
International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.5 (2015), pp.277-286 

http://dx.doi.org/10.14257/ijmue.2015.10.5.25 

 

 

ISSN: 1975-0080 IJMUE  

Copyright ⓒ 2015 SERSC 

Robust Fuzzy Variable Structure Control of T-S Model for a 

Quadrotor Unmanned Air Vehicle 
 

 

Honghao Wang
a
 and Mao Wang

b 

Space Control and Inertial Technology Research Center, Harbin Institute of 

Technology, Harbin, China 

a.rainmanwhh@126.com, b.wangmao@hit.edu.cn 

Abstract 

This paper considers the fuzzy modeling and robust fuzzy variable control for 

quadrotor in uncertain environment. The nonlinear system of quadrotor is firstly analyzed 

in this paper by utilizing laws of motion and force. Then, a Takagi-Sugeno (T-S) fuzzy 

model is achieved to approximate the system. LMI method is used to acquire an improved 

sliding surface. On this basis, a fuzzy variable structure controller is designed to force the 

system state trajectory toward sliding surface and maintain on it then. The controller 

ensures the resulting closed-loop quadrotor system is asymptotically stable. Finally, a 

simulation is shown to verify the effectiveness of the proposed algorithm. 
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1. Introduction 

In recent years, unmanned aerial vehicles (UAVs) have attracted more attention of 

many research groups in military and civilian areas [1]. As one type of unmanned aerial 

vehicle, a quadrotor can take off and land vertically without any environmental 

requirements, and they are able to easily hover in flight form [2]. Because of these 

advantages, they are used in various situations, like remote inspection, rescue and 

research, surveillance, forest fire detection etc. In addition, quadrotor as inexpensive 

aerial robotic platforms have attracted more and more interesting from researchers in 

control science and swarm robotics. 

Quadrotor system is an under-actuated system with four independent inputs and six 

coordinate outputs. In the meantime, the quadrotor has nonlinear, time-variant, highly 

uncertain dynamics which makes it difficult to design the corresponding controller to 

stabilize the quadrotor. Quadrotor system is made up of many subsystems such as 

attitude, altitude, and position subsystem. In these subsystems, attitude subsystem is the 

most basic because of its under-actuated characteristic. In recent years, many method 

have been used to control a quadrotor, like neural network algorithm [3], sliding control 

[4] and adaptive control [5], but these method are almost based on linear control. 

Nonlinear control is more effective relative to linear control. Ke [6] proposed a nonlinear 

controller based on feedback linearization. G V Raffo [7] certified that nonlinear integral 

predictive H infinity control has robustness with uncertain parameters and environment. 

Fuzzy control is one control method that imitate human thinking [8] [9]. T-S fuzzy system 

is widely utilized nonlinear system modeling method [10]. T-S fuzzy model can well 

approach to the dynamic behavior of nonlinear system. However, we need consider using 

robust method, when there exits uncertainty in the system.  

    In this paper, combining sliding mode variable structure control and T-S fuzzy 

model, a new fuzzy variable structure control is proposed, which utilized for the attitude 

control of quadrotor air vehicle. This paper is organized as follows. T-S fuzzy model is 

designed by analyzing the dynamic model of quadrotor in section 2. In section 3, a sliding 
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surface is build and robust fuzzy variable structure controller is given. Matlab simulation 

is shown in section 4. Finally, we conclude our work in section 5. 

 

2. Model Description and Problem Formulation 

A quadrotor helicopter mainly consists of four DC motors with bolted propellers, 

which are arranged to the terminal of a crisscross frame as depicted in Figure 1.  

 

 
 

Figure 1. Quadrotor Model 

By changing the rotating speed of four DC motors, quadrotor achieve moving in roll, 

pitch and yaw freely. A suitable dynamic system modelling is the element task of 

quadrotor control development. Before the mathematical model is developed, we gave 

some basic assumptions for this lightweight flying system.  

• Earth fixed frame is inertial coordinate, gravitational acceleration doesn’t change with 

altitude changing. 

• Quadrotor body is rigid and its weight doesn’t change with movement. 

• Configuration and weight distribution of air vehicle are symmetrical, and center of 

mass is the center of quadrotor body. 

