists for the threshold selection. If the threshold value is 

larger, the less frequency is utilized to compute the PLR(i,k), which reduces the 

estimation accuracy of PLR(i,k). But if the threshold value is too small, the more 

frequency interfered by noise is utilized to compute the ITDi, which reduces the 

estimation accuracy of ITDi. Thus we will select the appropriate parameters based 

on the simulation results, in order to obtain reliable sound source localization.  

 

4. Simulation and Result Analysis 
 

4.1. Simulation Condition 

Sound sources for the simulation are randomly taken from the CHAINS Speech 

Corpus. The speech data includes female speech and male speech with mono 

channel. The sampling frequency is 44.1 kHz, and the duration of sound source is 

about 1 minute. The mono channel speech is convolved with MIT HRIR in the steps 

of 10° to create the directional and clean binaural testing sound. Noise signal is 

white noise. According to the global SNR level (Here global SNR value is 0, 5, 10, 

15 and 20dB), the noise is weighted and added to the clean binaural signal to get the 

noisy testing sound. 

The noisy binaural testing sound is framed and windowed. The frame length is 

40ms, with the frame shift of 20ms. Each frame is windowed using Hamming 

window. 

Two indexes are used to evaluate the system performance, the percentage of 

correct localization and Root Mean Square Error (RMSE). The percentage of correct 

localization is defined in Eq.(24): 

/cP k K                                                             (24) 

where kc represents the number of correct localization frame; K is the number of 

frames after VAD. The correct localization is defined that the estimation θ ̅i lies 

within the ±5° of the true azimuth θ.  

RMSE is defined as follows: 

21
| |i

i K

RMSE
K

 


      (25) 
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RMSE not only considers the localization error of correct localization frames, but 

also takes the localization error of all frames after VAD into account. Thereby, 

RMSE reflects the overall localization accuracy. 

The method which utilizes the all frequency to estimate azimuth is called basic 

algorithm. In this section, we compare the performance of basic algorithm and the 

proposed algorithm. 

 

4.2. Simulation 1: Influence of Sub-band Number on Localization Performance 

This sub-section focuses on the influence of sub-band number on the localization 

performance. The number of sub-band is set to 6, 7, 9 and 14. The value of 

threshold β is set to 0.  

The performance of basic algorithm is compared to that of the proposed algorithm 

with different sub-band number. The results are depicted in Figure 2. 
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(a) Result for Female Speech 
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(b) Result for Male Speech 

Figure2. Performance Comparisons of Basic Algorithm and the Proposed 
Algorithm with Different Sub-band Number 

 

In Figure 2, the abscissa represents the global SNR, while ordinate is the 

performance index. Different bars denote the performance of different algorithms.  

From results, we firstly find that performance of the proposed algorithm is much 

better than that of basic algorithm. The proposed algorithm has higher percentage of 

correct localization than basic algorithm, especially in low global SNR. Also, 

RMSE of the proposed algorithm is much lower than that of basic algorithm. For 

instance, P of basic algorithm is about 50% in 0 dB, while P of the proposed 

algorithm exceeds 70%. RMSE of basic algorithm is larger than 30° in 0 dB, while 

RMSE of the proposed algorithm is less than 16°.  

Secondly, the performance of the proposed algorithm varies with the number of 

sub-band. When the number of sub-band is smaller (such as 6), the proposed 

algorithm has better performance in the lower global SNR. When the number of 

sub-band is larger (such as 14), the proposed algorithm has better performance in 

the higher global SNR. Since the proposed algorithm with 9 sub-bands has a better 
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performance both in low global SNR and high global SNR, the number of sub-bands 

is set to 9. 

 

4.3. Simulation 2: Influence of Threshold Value on Localization Performance 

In this sub-section, we observe the performance difference when the threshold is 

set to -4,-2,-1, 0, 2 and 4. Figure 3 gives the results of the proposed algorithm for 

female and male speech with different global SNR and different threshold. 
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Figure3. Performance Comparisons of Basic Algorithm and the Proposed 
Algorithm with Different Threshold 

In Figure 3, the abscissa represents the threshold value. The ordinate is the 

performance index. Different curves denote the proposed algorithm performance 

with different global SNR.  