• There are not external effects on quadrotor body such as air friction, wind pressure, 

etc. According these assumptions, the inertial matrix can be given as diagonal matrix 
0 0
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Earth fixed frame {E} (O, x, y, z) and body fixed frame {B} (Ob, xb, yb, zb) are shown in 

figure 1, where Ob is supposed to be at the mass center of the quadrotor. A vector 

 Tx y z   described the position of the center of gravity in {E}. Euler angles vector 

 
T

     describe the rotorcraft orientation representing three independent angles, 

respectively roll, pitch and yaw. The transformation matrix R representing the relationship 

between {B} and {E} is 

C C C S S S C C S C S S

R S C S S S C C S S C C S

S C S C C

           

           

    

  
 

   
  

 

, ( )C   and ( )S   are used to abbreviate cos( )  and sin( )  

According newton's laws of motion, kinetic equations of the rotorcraft can be given as  



International Journal of Multimedia and Ubiquitous Engineering 

Vol.10, No.5 (2015) 

 

 

Copyright ⓒ 2015 SERSC   279 

( )

m F F
g

Iw w Iw M
b




  



   

                                                       (1) 

where F is the translational force, m denotes the mass of the rotorcraft, bM  is torque on 

airframe body,  
T

w    is the body angular speed. The small body forces is 

ignored, then we write 

0
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u
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                                                   (2) 

where 
1 2 3 4u f f f f     and 2 , 1, 4i if b i   , i is rotor speed, b is the thrust factor. 

The generalized moments on the   variable are 

b T GM M M                                                            (3) 

where TM  is lifting moment, GM is gyroscopic moment which are written as 
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r

 denotes rotor inertia, 10 0 ( 1)
T

i

i iv      , l is the distance from pivot to 

motor, The rotors are driven by DC-motors which equation is given as 

i v i

di
L V Ri K

dt
    . 

Because of inductance and resistance of the small motor that we used are very low, the 

equation can be simplified as 

i iKV   

where iV is the voltage applied to the propeller, K is the transformation constant. The full 

quadrotor dynamic model can be given as, 
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where  
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Considering the attitude subsystem, the state vector is defined as , , , , ,
T

x           

and the control input vector as  1 2 3, ,
T

u u u u , then according to the nonlinear dynamic (4), 

the model of quadrotor can be given as  
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, 

 3 3 3 30
T

B I   ,  3 3 3 30C I  . 

It is shown that three nonlinear terms are in the matrix ( )A x , which is
1 3, (t), x (t)x . 

Because that the attitude angles and input voltage to the propellers are bounded, these 

terms are bounded. Therefore, the nonlinear dynamic (3) can be approximated by a T-S 

fuzzy dynamic model. The T-S fuzzy model is a piecewise interpolation of several 

linear models through membership functions. The fuzzy model is described by 

fuzzy If-Then rules and will be employed here to deal with the control design 

problem for nonlinear systems. The following sector nonlinearity approach is 

utilized. The term   is bounded by  min max,  with min min4KV  , 

max max4KV  according to (4). Then the weighting function of   can be chosen as 

max
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The term can be rewritten as
1 min 1 max( ) (1 )t w w      . It is noted that 10 1w  . 
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Then we can rewrite the nonlinear dynamic in (3) as the following T-S fuzzy 

model 
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where 

1 1 2 3(1 )(1 )w w w    , 2 1 2 3w w w   

3 1 2 3(1 )w w w   , 4 1 2 3(1 )w w w    
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5 1 2 3(1 )(1 )(1 )w w w     ,
6 1 2 3(1 )w w w    

7 1 2 3(1 )(1 )w w w    ,
8 1 2 3(1 ) (1 )w w w     

 

max 3

max 1

1

1

0 0 0 0

0 0 0 0

0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

y zr

x x

z xr

y y

x y

z

I IJ
x

I I

I IJ
x

I I

A I I
x

I

 
 

 
 
  
 
  
 
 
 
 
 
 
  

 

We can similarly acquire the other expression of the corresponding , 2, ,8iA i  , and 

the derivation can be left out because of the limited space. However, we only considering 

that every parameters of quadrotor are definite in the system (6). In practice, these 

uncertainties of the quadrotor control system all can’t be ignored, so T-S fuzzy system can 

be rewritten as 
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where ( , )i x t  represents nonlinear uncertainties and external disturbances of the system. 

It is assumed that the uncertainty is admissibly norm-bounded and it satisfies the 

following inequation, 

( , ) ( )i ix t x t                                                        (8) 

where 0   is the known constant. 

Lemma 1 [11]：Assume that nonlinear uncertain function ( , )f x t  is norm-bounded: 

for some 0  , ( , ) ( )f x t x t  for all
nx R , then ( , )f x t  satisfies  

( , ) ( ) ( )f x t N t x t , 

where ( )N t  is uncertain terms and it satisfies ( ) ( )TN t N t I . 

   By lemma 1, the system (7) can be shown as 
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3. Design of Variable Structure Control Algorithm 

Although a T-S fuzzy can implement representing a nonlinear function at any 

precision, there are always existing systems modeling uncertainties in practice. 

Considering the indeterminacy of aerodynamic parameter and electronic system 

parameter of quadrotor, it is difficult to complete the attitude control. In this article, we 

used the variable structure control to eliminate the uncertainty. The algorithm design of 

fuzzy variable structure control mainly is formed of two steps. The first step is to select 

suitable sliding surface to make the system motion have the wanted behavior when the 

system enters the sliding surface. The next step is the designing of the variable structure 

controller which satisfies the reaching condition. This condition make it be guaranteed 

that the system trajectories will be forced to reach toward the sliding surface in finite time 
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with this control law, then keep them on the surface. First we need to design the sliding 

surface on which the system motion is asymptotically stable. In the past process of sliding 

surface design, we rarely consider the ideal control robustness of the system including 

mismatched uncertainty. The means of LMI can be utilized in the design of sliding 

surface to improve the system robustness. Firstly, for getting a regular form of system 

function (7), a nonsingular matrix could be chosen as 
1

1

1 1 1
2

(Q )

( )

T T

T T

T PQ Q
T

T B P B B P



  

  
    
   

                                       (10) 

where 0TQ B   and 2 nT R  . We chose the sliding surface as the follow form 
1( ) ( ) ( )TS t B X x t Hx t                                            (11) 

where X  is a symmetric and positive definite matrices that need to be designed. Our aim 

is to choose an appropriate X  for making the system motion be asymptotically stable on 

the sliding surface. To achieve the dynamics on the sliding surface, we give a transform 

for ( )x t  as 

1 1

2 2

( ) ( )
( ) ( )

( ) ( )

z t T x t
z t Tx t

z t T x t

   
     
   

                                   (12) 

We can easily find that the following equation about 2 ( )z t  is satisfied 

1 1 1

2( ) ( ) ( )T Tz t B X B B X x t    

1 1( ) ( )TB X B S t   
1( ) ( )HB S t . 

It is satisfied that ( ) 0S t  , once the state trajectory of system reach the sliding surface. 

Then we can get that 2 ( ) 0z t  . According (10) and (12), we find that
1( ) ( )x t XQz t . It is 

obvious that the following function represented the sliding mode dynamics can be written 

as 
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To analyze the asymptotic stability of sliding mode dynamics, the following lemmas are 

necessary. 

Lemma 2 [12]: Given constant matrices ,D E  and unknown matrix ( )N t  of appropriate 

dimensions, if ( )N t  satisfies ( ) ( )TN t N t I , for arbitrary scalar 0   the following 

inequality holds 
1( ) ( )T T T T TDN t E E N t D DD E E     . 

Lemma 3: (Schur complement) The matrix 0
T

G R

R S

 
 

 

 is symmetrical matrix, then the 

two equivalent functions are as follows, 

0S  , 
1 0TG RS R   or 0G  , 

1 0TS RG R  . 

The result of asymptotic stability of sliding mode dynamics can be stated as follows. 

Theorem 1: The sliding mode dynamics (7) would be asymptotically stable, if there is 

symmetric and positive definite matrix X and scalar 0   such that the following 

inequation is satisfied. 

0
XQ I

  
 

 
                                                       (13) 

where 2

i

T T T T

iQ XA Q Q A XQ Q Q    , and   denotes the transposed elements in the 

symmetric positions. 

Proof: Choose the Lyapunov functions as 
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1 1( ) ( ) ( )T T

iV t z t Q XQz t  

where X is symmetric and positive definite matrix. 

It follows that the Lyapunov derivative corresponding to the sliding mode dynamic, 

arrange as follows: 

1 1 1 1( ) ( ) ( ) ( ) ( )T T T T

iV t z t Q XQz t z t Q XQz t   

 1 1
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The condition is the inequality as follows holds, which make the sliding mode dynamics 

be asymptotically. 

( ) ( ) 0
i i

T T T T

i i i iQ X A N Q Q A N XQ                                      (14) 

This inequality can easily be written as 

        0
i i

T T T T T T

i iQ XA Q Q A XQ DN E D N E    , 

where T

iD Q  , E XQ . According to lemma 2, the form (13) will be hold for 

all ( )iN t which satisfied ( ) ( )i

T

iN t N t I , if there exits 0  make the following inequality 

be satisfied. 

( ) ( ) 0TXQ XQ  . 