From the results, we find that the performance of the proposed algorithm varies 

with the value of threshold. In Figure 3(a), for female speech with certain global 

SNR, the proposed algorithm has the highest percentage of correct localization 

when the threshold is set to 0, while the proposed algorithm has the lowest RMSE 

when the threshold is set to -2. Also, for male speech with certain global SNR in 

Figure 3(b), when threshold is set to -2, the proposed algorithm has better 

performance. Based on the above simulation results, we set the threshold value of -

2.  

 

4.4. Simulation 3: the Proposed Algorithm Performance in Reverberation 

Environment 

In this sub-section, the reverberation is generated by the Image algorithm with the 

reverberation time of 0.2s and 0.6s. The number of sub-band is 9, and threshold 
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value is -2. The clean mono-channel speech is convolved with binaural room 

impulse response function to derive the reverberation signal. Also, the additive 

noise is added to the binaural reverberation signal to achieve the required global 

SNR.  

Figure 4 gives the results of basic algorithm and the proposed algorithm when T60 

is 0.2s. Figure 5 gives the results when T60 is 0.6s.  
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Figure4. Performance Comparisons of Basic Algorithm and the 
Proposed Algorithm in Reverberation Environment (T60 = 0.2s)  
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(a) Result for Female Speech 
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(b) Result for Male Speech 

Figure5. Performance Comparison of Basic Algorithm and the Proposed 
Algorithm in Reverberation Environment (T60 = 0.6s) 

In Figure 4 and Figure 5, the abscissa represents the global SNR, while ordinate 

is the performance index. 

From the results, we firstly find that the performance of the proposed algorithm is 

significantly improved, not only in the percentage of correct localization, but also in 

the RMSE. For example, when the global SNR is 10dB and T60 is 0.2s, P of basic 

algorithm is only 75%, while P of the proposed algorithm is close to 90%. When the 

global SNR is 15dB and T60 is 0.6s, P of basic algorithm is only 80%, while P of 

proposed algorithm is close to 90%. 

Secondly, performance improvement varies with the global SNR. The lower the 

global SNR, the more obvious performance improvement the proposed algorithm 

has. For female speech, when the global SNR is 0dB and T60 is 0.2s, the 

improvement of P is about 20%, RMSE reduction is about 13°. But when the global 

SNR 20 is dB, the improvement of P is only 6%, RMSE reduction is about 2°. When 

T60 is 0.6s and global SNR is 0dB, the improvement of P is about 18%, RMSE 

reduction is about 10°. But the improvement of P is about 6%, RMSE reduction is 

about 3° when the global SNR is 20dB. 

 

5. Conclusion 

Since binaural SSL aims to imitate the human spatial hearing mechanism to 

improve the SSL robust with small computation complexity, it becomes an 

important research topic of SSL. In order to improve the performance of binaural 

SSL in noisy and reverberation environment, this paper estimates the sub-band SNR 

based on auto-correlation matrix of binaural signals, and selects the sub-band with 

the higher SNR to compute the localization cues. Since the proposed algorithm 

utilizes the reliable frequency to localize the sound source, the performance of the 

proposed algorithm has been significantly improved, which provides the basis for 

robust speech segregation and recognition based on localization. 

 

Acknowledgements 

This work is supported by the National Natural Science Foundation of China (Grant 

No. 61201345) and the Beijing Key Laboratory of Advanced Information Science and 

Network Technology (No. XDXX1308). 

 

 

 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.5 (2015) 

 

 

Copyright ⓒ 2015 SERSC   313 

References 

[1] D. L. Wang and G. J. Brown, “Computational Auditory Scene Analysis: Principles, algorithms and 

applications”, IEEE Press: John Wiley & Sons, Inc., New York (2005). 

[2] D. Li and S. Levinson, “A Bayes-rule based hierarchical system for binaural sound source Localization”, 

Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, (2003) April 

6-10, Hong Kong. pp. 521-524. 

[3] M. Raspaud, H. Viste and G. Evangelista, “Binaural Source Localization by Joint Estimation of ILD and 

ITD”, IEEE transaction on Audio Speech and Language Processing, vol. 18, no. 1, (2010), pp. 68-77. 

[4] Kim Young-IK, “Estimation of Interaural Time Differences Based on Zero-Crossings in Noisy 

Multisource Environments”, IEEE transaction on Audio Speech and language Processing, vol. 15, no. 2, 

(2007), pp.734-743. 