Using Schur complement, we can achieve the equivalent inequation (13). The proof is 

completed. The reaching condition should be satisfied in the control method designing, 

for making the system trajectories reach to the sliding surface in limited time and keep 

them on the sliding surface after reaching [13]. Traditional condition is ( ) ( ) 0S t S t  , 

where ( ) 0S t  . But there may be large chattering and long reaching time in the reaching 

phase used the condition. An improved condition have been proposed as  

( ) ( ) ( )S t S t signS t    , ( ) 0S t   

( ) ( ) ( )S t S t signS t    , ( ) 0S t                                      (15) 

where 0  and 0  are constants. This reaching condition accelerated the reaching 

rate and diminishes chattering. But (15) could not insure the system state to reach to the 

balance point finally. For overcoming the shortcoming, a novel reaching condition is 

given as follows 
( )

( ) ( ) (1 ) ( )
x t

S t S t e signS t 


    , ( ) 0S t   

( )
( ) ( ) (1 ) ( )

x t
S t S t e signS t 


    , ( ) 0S t                        (16) 

where 0  and 0  are constants. We easily know that ( )S t  in (15) satisfies the 

condition that ( ) ( ) 0S t S t  , when ( ) 0S t  . And if the range of system uncertainty is 

narrow, the value of ( )S t  is near to zero, which make the reaching rate adjacent balance 

point become very slow. These acquire smaller system motion inertia adjacent 

equilibrium point to reduce the chattering. So we consider designing the robust variable 

structure controller according to the reaching condition (16). It is said that system state 

trajectories by the control can reach the sliding surface with finite time and maintaining 

on the surface. At the same time, we can acquire faster reaching rate and lower chattering. 

Theorem 2: For the system (7), the reaching condition (16) can be satisfied, if the 

controller is written as follows 
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 1
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    

   3 ( )i H x t   

0  , 0  , 0i  ( 1,2, , )i r  are constants. 

Proof: According to (9), the time derivative of ( )S t  on the state trajectories of system (8) 

by (17) control can be written as 

 1 2

1

( ) ( ) ( ( )) ( , )
r

i i

i

S t Hx t z t H x t  


     

                                            4 2 5

1

( ( )) ( )
r

j

i

z t signS t   



   


    

 1 4 2

1 1

( ( )) ( ( ))
r r

i j

i i

z t z t    
 

     

                                        2 5( , ) ( )iH x t signS t                                 (18) 

where  

4 ( )jHA x t  , 5 ( )j H x t   

According to (8), we can get the following result 

If ( ) 0S t  , 

 5

1 1

( ( )) ( ( )) ( , ) ( )
r r

i j i

i i

z t z t H x t signS t  
 

    

 5

1 1

( ( )) ( ( )) ( , ) ( ) 0
r r

i j i

i i

z t z t H x t signS t  
 

             (19) 

We can also get the following equality as 

 1 4

1 1

( ( )) ( ( )) 0
r r

i j

i i

z t z t   
 

                                   (20) 

According to (18) and (19), we can achieve that 

2( )S t  
( )

( ) (1 ) ( )
x t

S t e signS t 


                                          (21) 

If ( ) 0S t   

 5

1 1

( ( )) ( ( )) ( , ) ( )
r r

i j i

i i

z t z t H x t signS t  
 

    

 5

1 1

( ( )) ( ( )) ( , ) ( ) 0
r r

i j i

i i

z t z t H x t signS t  
 

                  (21) 

According to (18) and (21), we can achieve that 

2( )S t  
( )

( ) (1 ) ( )
x t

S t e signS t 


                                      (22) 

From above proving process, the reaching condition can be satisfied by using 

controller (17). The control law can make the system state track reach to the sliding 

surface in limited time and maintain on the surface. At the same time, faster reaching rate 

and lower chattering are acquired. The proof is completed. 
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4. Simulation Results 

In this section, we use the simulation results of the attitude control of the quadrotor 

aircraft to validate the effectiveness of T-S fuzzy modeling and the fuzzy variable 

structure control method advised in this paper. We use the parameters of the quadrotor 

that are shown as follows 

 -7V 7ViV  , 53.685( ra  ) Vd sK  5 25 10 kgmrJ   , 

20.0563kgmxI  ,
20.0563kgmyI  ,

20.1126kgmzI  , 

63.8965 10 N Voltb   ， 0.1759ml  , =0.005sT  

min min min 4       rad s， max max max 4      rad s  

max max 2    ， 
max  . 

The simulation objective is to build T-S model of the quadrotor and design a fuzzy 

variable structure controller (FVSC). According to the method shown in section 2, we can 

achieve the fuzzy model, and we can acquire the matrix of the sliding surface as follows 

using theorem 1. 
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Figure 2. Simulation Results 

The finally results based on the FVSC algorithm are shown in Figure 2. Simulation 

results show that the FVSC method can stabilize the used quadrotor. 

 

4. Conclusion 

In this paper, the T-S fuzzy modeling and robust fuzzy variable structure controller 

design problem of the nonlinear quadrotor aircraft is discussed. A T-S fuzzy model 

approach nonlinear is proposed system design method and the system uncertainty is 

considered. By means of LMI, the stable sliding surface is designed which effectively 

decrease the effect of uncertainty. Utilizing matlab simulation, the effectiveness of the 

control algorithm is verified. 
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