[5] C. Q. Li, S. J. Dai and F. Wu, “Binaural Sound Localization Based on Detection of Multi-band zeros-

crossing points”, Proceedings of Second International Conference on Intelligent Networks and Intelligent 

Systems, (2009) November 1-3, Tianjin, China, pp. 393-396.  

[6] C. Kim, K. Kumar, B. Raj and R. M. Stern, “Signal separation for robust speech recognition based on 

phase difference information obtained in the frequency domain”, Proceedings of 10th Annual Conference 

of the International Speech Communication Association, (2009) September 6-10, Brighton, United 

Kingdom. pp. 2495–2498. 

[7] T. May, S. van de Par and A. Kohlrausch, “A Probabilistic Model for Robust Localization Based on a 

Binaural Auditory Front-End”, IEEE Transactions on Audio Speech and Language Processing, vol. 19, 

no. 1, (2011), pp. 1-13. 

[8] T. Rodemann, G. Ince and F. Joublin, “Using Binaural and Spectral Cues for Azimuth and Elevation 

Localization”, Proceedings of International Conference on Intelligent Robots and Systems, (2008) 

September 22-26, Nice, France, pp. 2185-2190. 

[9] J. Woodruff and D. L. Wang, “Sequential organization of speech in reverberant environments by 

integrating monaural grouping and binaural localization”, IEEE Transactions on Audio, Speech, and 

Language Processing, vol. 18, no. 7, (2010), pp. 1856-1866. 

[10] J. Woodruff and D. L. Wang, “Binaural Detection, Localization and Segregation in Reverberation 

Environments Based on Joint Pitch and Azimuth Cues”, IEEE Transactions on Audio Speech and 

Language Processing, vol. 21, no. 4, (2013), pp. 806- 815. 

[11] N. Roman and D. L. Wang, “Binaural Tracking of Multiple Moving Sources”, IEEE Transactions on 

Audio, Speech and Language Processing, vol. 16, no. 4, (2008), pp. 728-739. 

[12] H. M. Park and R. M. Stern, “Spatial Separation of Speech Signals using Amplitude Estimation Based on 

Interaural Comparisons of Zeros-crossing”, Speech Communication, vol. 51, no. 1, (2009), pp. 15-25. 

[13] C. Kim, K. Kumar and R. M. Stern, “Binaural sound source separation motivated by auditory 

processing”, In the Proceedings of IEEE International Conference on Acoustics, Speech, and Signal 

Processing, (2011) May 22-27, Prague, Czech Republic, pp. 5072 – 5075. 

[14] H. M. Park and R. M. Stern, “Missing Feature Speech Recognition Using Dereverberation and Echo 

Suppression in Reverberation Environment”, Proceedings of IEEE International Conference on 

Acoustics, Speech, and Signal Processing, (2007) April 15-20, Honolulu, USA, pp. 381-384. 

[15] R. Parisi, F. Camoes, M. Scarpiniti and A. Uncini, “A. Cepstrum prefiltering for binaural source 

localization in reverberant environments”, IEEE Signal Processing Letters, vol. 19, no. 2, (2012), pp. 99-

102. 

[16] T. May, S. van de Par and A. Kohlrausch, “A binaural scene analyzer for joint localization and 

recognition of speakers in the presence of interfering noise sources and reverberation”, IEEE 

Transactions on Audio, Speech and Language Processing, vol. 20, no.7 , (2012), pp. 2016-2030. 

[17] Y. Karim, A. Sylvain and Z. Jean-Luc, “A binaural sound source localization method using auditive cues 

and vision”, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 

(2012) March 25-30, Kyoto, Japan, pp. 217-220. 

[18] J. Chen and W. Ser, “Speech detection using microphone array”, Electronics Letter, vol. 36, no. 2, 

(2008), pp. 181-182. 

 

Author 

 
Zhou Lin received the BS and PhD degrees in Signal and Information Processing from 

School of Information Science and Engineering, Southeast University, Nanjing, China, in 

2000 and 2005, respectively. From 2005 to 2009, she was a lecturer with Department of 

Radio Engineering, Southeast University, China. From 2009 to the present, she is an 

associate professor with the School of Information Science and Engineering, Southeast 

University, China. Her research interests include the speech processing and acoustic 

signal processing, such as spatial hearing, speech recognition and speech separation. 



International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.5 (2015) 

 

 

314   Copyright ⓒ 2015 SERSC 

 


